
Scalable, Distributed, Dynamic Resource Management for the ARMS
Distributed Real-Time Embedded System

Kurt Rohloff, Yarom Gabay, Jianming Ye and Richard Schantz
BBN Technologies

Cambridge, MA, 02138 USA
{krohloff, ygabay, jye, schantz}@bbn.com

Abstract

We present a scalable, hierarchical control
system for the dynamic resource management of
a distributed real-time embedded (DRE) system.
This DRE is inspired by the DARPA Adaptive
and Reflective Middleware Systems (ARMS)
program. The goal of the control system is to
simultaneously manage multiple resources and
QoS concerns using a utility-driven approach for
decision making and performance evaluation. At
each level of the control hierarchy there are
multiple local controllers which autonomously
make decisions to optimize their local utility.
The controllers in the hierarchy can use
different, localized resource control algorithms
and the system’s user can tune the operations of
the local controllers. We discuss how the
selections of local control algorithms affect the
behavior of the overall system. The control
system is designed to be easily adaptable to
other multi-tiered DRE systems.

1. Introduction

Large distributed real-time embedded
systems are often designed with static resource
management strategies tailored for specific goals
or missions. These rigid resource allocation
strategies are incapable of adapting to changing
system goals, resource levels and operating
environments. This inability to adapt can cause
DRE systems to fail to meet end-to-end quality
of service (QoS) requirements when conditions
change.

 1-4244-0910-1/07/$20.00 ©IEEE

We present a hierarchical control system for
the dynamic resource management of
hierarchical DRE systems that is capable of
simultaneously managing multiple resources and
QoS concerns. Dynamic resource management
has the capability to achieve much higher
performance in a constrained resource system
than static resource management approaches.

The DRE application area is inspired by the
DARPA Adaptive and Reflective Middleware
Systems (ARMS) program in conjunction with
Raytheon and Lockheed Martin. The ARMS
system can be decomposed into multiple
missions and missions can be decomposed into
multiple submissions called application strings
or strings. A multi-tiered behavioral hierarchy
such as this is a common aspect of many DRE
systems.

A key element of the control system we are
designing for these DRE systems is a utility-
driven approach for decision-making and
performance evaluation with respect to resource
allocation in the controllers. Utility is computed
for each element in the system hierarchy (string,
mission, system) and is a measure of that
element’s ability to perform its desired tasks.
The allocation of system resources is
dynamically managed to locally maximize utility
at each level of the system hierarchy with
individual controllers deployed for the whole
system and all missions and its strings.

The general philosophy for the control
system is a bottom-up approach to dynamic
resource management. At the lowest levels,
controllers perform fast, frequent, local tunings
of system behavior, while at the highest levels,
controllers perform less frequent, but more
aggressive control actions. This bottom-up
scalable control approach can be easily applied
to other hierarchical DRE systems. Other

dynamic control approaches to meet QoS
requirements are in [2, 3].

The next section describes key elements of
the multi-tiered hierarchical system we are
controlling. The control objectives and utility
measures for dynamic resource management are
outlined in Section 3. The control architecture
and the algorithms used by the controllers are
discussed in Section 4. We discuss the
behavioral effects of using the various control
algorithms in Section 5. We conclude the paper
and discuss several avenues of future work in
Section 6.

2. System Architecture

Properties of DRE systems can be
understood via aspects of both their resources
and applications running on those resources.
The resource aspects of DRE systems include the
computation and communication resources of the
system. The computational resources are a set of
general purpose computer hosts. The
communication resources in the system are the
communication links formed between various
hosts in the systems and the attributes of these
links such as bandwidth, maximum delay and
operating modes.

Hosts are assumed to be grouped into pools
or clusters of computing resources based on their
physical locations. Pools are managed
independently of one another by local pool
managers. Communication between hosts in the
same pool is assumed to be generally
inexpensive, while hosts in a pool share limited
communication gateways to hosts in other pools.
Therefore, communications between hosts is
partitioned into intra- and inter-pool

communications. A diagram of the system
resource interactions can be seen in Figure 1.

