
Improved Schedulability Analysis of EDF Scheduling on Reconfigurable Hardware
Devices∗

Nan Guan1, Zonghua Gu2, Qingxu Deng1, Weichen Liu2 and Ge Yu1

1Dept of Computer Science and Engineering 2Dept of Computer Science and Engineering
Northeastern University Hong Kong University of Science and Technology

Shenyang, China Hong Kong, China

Abstract

Reconfigurable devices, such as Field Programmable Gate
Arrays (FPGAs), are very popular in today’s embedded systems
design due to their low-cost, high-performance and flexibility.
Partially Runtime-Reconfigurable (PRTR) FPGAs allow hard-
ware tasks to be placed and removed dynamically at runtime.
Hardware task scheduling on PRTR FPGAs brings many chal-
lenging issues to traditional real-time scheduling theory, which
have not been adequately addressed by the research commu-
nity compared to software task scheduling on CPUs. In this
paper, we consider the schedulability analysis problem of HW
task scheduling on PRPR FPGAs. We derive utilization bound
tests for two variants of global EDF scheduling, and use syn-
thetic tasksets to compare performance of the tests to existing
work and simulation results.

1 Introduction and Background

A reconfigurable device, such as a FPGA, consists of a rect-
angular grid of Configurable Logic Blocks (CLBs) and the in-
terconnects between them. FPGAs are inherently parallel, that
is, two or more HW tasks can execute on a FPGA concurrently
as long as they can both fit on it. FPGAs can be 1D reconfig-
urable, where each task occupies a contiguous set of columns,
or 2D reconfigurable, where each task occupies a rectangular
area. Partially Runtime-Reconfigurable (PRTR) FPGAs allow
part of the FPGA area to be reconfigured while the remainder
continues to operate without interruption. In other words, HW
tasks can be placed and removed dynamically at runtime. In
this paper, we use the word FPGA to refer to PRTR FPGA.

HW task scheduling on FPGAs shares many similarities with
global SW task scheduling on identical multiprocessors [1],
where all processors in the system have identical processing
speed and different task invocation instances may run on differ-
ent processors. But it is actually a more general and challenging

∗this work is partially supported by National Basic Research Program of
China (973 Program) under Grant No.2006CB303000 and the Cultivation Fund
of the Key Scientific and Technical Innovation Project, Ministry of Education
of China, under Grant No.706016.

problem since a HW task may occupy a different area size on
the FPGA while a SW task always occupies one and only one
CPU. In fact, we can view multiprocessor scheduling as a spe-
cial case of task scheduling on 1D reconfigurable FPGAs where
all tasks have width equal to 1.

For multiprocessor and FPGA scheduling, we cannot rely on
worst-case response time calculation for schedulability analy-
sis like [2], since there may not be a critical instant, i.e., it is
generally unknown what task release phase offsets will cause
any task to achieve its worst-case response time. Therefore,
we are forced to rely on utilization bound tests for schedula-
bility analysis. For EDF-based multiprocessor scheduling, sev-
eral authors have presented utilization bound tests. Goossens et
al [3] presented a utilization bound test, referred to as GFB,
assuming that tasks have relative deadlines equal to the pe-
riod. Baker [4] presented another one, referred to as BAK1,
that can handle relative deadlines less than or equal to the pe-
riod. Baker [5] extended BAK1 to include tasks with post-
period deadlines. Bertogna et al [6] presented an improved
test, referred to as BCL, and showed that GFB and BAK1 are
incomparable to each other, and each test can accept tasksets
that the other test rejects. For tasksets with different timing
characteristics, they have different performance in terms of ac-
ceptance ratio. Baker [7] further showed that all three tests,
GFB, BCL and BAK1, are generally incomparable to each
other. GFB performs better than BCL if the taskset only con-
sists of tasks with low time utilization (time-light tasks), while
BCL performs better if there are tasks with high time utiliza-
tion (time-heavy tasks) [4]. Baker [8] further improved upon
BCL, and presented another utilization bound test, referred to
as BAK2, which combines BCL with the busy-interval analy-
sis of BAK1 to obtain a tighter bound than either method could
achieve alone.

