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Abstract

The duration of time for which each application locks
each shared resource is critically important in compos-
ing multiple independently-developed applications upon a
shared “open” platform. In a companion paper [13], we
formally defined and studied the concept of resource hold
time (RHT) — the largest length of time that may elapse
between the instant that an application system locks a re-
source and the instant that it subsequently releases the re-
source. We extend the discussion and results from [13]
to systems scheduled using static-priority scheduling al-
gorithms, with resource access arbitrated using Stack Re-
source Policy (SRP), or Priority Ceiling Protocol (PCP).
We present a method to compute resource hold times for ev-
ery resource, and an algorithm to decrease them without
changing the semantics of the application or compromising
application feasibility.

1 Introduction

In this paper, we study real-time systems that can be
modelled as collections of sporadic tasks [23, 5], and are
implemented upon a platform comprised of a single pre-
emptive processor, and additional non-preemptable seri-
ally reusable resources. We assume that the shared re-
sources are accessed within (possibly nested) critical sec-
tions which are guarded by semaphores, that the system
is scheduled using a static-priority scheduling algorithm,
such as the deadline-monotonic or rate-monotonic algo-
rithm (e.g. see [1, 2, 17, 16, 15]), and that access to the
shared resource is arbitrated by the Stack Resource Policy
(SRP) [3] or the Priority Ceiling Protocol (PCP) [28].
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Given the specifications of such a system, our objective
is to determine, for each non-preemptable serially reusable
resource, the length of the longest interval of time for which
the resource may be locked. That is, we wish to determine,
for each resource, the maximum amount of time that may
elapse between the instant that the resource is locked, and
the instant that it is next released.

Motivation and Significance. There has recently been
much interest in the design and implementation of open
environments [10] for real-time applications, allowing for
multiple independently developed and validated real-time
applications to co-execute upon a single shared platform.

While a large body of work has studied scheduling is-
sues in such open/hierarchical real-time systems, to our
knowledge all of this work has focused primarily upon the
scheduling of the (fully preemptive) processor. The few
papers we could find [8, 9, 11] that do address the shar-
ing of additional shared non-preemptable resources place
severe restrictions on the individual applications, requiring
that the resource-requesting jobs comprising these applica-
tions be made available in a first-come first-serve manner
to the higher-level scheduler (as would happen, e.g., if the
applications were scheduled using table-driven scheduling).

The research reported here arose out of our ongoing ef-
forts at building an open environment that offers support for
sharing non-preemptable resources in addition to a preemp-
tive processor. Clearly, a high-level scheduler that arbitrates
access to such non-preemptable shared resources among
different applications must have knowledge of how long
each individual application may hold each resource. Hence
we find it necessary to characterize the application-wide (as
opposed to task- or job-specific) usage of these resources.
Specifically, we wish to be able to determine separately, for
each individual application and each shared resource, the
maximum amount of time for which the application may
hold the shared resource. This notion is encapsulated here
in the concept of resource holding times (RHT’s).



Contributions in this paper. Resource holding times
(RHT’s) quantify the largest amount of time for which an
individual application may keep a resource locked. In a
companion paper [13], we formally defined and studied
RHT’s for EDF-scheduled applications using SRP. In this
paper, we continue our study of RHT’s by deriving an algo-
rithm for computing such resource holding times from ap-
plication system specifications for SRP under static-priority
scheduling, and informally describe how this algorithm may
be modified when PCP rather than SRP is used . We also
present, and prove correct, an algorithm for modifying a
given application to obtain a semantically equivalent appli-
cation that will have decreased RHT’s under SRP.

Organization. The remainder of this paper is organized
as follows. In Section 2, we briefly describe our perspective
on open environments in order to provide a context within
which the contributions of this paper should be viewed. In
Section 3, we present the formal model for resource-sharing
sporadic task systems that is used in the remainder of this
paper and summarize prior results on feasibility analysis of
such resource-sharing sporadic task systems. Recall that
our focus here is on resource holding times (RHT’s); in Sec-
tion 4, we describe how these RHT’s may be computed from
a given system’s specifications. In Section 5, we present,
and prove properties of, an algorithm for modifying a given
resource-sharing sporadic task system in such a manner that
its semantics do not change but its RHT’s tend to decrease.
Finally, in Section 6, we briefly describe why we are unable
to reduce RHT’s using this scheme for PCP and discuss an
approach to calculating the RHT’s for PCP.