Software applications are deployed onto the
computational resources and can be viewed at
multiple levels of abstraction. At the lowest
level of abstraction, applications run on hosts
and perform work requiring certain computing
resources.

At the next highest level of abstraction, an
application string, or string, is a logical sequence
of applications that sequentially process
information with unique starting and ending
applications. Strings are generally deployed
across multiple hosts and pools, so string
controllers need to manage inter- and intra-pool
communication. Strings generally perform work
subject to end-to-endQoS requirements. Two or
more strings may share an application.

At the penultimate level of abstraction, a
mission is a group of strings that cooperate to
achieve common goals. At the highest level of
abstraction, the system incorporates all running
missions and resources those missions have
access to. A schematic of the system-mission-
string decomposition can be seen in Figure 2.

The ARMS system has software
components called the Infrastructure Allocator
(IA) that allocates applications to hosts and a
Bandwidth Broker (BB) that allocates bandwidth
on intra- and inter-pool communication links.
The IA actuates the control actions of the control
system by (re)allocating computational
resources, and the BB actuates the control
actions of the control system by (re)allocating
communication resources. It is assumed that the
DRE systems considered in this paper have
similar software components to actuate control
actions. It is also assumed that system status
measurement information is shared by a
distributed publish-and-subscribe service called
RSS (Resource Status Service). RSS allows

System

Mission Mission Mission

String String String

System

Mission Mission Mission

String String String

System

Mission Mission Mission

String String String

Figure 2: Software Hierarchy of DRE
Systems

Pools
with hosts

Communication
Links

Pools
with hosts

Communication
Links

Figure 1: Resources of DRE
Systems

system components to improve efficiency by not
having to redundantly gather and distribute status
information independently([4]).

3. Resource Management Objectives

The hierarchical control system uses a set of
utility functions to evaluate the performance of
strings and missions in the system against
current resource allocations. The control system
also uses the utility estimation function to
estimate the desirability of various control
actions with respect to the future performance
and utility of the system. The control system
chooses control actions that would result in a
higher level of estimated utility.

If the system has enough unused system
resources, the system could allocate resources to
previously undeployed missions or application
strings to boost its overall utility and
performance. Conversely, if resource contention
were to occur due to an over-deployment of
missions (possibly due to resource failure among
other possible causes), then the performance and
utility of the deployed missions would drop. A
change in resource availability indicates that the
controllers may need to adjust resource usage to
attempt to maximize utility due to the current
operating conditions.

We use a set of hierarchical utility functions
to measure the performance of the system that
follows the system-mission-string hierarchy
outlined in the introduction. Utility functions are
defined for the system, each of the missions and
each of the application strings that measure the
performance of these entities under current
resource allocation. More formally, at a given
time t:

()tU is the utility of system performance.

()tU m
i is the utility of mission i.

()tU js
i is the utility of string j of mission i.

We define the system-level utility, ()tU to
be a weighted sum of the mission-level utilities:

() ()∑ =
= M

i
m
i

m
i tUwtU

0

The weight factor m
iw is a measure of the

relative importance of mission i.
Similarly, the mission’s ability to complete

its required tasks depends on the ability of its
strings to complete their desired tasks, so
mission utility ()tU m

i is a weighted sum of the
mission’s string-level utilities:

() ()∑ =
= i jjS

j

s
i

S
i

m
i tUwtU

0

The weight factor jS
iw is a measure of the

relative importance of string js of mission i.

The utility of string js from mission i
depends on the timeliness, quality, and
throughput of information processed by the
string. These factors are an indication of how
well the string can process and transmit

information. Timeliness (()tT js
i) is a measure

of the application string’s ability to meet end-to-

end real-time requirements. Quality (()tq js
i) is

a measure of how useful the information
processed by an application string is.

Throughput (()tTh js
i) is the rate at which

information to be processed is sent to the string.

The mapping of the ()tT js
i , ()tq js

i and

()tTh js
i to the utility of the string may vary

from string to string, so we define ()tU js
i to be

computed by a generic function ()⋅⋅⋅ ,,js
iF :

() () () ()()tThtqtTFtU jjjjj s
i

s
i

s
i

s
i

s
i ,,= .