For EDF-based global scheduling on FPGAs, Danne et al [9]
presented a schedulability bound test (referred to as DP) based
on Goossens et al [3] (GFB). Danne et al [10] also discussed
partitioned scheduling for FPGAs, where each task is restricted
to executing on a given partition of the FPGA, and task execu-
tion on each partition is serialized, so the problem is reduced
to task allocation followed by single-processor schedulability
analysis. We focus on global EDF scheduling in this paper.

1

1-4244-0910-1/07/$20.00 ©2007 IEEE

There are two possible variants of global EDF scheduling for
FPGAs, as discussed in [9]:

Definition 1 (EDF-FkF) Let Q be the queue of all active jobs
sorted by non-decreasing deadlines (sorted by release time in
ties of deadlines). Let Ji denote the ith job in Q. The schedul-
ing algorithm EDF-First-k-Fit (EDF-FkF) selects at any time
the first k jobs R of Q for execution, with the largest k for which∑

Ji∈R Ai ≤ A(H) holds.

Definition 2 (EDF-NF) Let Q be the queue of all active jobs
sorted by non-decreasing deadlines (sorted by release time
in ties of deadlines). Let Ji denote the ith job in Q. The
scheduling algorithm EDF-Next-Fit (EDF-NF) determines the
set of running tasks R with the following algorithm: start
with an empty set R and visit all active jobs Ji ∈ Q in or-
der of non-decreasing deadlines. Add Ji to R if and only if∑

Jk∈R∪Ji
Ak ≤ A(H) .

Perhaps EDF-NF is a misnomer because EDF-NF does not
allocate and schedule tasks strictly in deadline order. Danne et
al [9] showed that EDF-NF is superior to EDF-FkF in the sense
that if a taskset Γ is schedulable using EDF-FkF, then it is also
schedulable using EDF-NF. Intuitively, the reason is that EDF-
FkF may leave some hardware resources idle, if there are ready
jobs that can fit on the FPGA but are blocked by a job Jk with
a shorter deadline but cannot fit on the FPGA, but EDF-NF can
exploit these idle resource by skipping Jk and place the jobs
behind it in the queue first.

We derive two schedulability bound tests for EDF-NF and
EDF-FkF in Sections 4 and 5, respectively. Since EDF-NF is
superior to EDF-FkF, both tests are also applicable to EDF-
NF. Since the FPGA scheduling problem is the generalized
case of multiprocessor CPU scheduling problem, the derivation
processes of FPGA schedulability bounds are based on those
of multiprocessor schedulability bounds. Specifically, Danne
et al [9] (DP) for EDF-FkF is based on Goossens et al [3]
(GFB); Theorem 2 (GN1) in Section 4 for EDF-NF is based
on Bertogna et al [6] (BCL); Theorem 3 (GN2) in Section 5 for
EDF-NkF is based on Baker [8] (BAK2). The derivation pro-
cesses of Theorems 2 and 3 closely follow the respective refer-
ences (Bertogna et al [6] and Baker [8]), with consideration of
the FPGA-specific issue of task area size.

We make the following assumptions:

• The FPGA is 1D reconfigurable, and each job occupies a
contiguous set of columns.

• The entire FPGA area is homogeneous without any pre-
configured cells or columns. In reality, some parts of the
FPGA may be pre-configured as memory blocks or soft-
core CPUs, hence are not available for task placement. If
we take this factor into account, then any schedulability
bound test will not be generally applicable anymore and
become less interesting.

• Reconfiguration overhead on the FPGA is zero. In reality,
FPGA reconfiguration carries a significant overhead in the

range of milliseconds that is proportional to the size of area
reconfigured, unlike CPU scheduling, where task context-
switch overhead is typically small enough to be ignored.
We make this assumption to simplify the theorem deriva-
tion process, but it is easy to take into account the overhead
by adding it to the execution time, similar to response time
analysis in fixed-priority CPU scheduling [2].