2 Open environments

Most prior research on open environments has tended to
focus on sharing only a preemptive processor among the ap-
plications. Hence, the proposed interfaces have been con-
cerned with specifying the processor-specific aspects of the
application, specifically, a model for its computational re-
quirements, and a description of the scheduling algorithm
used. Deng and Liu [10], Feng and Mok [22, 12], Saewong
et al. [26], Shin and Lee [29], and Lipari and Bini [18]
all model individual applications as collection of implicit-
deadline periodic (“Liu and Layland”) tasks [21]; some of
these papers assume rate-monotonic local scheduling and
the others assume EDF local scheduling. The Bandwidth
Sharing Server [19, 20] has a more general workload model
in that it specifies for each application the speed or compu-
tational capacity of a processor upon which the application
is guaranteed to meet all deadlines, if executing in isolation,
using EDF as the local scheduling algorithm.

Our perspective of an open system is somewhat more
general, since we allow that non-preemptable serially

Let τ1, τ2, . . . , τn denote the tasks, and R1, R2, . . . , Rm denote the ad-
ditional shared resources. Tasks are assumed to be indexed according to
non-increasing priority order (i.e. if 0 < i < j ≤ n, then τi has higher
priority than τj ).

1. Each resource Rj is statically assigned a ceiling Π(Rj), which is
set equal to the index of the lowest-indexed task that may access it:

Π(Rj) = min{i | τi accesses Rj}

2. A system ceiling is computed each instant during run-time. This is
set equal to the minimum ceiling of any resource that is currently
being held by some job.

3. At any instant in time, a job generated by τi may begin execution
only if it is the highest-priority job with remaining execution, and i
is strictly less than the system ceiling. (It is shown [3] that a job that
begins execution will not subsequently be blocked.)

Figure 1. Static-Priority Scheduling + SRP

reusable resources may be shared among the applications
in addition to the preemptive processor. Hence we will
model each individual application as a collection of spo-
radic tasks [23], each of which generates a potentially in-
finite sequence of jobs. Each such job may access the
shared non-preemptive serially reusable resources within
(possibly nested) critical sections guarded by semaphores.
An open environment will validate that such an application
meets all its timing constraints when implemented in iso-
lation upon a dedicated “virtual” processor (VP) of a par-
ticular computing capacity, when scheduled using the pre-
emptive static-priority scheduling algorithm, such as rate-
monotonic (RM) [21] or deadline-monotonic (DM) [2], and
with access to the shared resources being arbitrated using
the Stack Resource Policy [3] (SRP) or the Priority Ceiling
Protocol [28] (PCP). (Such validation, which is performed
off-line prior to actual implementation, can be done using
known techniques from real-time scheduling theory, such as
those in [25, 15, 16].) If the system does indeed meet all its
timing constraints, we will compute the resource hold times
(RHT’s) – the maximum length of time for which a resource
is kept locked – for each shared resource. The computation
of these resource hold times is the subject of the current pa-
per. Provided with knowledge of the computing capacity of
the VP, the resource holding times for all shared resources,
and some additional information, an open environment can
be designed to ensure that, if this application is admitted,
then it will continue to meet all its timing constraints. A de-
tailed and formal description of the design of such an open
environment will be the subject of a future paper.

3 System model and prior results

We assume that the application, denoted by τ , can
be modeled as a collection of n sporadic tasks [23, 5]
τ1, τ2, . . . , τn. Each sporadic task τi (1 ≤ i ≤ n) gener-
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ates an infinite sequence of jobs and is characterized by a
worst-case execution time (WCET) Ci; a relative deadline
parameter Di; a (minimum) job inter-arrival time Ti; and
its resource requirements (discussed below). For the pur-
pose of this paper, we assume that each task has Ti ≤ Di.
Furthermore, we assume that WCET parameters are nor-
malized with respect to the speed of the dedicated proces-
sor, i.e., each job of τi needs to execute for at most Ci time
units upon the available dedicated processor.