The utility ()tU js
i is periodically computed

by its string controller and published on RSS so
that the higher level controllers can compute

()tU m
i and ()tU . Expressions for timeliness,

quality, and throughput are application
dependent.

4. Control Architecture

In order to hierarchically allocate resources
in the system to maximize system utility,
controllers are deployed with one controller for
every string (called the string controllers), one
controller for every mission (called the Mission
Controllers or MC’s) and one system controller
(called the Multi-Mission Coordinator or MMC).
A diagram of the system-mission-string
hierarchy can be seen in Figure 3. At the top of
the diagram, the MMC controls the gross
allocation of resources to the missions. At the
next level down, the local MC’s coordinate the
local deployment of strings which consume the
local allocation of resources. At the lowest level,
the string controllers, fast local tunings of the
local resource usages.

All of the controllers in the hierarchy
communicate with their parents and/or children
to facilitate tradeoffs between local run-time
utilities and resource allocations among control
layers in the bottom-up control design. The
controllers interact with each other through
direct communications, but the controllers
receive information about system resource status
or performance through RSS.

The low level controllers are generally fast
and responsive, while the high level controllers
have the ability to take more aggressive control
actions. Higher level control actions are more
invasive, so the higher level controllers are
designed take more time to better estimate which
of their control actions will maximize their local
utility. Local controllers in this design attempt
to greedily maintain their local utility and the
bottom-up control philosophy limits local, fast
utility gains that are potentially detrimental to
the overall system utility.

5. Local Control Algorithms

We now discuss the operations of the
individual controllers at each level of the control
hierarchy.

5.1 String Controller

String controllers perform fast low-level
tuning of quality and throughput in order to
maintain their local string utility. A drop in
string utility could be caused by either resource
contention or failure, but on resource failures, the
string controller is expected to receive
notification about the failures from RSS. In the
absence of a notification from RSS indicating
otherwise, the string controller assumes drops in
utility are caused by resource contention.

Generally the quality (()tq js
i) and the

throughput (()tTh js
i) of an application string

can be directly controlled by the string’s
controller by adjusting applications in a string,
but the timeliness (()tT js

i) cannot. However,
the timeliness of a string can be influenced by
tuning the quality and throughput of information
processed by a string. When a string controller

observes that ()tU js
i is significantly below its

measured baseline, the string controller attempts
to decrease the string’s quality and throughput.
Any observed improvement in timeliness by
decreasing quality and throughput will not be
instantaneous, so incremental decreases are made
in both quality and throughput on the utility
measurement cycles. Quality and throughput are
continually decremented until a local maximum

of the measured string utility ()tU js
i is found.

If the local maximum is not sufficiently
close to the utility baseline, the string controller
sends a signal to the mission controller that the
mission controller should attempt to relieve the
string’s observed resource contention. It remains
an open problem to determine how aggressively
the string controllers should decrement quality
and throughput in attempts to maintain their
local utility.

5.2 Mission Controller

When given access to an amount of
resources, an MC decides which of its mission’s
strings should be deployed using those resources
to maximize the mission’s utility. We have
designed an ARMS mission controller that
operates with two algorithmic components. A
schematic of the mission controllers’ internal
operational logic is seen in Figure 4. One
mission control algorithmic component, called
the string selection logic, determines which
strings to deploy/kill/redeploy based on the
strings’ importance to the mission, the amount of
resources the mission is allowed to use and the
strings’ current deployment status. The second
algorithmic component, called the string binding
logic, selects the resources that deployed strings
should use based on how much resources are
available to the mission. The string binding
logic interfaces with the IA to determine which
resources are free and strings should be deployed
on.

MMC

MC MC MC

String
Controller

String
Controller

String
Controller

Figure 3: Control Hierarchy of the
DRE System

The string selection logic operates in
response to partial system failures and user input
to ensure that importance revaluation are
followed through the missions’ string
deployments. We have tested various algorithms
for the string selection logic. These algorithms
include importance-based greedy ordering,
resource-efficiency-based greedy ordering and
dynamic programming.