• We allow unrestricted migration [1] of jobs, i.e., a job
can be preempted and migrated to another position of the
FPGA with zero overhead. In other words, the FPGA can
be defragmented by rearranging active jobs to different po-
sitions on the FPGA with zero overhead. As a result, a job
can fit on the FPGA as long as its area size is less than the
remaining free area size. If we did not permit task migra-
tion, then we would need to adopt a task placement strat-
egy such as first-fit, best-fit or worst-fit, and only accept a
task only when there is enough contiguous free space on
the FPGA. We leave this issue as part of our future work.
(This issue does not arise in multiprocessor CPU schedul-
ing since each SW task occupies one and only one CPU.)

• We only consider priority-based scheduling, but not
optimal multiprocessor scheduling algorithms such as
Pfair [11], which involves frequent task context-switches
and is not likely to be suitable for HW task scheduling on
FPGAs due to the large reconfiguration overhead. (Even
though we assume zero reconfiguration overhead in this
paper, our goal is to construct an analysis framework that
can be easily extended to handle large reconfiguration
overhead without much difficulty.)

This paper is structured as follows: Section 2 presents the
problem definition and terminology. Section 3 discusses the
work-conserving concept on FPGAs, which forms the founda-
tion for the theorem derivation in later parts of this paper. Sec-
tion 4 presents the schedulability bound test for EDF-NF, and
section 5 presents the schedulability bound test for EDF-FkF.
Section 6 presents experimental evaluation results, and Sec-
tion 7 discusses conclusions and possible future work.

2 Problem Definition and Terminology

We consider a 1D reconfigurable FPGA H with A(H)
columns, also referred to as its area size. We consider a
taskset Γ consisting of N periodic or sporadic tasks. Each task
τk = (Ck, Dk, Tk, Ak), k ∈ 1, . . . , N is characterized by its
execution time Ck, period or minimum inter-arrival time Tk ,
a relative deadline Dk and an area size Ak, which represents
the amount of contiguous columns that τk occupies. A task τk

consists of a sequence of jobs Jj
k .

For multiprocessor CPU scheduling, each task occupies one
processor when it is executing, so we evaluate the work done by
a job only based on its execution time. But for FPGA schedul-
ing, each task can occupy a different area size, so we must
evaluate the work done by a job based on its area size in ad-
dition to its execution time. We define two notions of work

done by a task. The time work WT
i (t − δ, t) done by task τi

over a time interval [t − δ, t) is the sum of the lengths of all
subintervals during which a job Jj

i executes. The system work
WS

i (t − δ, t) done by task τi over a time interval [t − δ, t) is
the product of the time work of the interval and the area of the
task: WS

i (t− δ, t) = WT
i (t− δ, t) ∗Ai The time utilization of

a taskset Γ is UT (Γ) =
∑N

i=1 Ci/Ti, and system utilization is
US(Γ) =

∑N
i=1 Ci ∗ Ai/Ti.

The interference Ik(t − δ, t) of a task τk over a time inter-
val [t − δ, t) is the sum of the lengths of all the sub-intervals in
[t − δ, t) during which τk is preempted. The interference con-
tribution Ii,k(t − δ, t) of a task τi to Ik(t − δ, t) is the amount
of interference caused by τi to τk. The block busy interval is
any time interval during which the idle area of the FPGA is no
larger than A(H)−Amax + 1, where Amax is largest area size
of any task in Γ. The block busy time B(t − δ, t) of a time
interval [t − δ, t) is the sum of the length of all block busy in-
tervals in [t− δ, t). The block busy time Bi(t− δ, t) of τi is the
total amount of time during which τi is executing in the block
busy time B(t−δ, t). The τk-busy interval is the interval during
which τk always has active jobs executing or waiting to execute.