We also assume that the task’s are indexed in the de-
creasing priority order assigned by the given static-priority
scheduling algorithm (i.e. if 0 < i < j ≤ n, then τi has
higher priority than τj). For example, a static-priority algo-
rithm such as DM assigns a priority to each task proportional
to the inverse of task’s relative deadline; in other words, for
τi and τk, if Di > Dk then the priority τk is greater than τi.

The application is assumed to execute upon a plat-
form comprised of a single dedicated preemptive processor,
and m other non-preemptable serially reusable resources
R1, R2, . . . , Rm. The resource requirements of the sporadic
tasks may be specified in many ways (see, e.g., [3, 19, 24]);
for our purposes, we will let

(i) Sij denote the length (in terms of WCET) of the largest
critical section in τi that holds resource Rj ; and

(ii) Cik denote the length (in terms of WCET) of the largest
critical section in τi that holds some resource that is
also needed by τk’s jobs (i 6= k).

We will indicate with Sj the largest critical section hold-
ing resource Rj among all task, i.e. Sj = maxτi∈τ{Sij}.

For any sporadic task τi and any non-negative number t,
the request bound function RBF(τi, t) denotes the maxi-
mum cumulative execution requests that could be generated
by jobs of τi arriving within a contiguous time-interval of
length t. It has been shown (e.g. see [15]) for sporadic task
τi that the request bound function is:

RBF(τi, t)
def=

⌈
t

Ti

⌉
Ci (1)

The cumulative execution request of all tasks with pri-
ority greater than τi and one job of τi over any interval of
length t is given by:

Wi(t)
def= Ci +

i−1∑
j=1

RBF(τj , t) (2)

Static-Priority Scheduling + SRP. In the remainder of
this paper, reasonable familiarity with the Stack Resource
Policy (SRP) [3] is assumed. When it is used in conjunction
with a static-priority scheduling algorithm, the rules used

by the SRP to determine execution rights are summarized
in Figure 1. Our focus in this paper is on SRP; therefore,
due to space constraints, we will not present the entire rules
for the Priority Ceiling Protocol (PCP) [28]. Section 6 will
informally discuss how the techniques of this paper relate
to PCP.

Feasibility analysis

We now review the feasibility analysis of systems that
are scheduled using static-priority scheduling and SRP. A
priority inversion is said to occur during run-time if the
highest-priority job that is active – awaiting execution –
at that time cannot execute because some resource needed
for its execution is held by some other job. These lower-
priority jobs are said to be the blocking jobs, and they block
the higher-priority job. The higher-priority job is said to
be blocked during the time that it is pending but does not
execute, while lower-priority jobs execute.

It has been shown [3] that no job can be blocked after it
has started executing and any job is blocked for at most one
(outermost) critical section of a lower-priority task. There-
fore, the maximum length of time that τi may be blocked
by a lower-priority job is:

Bi
def= max{Cki|(τk ∈ τ) ∧ (k > i)} (3)

Combining the above blocking term with the feasibility
analysis of Lehoczky et al. [15], we can obtain the following
result.

Theorem 1 A task system τ is schedulable with a particu-
lar static priority assignement and with resource access ar-
bitrated by SRP if and only if ∀τi ∈ τ , there exists t ∈ (0, Ti]
such that

Wi(t) + Bi ≤ t (4)

The above inequality does not need to be evaluated at
every t ∈ (0, Ti]. Bini et al. [6] show that to determine
whether τi is schedulable according to the static-priority as-
signment and SRP, it is sufficient to evaluate Inequality (4)
at the following set of points:

T S(τi)
def= Pi−1(Di) (5)

where Pi(t) is defined by the following recurrent expres-
sion: {

P0(t) = {t}
Pi(t) = Pi−1

(⌊
t

Ti

⌋
Ti

)
∪ Pi−1(t)

The above set T S(τi) is referred to as the testing set
for task τi. The size of T S(τi) is pseudo-polynomial in
the parameters of the task system τ [6]. In the remainder
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of the paper we will assume that testing set T S(τi) from
Equation (5) is used, and that its elements r1, r2, r3, . . . are
indexed according to increasing value (i.e. rj < rj+1 for all
j). It can be shown that the above schedulability analysis is
identical for PCP [28]).