When selecting which strings to deploy, the
amount of resources the mission is allowed to
use is intended to be used as an input from the

MMC so that the MMC can direct the overall
division of resources to the missions. Note that
instead of being allocating specific resources, the
missions are given input as to how much
resources they are allowed to use.

5.3 Multi-Mission Coordinator

The MMC performs the gross-level
allocation of resources between the missions.
Note that rather than giving the mission
controllers access to specific resources, the
MMC gives the mission controllers the right to
use an amount of resources.

When dividing the available system
resources up amongst the missions, the MMC
predicts what utility the system would attain
from allocating various amounts of resources to
the missions. To do this, the MMC receives a
lookup tables from each mission controllers that
maps an approximation of the sums of the
importance values of strings the mission
controllers could deploy for their missions if
given the ability to use various levels of
resources. The lookup tables are generated and
sent to the MMC by every mission controller at
initialization and are based on user-commanded
mission goals. The lookup tables are also
intended to be updated regularly whenever a
mission receives a command directive to refine
its local behavior based on the relative
importance values of the missions and its strings.
Figure 5 contains a schematic of MMC operation
which indicates that the lookup tables of

Figure 4: Mission Controller
Logic Schematic

String
Selection

Logic

String
Binding
Logic

String Deployment
& Killing Requests

String
Deployment
Plans

String
Deployment
Operations

Resource
Status

String Status
Information

Information on
String Values,

Resource Usage
Selection

Method

Figure 5: MMC Concept of Operations

MMC

MC MC MC

System Resources

String
deployment

Resource availability

70 15
…

30 7
V R

… Pools

60 20
20

Mission
Resource

Allocations

99 20
…

10 5
V R

missions’ resource-value mappings.
When the lookup tables are sent to the

mission controller, the resource levels listed in
the lookup table are quantized based on the
levels of quality of service provided by the
missions for deploying groups of strings.
Because the deployment of the missions’ most
important/critical strings is necessary for
minimal mission operation, the lowest
quantization level of the lookup tables
correspond to the resources necessary to deploy
just the most important/critical strings for each
of the missions. The other quantization levels in
the mission lookup tables are dependent upon the
context of the mission and could be used to tune
the operation of the MMC when dividing system
resources among the missions.

When the MMC has the lookup tables from
the mission controllers and given information
about the availability of resources in the system,
the MMC needs to decide how much resources
should be provided to every mission controller in
order to guarantee all critical strings can be run
and to maximize the total value of all strings that
can be deployed. The problem of the MMC
allocating resources to the missions can be
formalized as a multiple-choice knapsack
problem [1].

The MMC could use any number of
algorithms to compute the most efficient division
of resources based on information from the
lookup tables and resource efficiency. We found
the dynamic programming algorithm to be very
effective and efficient considering the relatively
small numbers of missions that we are using.

Once the MMC computes the division of the
resources amongst the missions, the MMC
communicates to the mission controllers how
much of the computation resources they are each
allowed to use. This communication is indicated
in the schematic of the MMC operation in Figure
5.

When the mission controllers have
information about how many resources they are
allowed to use, they decide which of their strings
to deploy in order to maximize local utility. The
mission controllers receive no information about
the allocation of resources to other missions.
Therefore, on the occurrence of significant
system events such as partial system failures or
impotance revaluation, the mission controllers
make all of their local resource allocation
decisions under the assumption that their total
resource allocation hasn’t changed unless they
receive updated information from the MMC.

6. System Simulation

We developed a large-scale, highly
configurable Matlab/Simulink model of the
ARMS multi-mission system to objectively
compare the utility-measured performance of the
system using the dynamic resource controller to
a baseline system where resources are statically
allocated at initialization.

For our simulation experiments, we
configured the model to consist of three missions
with 100 strings each that can be deployed on 5
pools with inter-pool link resources. When the
mission controllers perform string deployment
operations, there is a configurable actuation
delay between the time the mission controller
sends the actuation signal until the time the
string becomes operational which we
approximated as 0.1sec.

In the simulation model, the operating
conditions of the strings are highly configurable.
The computational and communication
requirements of the strings can be customized to
model various mission scenarios as long as there
are at least two applications in every string. The
user-assigned importance values of the strings
are also configurable and can be used as
experimental parameters in simulation.