3 The Work Conserving Concept for FPGA

If a multiprocessor CPU scheduling algorithm is work-
conserving, it means that it never leaves any processor idle
when there are any jobs in the ready queue. For example, global
EDF scheduling is work-conserving on identical multiprocessor
systems [3]. This fact is the basis for derivation of the utiliza-
tion bound tests of global EDF scheduling.

Unlike multiprocessor CPU scheduling, it is possible for
parts of the FPGA area to be idle when there are jobs in the
ready queue, because the idle area may not be large enough to
fit any of the jobs in the ready queue. Therefore, we need an ex-
tended notion of work-conserving algorithms. Danne et al [9]
defined the concept of α-work-conserving for FPGA schedul-
ing, which guarantee that at least α∗A(H) area of the FPGA is
occupied (busy) when there are jobs in the ready queue. Next,
we present two definitions of α-work-conserving algorithms for
EDF-FkF and EDF-NF.

Definition 3 A scheduling algorithm is global-α-work-
conserving if at least α ∗ A(H) area of the FPGA H with total
area A(H) is occupied whenever there are jobs in the ready
queue.

Lemma 1 EDF-FkF is a global-α-work-conserving algorithm
with

α = 1 − (Amax − 1)/A(H)

where Amax is the largest area of any possible job.

Our definition of global-α-work-conserving is the same as
the α work-conserving concept in Danne et al [9], in which a
task τi’s area Ai is assumed to be a real number instead of an
integer for the purpose of generality, and α is determined to be

1 − Amax/A(H). We believe it is more reasonable to assume
Ai is an integer, since it refers to the number of columns that τi

occupies. In this case, α should be 1−(Amax−1)/A(H). Intu-
itively, if an area of size Amax is idle, then it is still possible to
fit another task on the FPGA; but if an area of size (Amax − 1)
is idle, then it may not be possible to fit another task. There-
fore, in an overload situation, i.e., when the task queue is not
empty, at least A(H) − (Amax − 1) area of the FPGA must be
occupied, hence α = 1 − (Amax − 1)/A(H). Fig. 1(a) illus-
trates this point graphically. With the integer task area assump-
tion, the EDF-FkF schedulability condition in [9] should be
modified as follows, which is the formula used in Section 6 for
performance evaluation:

Theorem 1 (DP) Any periodic taskset Γ can be feasibly sched-
uled by EDF-FkF on a FPGA H with area A(H) ≥ Amax if:

∀τk ∈ Γ : US(Γ) ≤ (A(H)−Amax+1)∗(1−UT (τk))+US(τk)

where Amax is the largest area of any task in Γ.

Next, we define another notion of work-conserving algorithm
in order to obtain tighter schedulability bounds:

Definition 4 A scheduling algorithm is interval-α-work-
conserving if at least α ∗ A(H) area of the FPGA H with total
area A(H) is occupied during a time interval [a, b].

A global-α-work-conserving algorithm guarantees a lower
bound of system utilization whenever there are jobs in the ready
queue, but an interval-α-work-conserving algorithm only guar-
antees a lower bound of system utilization during certain time
intervals. We define this concept in order to get a tighter α
bound for EDF-NF:

Lemma 2 EDF-NF is an interval-α-work-conserving algo-
rithm with

α = 1 − (Ak − 1)/A(H)

in any time interval during which the job Jk is in the ready
queue.

For EDF-NF, when a job cannot fit on the idle area of the
FPGA, we can first allocate some other job with a longer dead-
line and smaller area that can fit on the FPGA. Therefore, at
least (A(H) − (Ak − 1)) area of the FPGA must be occupied
when a job Jk with area Ak is in the ready queue. But for
EDF-FkF, we must allocate jobs in the order of non-decreasing
deadlines, therefore a job with a large area can block other jobs
behind it in the wait queue from being allocated, so we must be
pessimistic and use Amax instead of Ak. Fig. 1(b) illustrates
the situation for EDF-NF.