4 Computing the resource hold times

In this section, we describe how RHT’s may be computed
for each resource in a given feasible resource-sharing spo-
radic task system under static-priority scheduling and SRP.
That is, we assume that the input task system has been
deemed feasible (e.g., by the feasibility-testing algorithm
described in the preceding section), and describe how we
may compute RHT’s for this system.

For any resource Rj and any task τi, let RHT(Rj , τi)
denote the maximum length of time for which τi may
keep resource Rj locked. Let RHT(Rj) denote the
system-wide resource holding time of Rj : RHT(Rj) =
maxn

i=1{RHT(Rj , τi)}. Our objective is to compute
RHT(Rj) for each Rj .

Computing RHT(Rj , τi). We first describe how we would
compute RHT(Rj , τi) for a given resource Rj and a given
τi which uses Rj .

1. The first step is to identify the longest (in terms of
WCET) critical section of τi accessing Rj . Recall that
Sij denotes the length of this longest critical section.

2. It follows from the definition of the static-priority
scheduling and SRP protocol that no task with index
≥ Π(Rj) may execute while Rj is locked. Hence the
only jobs that may execute while τi holds the lock on
Rj are those generated by tasks τ1, . . . , τΠ(Rj)−1.

3. We now consider the number of times that a task with
priority greater than Π(Rj) may preempt τi while Rj

is locked. Suppose τi holds Rj for at most t. While
τi is holding the resource, it could be preempted by a
task τ` ∈ {τ1, . . . , τΠ(Rj)} for at most:

RBF(τ`, t) (6)

Also, observe that if τi acquires Rj at time tij ,
then at time tij there are no active jobs of tasks
τ1, . . . , τΠ(Rj)−1 (otherwise, τi could not execute at
time tij). So, the cumulative execution requests of
jobs {τ1, . . . , τΠ(Rj)−1} that can preempt τi while it
is holding resource Rj for t units of time, along with
maximum amount τi can execute on resource Rj is
given by:

W
(j)
i (t) def= Sij +

Π(Rj)−1∑
`=1

RBF(τ`, t). (7)

4. Let t∗i be the smallest fixed point of function W
(j)
i (t)

(i.e. W
(j)
i (t∗i ) = t∗i ). Using techniques from [14, 15],

we can obtain t∗ in time complexity that is pseudo-
polynomial in the parameters of {τ1, . . . , τΠ(Rj)−1} ∪
{τi}. t∗i is the maximum amount of time τi can hold
resource Rj . Thus,

RHT(Rj , τi)
def= t∗i . (8)

It turns out that in order to find RHT(Rj) we do not
need to evaluate RHT(Rj , τi) for every τi that accesses re-
source Rj . Let τ

(j)
max

def= arg maxτi∈τ{Sij}; that is, τ
(j)
max

is the task with the largest critical section (in terms of
WCET) that holds resource Rj . The following theorem
shows that we only need to calculate RHT(Rj , τ

(j)
max) to de-

termine RHT(Rj).

Theorem 2 RHT(Rj) equals RHT(Rj , τ
(j)
max).