The amount of resources available to the
multi-mission system can also be adjusted in the
simulation model. In particular, the number of
pools and how many applications can be run in
each pool and be individually adjusted along
with the amount of inter-pool bandwidth
available to the mission’s strings in the system’s
inter-pool communication links. It is not
necessary that the pools and links have
homogenous resource configurations. We
simulate partial system failures in real-time in
the model by removing all of a pool’s nodes to
model a complete pool failures.

Using the large-scale Matlab/Simulink
model of the ARMS system, we generated 100
experimental string deployment scenarios
consisting of 3 missions of 100 strings, each with
randomly chosen application lengths uniformly
distributed between 2 and 11. Inter-application
bandwidth requirements were randomly chosen
to be either 1 or 2 megabits per second. The 100
strings were randomly assigned integer
importance values with a uniform random
distribution between 1 and 10, inclusive. To
generate the lookup tables generated by the
mission controllers and sent to the MMC, we
randomly grouped the missions’ string sets into
10 quantization levels.

For each scenario, the system had five
operational pools at initialization with sufficient
resources deploy all strings. The pools were
allocated computation resources such that after
the failure of a specific pool, the mission
controller would cause the mission to have only
80% of the resources required to deploy all
strings. The failure of two pools would cause the
system to have 60% of the resource to deploy all
strings, the failure of three pools would cause the
system to have 40% of the resources to deploy
all strings and the failure of four pools would
cause the system to have 20% of the resource to
deploy all strings.

The Matlab/Simulink simulations were run
such that the MMC and mission controllers were
given sufficient time to deploy all strings after
initialization. After initialization was completed,
a set of pools was failed, and the mission
controller was allowed to complete its recovery
operations in response to the pool failure. We
recorded the utility attained by the mission
controller immediately before the failure and
after failure recovery operations completed.

We also collected data on the performance
of the system if a dynamic resource controller
was used where resources are allocated at
initialization and then no changes are made in
the resource allocation. This static resource
allocation strategy was the baseline system in the
ARMS program.

Figure 6 contains a graph that demonstrates
how the ratio of performance for systems using
the static and dynamic MMC’s vary with
resource deficiency. As can be seen from the
graph, as resource deficiency increases, the

dynamic MMC is able to achieve over 2x
performance gains over the static MMC.

7. Conclusions

We have presented a utility driven
hierarchical controller design for multi-tiered
DRE systems to dynamically manage system
resources. Although only three levels of
abstraction are considered here for the DRE and
control systems, our design is easily scaled to
any number of control levels where low level
controllers take fast, limited actions and high
level controllers take slow, more invasive
actions.

Acknowledgements

This work was supported by the Defense
Research Projects Agency (DARPA) under
contract NBCHC030119. Approved for public
release. Distribution unlimited.

Bibliography
[1] K. Dudzi ski and S. Walukiewicz. “Exact methods
for the knapsack problem and its generalizations”,
European Journal of Operations Research, 28, pg 3-21,
1987
[2] C. Lu, J. Stankovic, S. Son, and G. Tao. Feedback
control real-time scheduling: Framework, modeling,
and algorithms. Real-Time Systems, 23(1–2):85–126,
July 2002.
[3] H. Wu, B. Ravindran, E. Jensen, and P. Li.
Time/utility function decomposition techniques for
utility accrual scheduling algorithms in real-time
distributed systems. IEEE Transactions on Computers,
54(9):1138–1153, 2005.
[4] J. Zinky, J. Loyall, and R. Schapiro. Runtime
performance modeling and measurement of adaptive
distributed object applications. In Proceeding of
International Symposium on Distributed Object and
Applications (DOA), Irvine, CA, 2002.

1

1 . 2

1 . 4

1 . 6

1 . 8

2

2 . 2

2 . 4

0 % 5 0 % 1 0 0 %

R e so u r c e D e fi c i e n c y

Pe
rfo

rm
an

ce
 R

at
io

Figure 6: Ratio of Dynamic to Static

Utility Performance vs. Resource
Deficiency