Proof: Rewriting Equation (7) for a tasks τk that access
resource Rj , we have

W
(j)
k (t) = Skj +

Π(Rj)−1∑
`=1

RBF(τ`, t). (9)

Since Equations (7) and (9) differ only by the Sij and
Skj terms (i.e. the sum of the RBF(τ`, t) terms in the equa-
tions is independent of tasks τi and τk), the smallest fixed
point of Equation (7) exceeds or equals the smallest fixed
point of Equation (9) if and only if Sij ≥ Skj . There-
fore, Sij ≥ Skj implies RHT(Rj , τi) ≥ RHT(Rj , τk). Since
τ

(j)
max has the largest critical section of length Sj holding Rj

among all tasks in terms of WCET, it also has the largest
total holding time of Rj . Therefore, RHT(Rj , τ

(j)
max) ≥

RHT(Rj , τi),∀τi and the theorem follows.

5 Minimizing the resource hold times

In the previous section we computed the resource hold-
ing times for systems scheduled with static priority that use
SRP to arbitrate the access to resources; in this section, we
address the issue of decreasing these RHT’s, adapting the
result we obtained in [13] for EDF to the static-priority sys-
tems considered in this paper. Since our objective is to apply
the results obtained here for implementing open real-time
environments that allow for resource-sharing, reducing the
RHT’s will be beneficial to decrease the “interference” be-
tween different applications executing upon a common plat-
form. (In the extreme, if all the RHT’s were equal to zero
then the open environment could ignore resource-sharing
entirely.)
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The algorithm we present in this section maintains the
schedulability properties of SRP (an example of a main-
tained property, is the optimality of DM+SRP under certain
assumptions [7]), while reducing resource holding times if
possible. That is, we attempt to modify a given resource-
sharing sporadic task system such that its semantics do not
change, but the resource holding times in the resulting sys-
tem are smaller (or in any event, no larger) than in the orig-
inal. Furthermore, the modified system is scheduled by the
exact same scheduling protocol as the original system; i.e.,
we are proposing no changes to the application semantics,
nor to the scheduling algorithm deployed.

In [27], a similar technique to the one presented in the
next subsection is used to decrease the number of preemp-
tions in a static priority system with no critical sections. We
improve that technique using a more general task model,
reducing the overall complexity of the algorithm and taking
into consideration the access to exclusive resources.

5.1 Reducing RHT for a single resource

In this section, we derive an algorithm for modifying a
given resource-sharing sporadic task system such that the
resource holding time RHT(Rj) is reduced, for a single re-
source Rj . In Section 5.2, we extend this algorithm to re-
duce RHT’s for all the shared resources in the system. We
will first informally motivate and explain the intuition be-
hind our algorithm; a more formal treatment follows.

Suppose that task τi uses resource Rj . We saw (in
Section 4 above) that τi’s execution on Rj may only be
interrupted by jobs of tasks with index strictly less than
Π(Rj). Hence the smaller this preemption ceiling Π(Rj),
the smaller the value of RHT(Rj , τi); in the extreme,
Π(Rj) = 1 and RHT(Rj , τi) = Sij (i.e., the critical sec-
tion executes without preemption). Hence, our RHT mini-
mization strategy aims to make the ceiling Π(Rj) of each
resource Rj as small as possible without rendering the sys-
tem infeasible. Let us consider a particular resource Rj with
Π(Rj) > 1 to illustrate our strategy (if Π(Rj) = 1, then
Rj’s preemption ceiling cannot be reduced any further). We
follow the same approach as in [13]:

We add a “dummy” critical section (one of zero WCET)
that accesses Rj to the task τΠ(Rj)−1, and check the
resulting system for feasibility. If the resulting system
is infeasible, then we remove the critical section: we
are unable to reduce RHT(Rj , τi).

Observe that adding such a critical section effectively de-
creases the preemption ceiling of Rj by one. Hence, the
RHT(Rj , τi) in the resulting system is no larger than in the
original system.

Observe also that adding such a critical section with zero
WCET is a purely syntactic change; hence, this change has

MINCEILING(Rj)

� Reduce Rj’s preemption ceiling as much as possi-
ble.

� Let T S(·) denote the testing set for a task. (Note:
test points that do not satisfy Inequality 4 in the
initial schedulability test and previous executions
of MINCEILING have been removed).

� Let r1, r2, r3, . . . denote its elements indexed for
increasing value (i.e. r` < r`+1,∀`)

1 while (Π(Rj) > 1) do
2 for rk ∈ T S(τΠ(Rj)−1) do

� Validate Condition (4) for (t = rk)

3 if
(
WΠ(Rj)−1 + Sj ≤ rk

)
then

4 Π(Rj)← Π(Rj)− 1;
5 break (for loop);

� Remove rk from T S(τΠ(Rj−1))

6 else
T S(τΠ(Rj)−1)←

(
T S(τΠ(Rj)−1)− rk

)
;

end for
end while

7 return; � Ceiling safely decreased.

Figure 2. Reducing the preemption ceilings
for Rj .

no semantic effect on the task system.
By repeatedly applying the above strategy until it cannot

be applied any further, we will have reduced each resource’s
preemption ceiling to the smallest possible value, thereby
reducing the RHT’s as much as possible using this strategy.

Having provided an informal description above, we now
proceed in a more formal fashion by providing the neces-
sary technical details. Let us begin with some assumptions:
Our algorithm assumes that the schedulability of the ini-
tial system has been verified. We will also assume that the
initial schedulability test for each task τi evaluates Inequal-
ity 4 for each rk ∈ T S(τi) in increasing order. If Inequal-
ity 4 is not satisfied for rk, the rk is removed from T S(τi);
otherwise, if Inequality 4 is satisfied the schedulability test
for τi terminates and the “reduced-size” T S(τi) is returned.
Therefore, r1 (the first element) of each modified testing set
T S(τi) is guaranteed to satisfy Inequality 4.

The pseudo-code for reducing Rj’s preemption ceiling
to the minimum possible value is given in Figure 2, as Pro-
cedure MINCEILING(Rj). We will now argue that Proce-
dure MINCEILING(Rj) is correct.

We show that each iteration of the while loop (Line 1)
maintains system schedulability: suppose that we are at-
tempting to decrease the ceiling Π(Rj) of a resource Rj

from its current value i + 1 to i. Observe this change would
only affect the blocking term Bi for task τi: higher-priority
tasks than τi cannot be blocked by a task accessing resource
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Rj , and tasks with priority lower than τi have already cal-
culated the maximum blocking due to a task that accesses
Rj . In fact, if we decrease Π(Rj) to i, Bi would change as
follows:

Bi ← max(Bi, Sj) (10)

To prove that Procedure MINCEILING(Rj) maintains
schedulability, we must prove the following theorem:

Theorem 3 During a single iteration of the while loop
(Line 1) of Procedure MINCEILING(Rj), Π(Rj) is reduced
by one if and only if τi is schedulable with Bi updated ac-
cording to Equation 10.

Before we prove this theorem, we prove the follow-
ing useful lemma concerning updates of the testing set
T S(τΠ(Rj)−1) by Procedure MINCEILING(Rj):

Lemma 1 Prior to each iteration of the while loop (Line 1)
of Procedure MINCEILING(Rj), the minimum element of
T S(τk) satisfies Inequality 4 for all τ` ∈ τ .

Proof Sketch: The proof is by induction. Assume that the
lemma holds prior iteration of the while loop. Now consider
a loop where Π(Rj) is currently i + 1. Obviously, only τi

can be affected by the update of Line 6. So, we only need
to prove that Inequality 4 holds for the first test point of
T S(τi) after completion of the loop.

The for loop considers test points of T S(τi) in increas-
ing order. Let Bold

i be the blocking term for τi prior when
Π(Rj) = i+1; Bnew

i is the blocking term if Π(Rj) = i (cal-
culated by Equation 10). Consider the first test point r1 in
the current T S(τi). By induction hypothesis, Inequality 4
is satisfied at r1 with Bold

i . If Sj ≤ Bold
i , then Inequality 4

will be trivially satisfied at rk, and the lemma will be true.
So, we will assume that Sj > Bold

i (i.e. Sj equals Bnew
i ).

Again consider the first test point r1. If the condition of
Line 3 for r1 is violated, then Inequality 4 is also false,
and Line 6 is executed, removing the first test point. The
removal of successive test points is repeated until the con-
dition of Line 3 is satisfied. When the condition of Line 3
is finally satisfied, Π(Rj) is updated to i, and Inequality 4
is satisfied with the new blocking term. Otherwise, iff there
are no more elements, T S(τi) is empty. In either case, the
lemma continues to hold.

We are now prepared to prove Theorem 3:
Proof of Theorem 3 Again, observe that only the schedu-
lability of τΠ(Rj)−1 is affected by the iteration of the while
loop of MINCEILING(Rj). Let Π(Rj) be equal to i+1 prior
to the considered iteration.

We will prove the “only if” part of the theorem first. As-
sume that τi is not schedulable after the update of Π(Rj) to
i (and update of Bi according to Equation 10). By Theo-
rem 1, there does not exist an element of T S(τi) that sat-

isfies Inequality 4 with the updated Bi. Π(Rj) will not be
reduced.

Next, we will prove the “if” portion of the theorem.
Assume that τi is schedulable according to Theorem 1 if
Π(Rj) is updated to i. Again, let Bold

i and Bnew
i denote the

same values as Lemma 1. So, there exists a t ∈ (0, Di] such
that Inequality 4 is satisfied with Bnew

i . If Sj ≤ Bold
i , then

Bold
i = Bnew

i . By Lemma 1, the smallest value of the current
T S(τi) satisfies Inequality 4; thus, the condition of Line 3
is satisfied, and Π(Rj) is reduced to i. Now, assume that
Sj > Bold

i (i.e. Bnew
i equals Sj). Since in this section we

minimize only one resource ceiling, we know that prior to
the first for iteration, T S(τi) has only been reduced by the
initial schedulability test. Then, using Lemma 1, we know
that r1 satisfies Inequality 4 with blocking term Bold

i , and all
points removed from the initial testing set failed the same
Inequality. Being Bnew

i > Bold
i , we know that the removed

points would also fail the test using Bnew
i as blocking term.

Therefore, we could safely check the condition of Line 3
starting from r1, and MINCEILING will eventually update
Π(Rj).

5.2 Reducing RHT’s for all resources

In this section, we describe how the algorithms of Sec-
tion 5.1 may be used to decrease the resource hold times
for all the resources in a resource-sharing sporadic task sys-
tem. The next result gives an algorithm to minimize each
resource ceiling in an “optimal” way. We will say that a
minimizing strategy is optimal if each Π(Ri) obtained with
this strategy will be equal to the lowest possible ceiling that
could safely be assigned to Ri in the original task set (i.e.
when no other ceiling has been modified).

Theorem 4 Calling MINCEILING(Ri) for every resource
in order according to their Sj value (i.e. for every Rj , Rk,
if Sj < Sk then Rj’s ceiling is minimized before Rk’s) is
an optimal minimizing strategy.

Proof: We begin by ordering the resources accord-
ing to their Sj value (i.e. for every Rj and Rk in
{R1, R2, . . . , Rm}, if j < k then Sj < Sk). We have to
prove that calling MINCEILING(Ri) starting from R1 and
systematically proceeding in the given order, every time
there is an element in the initial testing set that satisfies
Condition 4 when it is evaluated to check if a resource ceil-
ing could be decreased by one, then there exists an element
in the corresponding reduced set satisfying the same condi-
tion.

To see this, note that when MINCEILING(Ri) is called
to decrease Π(Ri), the condition at Line 3 is evaluated
for every point of the corresponding reduced testing set,
which is equal to the initial set excluding the elements

6



REDUCEALL(τ)

� Order resources R1, . . . , Rm for non-decreasing
� value of their Sj (i.e. if j < k then Sj < Sk,∀(Rj , Rk))

1 for j ← 1 to m do MINCEILING(Rj)

Figure 3. Reducing Preemption ceilings for
all resources.

that failed a similar condition during a previous call to
MINCEILING(Rk). Since the removed points failed Con-
dition 4 with Sk, then they would also fail Condition 4 with
a higher value Sj .

The pseudo-code of procedure REDUCEALL(τ) in Fig-
ure 3 makes repeated calls to MINCEILING(Rj) in the order
given by Theorem 4.

5.3 Computational Complexity

As can be seen from the pseudo-code in Figure 2, to
decrease the ceiling of a resource Rj by 1 to i, Condi-
tion (4) must potentially be re-evaluated for every element
in the testing set T S(τi). There are potentially pseudo-
polynomially many such elements; hence, the computa-
tional complexity of reducing the preemption ceiling of a
single resource by 1 is pseudo-polynomial in the represen-
tation of the task system. For a resource that had an initial
ceiling equal to n, that can be reduced to 1, Condition (4)
has to be tested for (n − 1) different tasks, which remains
in pseudo-polynomial time. Observe that we also avoid re-
checking points that do not satisfy Condition (4). So, it is
easy to see that the worst-case number of test points evalu-
ated to minimize the ceiling of all resources is the same of
the initial schedulability test.

6 Calculating and Minimizing RHT’s for
PCP

In SRP, a task holding a resource Rj executes at the pri-
ority of Π(Rj) for the duration of the critical section for Rj .
PCP differs by increasing the priority of a task τk holding Rj

only when a higher-priority task τi (with priority lower than
the system ceiling) is blocked. In this case, τk “inherits”
τi’s priority. (The reader is referred to [28] for a detailed
description of PCP). Thus, the resource-holding time of τi

for Rj is maximized when τi never inherits any task’s pri-
ority and may be preempted by all higher-priority tasks, i.e.
when all tasks τk with Π(Rj) ≤ k < i don’t try to enter any
critical section. Without making any assumption on the lo-
cation of critical sections inside the worst-case code of any

task (see [4]), an upper-bound on the RHT(Rj , τi) for this
scenario is the smallest solution t satisfying:

Sij +
i−1∑
`=1

RBF(τ`, t) ≤ t. (11)

RHT(Rj)
def= maxτi∈τ{RHT(Rj , τi)}. Please note that The-

orem 2 does not hold for PCP.
We would also like to emphasize that the technique dis-

cussed in Section 5 does not apply to PCP. Since in the
worst-case scenario a task τi locking a resource Rj could be
preempted also by tasks with priority lower than the ceiling
of Rj , artificially lowering the ceiling will have no effect on
RHT(Rj). Therefore, PCP may be inappropriate to use for
systems that require small RHT’s.

7 Conclusion

Open environments, which allow for multiple
independently-developed and validated applications to
co-execute concurrently upon a common platform, are
currently a hot topic in real-time systems research. Thus
far, however, much work has assumed that shared execution
platforms are comprised of only a single preemptive
processor.

We believe that the logical next step in open environment
design and implementation is to extend such environments
to allow for more general shared platforms, that may be
comprised of non-preemptable serially-reusable resources
in addition to a preemptive processor. We are currently
working on designing such a “second-generation” open en-
vironment. We have discovered that these more general
second-generation open environments require a character-
ization of the amount of time that individual applications
may keep specific resources locked (thereby denying the
other applications access to the locked resource). In [13],
we presented a systematic and methodical study of this spe-
cific behavioral feature for dynamic-priority scheduling. In
this paper, we continue our study of resource locking du-
rations by analyzing the behavior of static-priority systems.
Our contributions include the following

• With respect to application systems that can be mod-
elled using the resource-sharing sporadic task model,
we have abstracted out what seems to be the most crit-
ical aspect of such resource locking. We have formal-
ized this abstraction into the concept of resource hold
times (RHT’s).

• We have presented an algorithm for computing RHT’s
for resource-sharing sporadic task systems scheduled
using static-priorities and SRP. We have also briefly
described how to obtain RHT’s for PCP.
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• We have presented, and proved the optimality of, an al-
gorithm for decreasing RHT’s of resource-sharing spo-
radic task systems scheduled using the static-priority
scheduling and SRP.
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