4 Schedulability Bound Test for EDF-NF

In this section, we derive a schedulability bound test based
on Bertogna et al [6] (referred to as BCL). The BCL test is

(a) Global-α-work-conserving for EDF-FkF. (b) Interval-α-work-conserving for EDF-NF.

Figure 1. The work-conserving concept for FPGA scheduling.

derived by analyzing the upper bound of the interference time
of a given task during its execution. If the interference that a
task τi can impose on task τk in the time interval [rj

k, dj
k) is

greater than Dk − Ck, then it is sufficient to only consider the
portion Dk−Ck in the response time calculation of task τk. The
BCL bound is tighter than Goossens et al [3], which assumes
τk can be preempted by all the work done by other tasks.

Here are the key steps of the derivation: suppose a job Jj
k of

task τk misses its deadline dj
k, then we can find the lower bound

of the interference Ik that the job must suffer in interval [rj
k, dj

k)
to cause the deadline miss. Since the precise interference in any
interval is hard to calculate, we derive an upper bound to the
interference using the workload in the interval, and then derive
a sufficient schedulability bound test.

For a job to meet its deadline, the total interference on
the task must not be larger than its slack Dk − Ck. We
define the worst-case interference for task τk as: I∗k =
maxj(Ik(rj

k, dj
k)) = Ik(rj∗

k , dj∗
k), where j∗ is the job instance

in which the total interference is maximal. We also define
I∗i,k = Ii,k(rj∗

k , dj∗
k).

Lemma 3 The taskset is schedulable if the following condition
is true for each τk:

∑
i �=k

Ai min(I∗i,k, Dk − Ck) ≤ (A(H) − Ak + 1)(Dk − Ck).

Proof 1 The proof is by contradiction. Suppose the taskset is
not schedulable, then there must exists a job Jj

k that misses it
deadline at time t. The total interference on the task Ik(t −
δ, t) > Dk − Ck.

Let x = Dk−Ck, ξ =
∑

i:Ii,k≥x Ai, Abnd = (A(H)−Ak +
1), �(i, x) =

∑
i Ai min(Ii,k(t − δ, t), x), then �(i, x) =

ξx +
∑

i:Ii,k<x AiIi,k(t − δ, t)
If ξ > Abnd, obviously �(i, x) > (A(H) − Ak + 1)(Dk −

Ck).
If ξ ≤ Abnd. The system work done by all the tasks in τ ′

ks in-
terference interval of [t−δ, t) is

∑N
i=1 Ai ∗ Ii,k(t − δ, t). From

Lemma 2, we know that for EDF-NF, the occupied area cannot
be less than A(H)−Ak + 1 in any given time point when τk is
in the ready queue. Therefore, the system work done by all the
tasks in τ ′

ks interference is no less than (A(H)−Ak +1)Ik(t−

Figure 2. Illustration of Lemma 3

δ, t). So we have

�(i, x) > ξx + AbndIk(t − δ, t) −
∑

i:Ii,k≥x

AiIi,k(t − δ, t)

Because Ik(t − δ, t) > Ii,k(t − δ, t), then �(i, x) > ξx +
AbndIk(t − δ, t) − ∑

i:Ii,k≥x AiIk(t − δ, t)
�(i, x) > ξx + AbndIk(t − δ, t) − ξIk(t − δ, t).

Because ξ ≤ Abnd, so �(i, x) > Abnd ∗ x, i.e.∑N
i=1 Ai min(Ii,k(t − δ, t), x) > (A(H)−Ak +1)(Dk −Ck)

It also contradicts the lemma. So the assumption cannot hold.

Fig. 2 shows the intuitive meaning of Lemma 3. The gray and
black blocks represent the jobs that preempt Jk. It is obvious
that if one can guarantee the whole system work done by these
jobs to be less than the size of the shadowed part, the interfer-
ence certainly cannot cause Jk to miss deadline. Furthermore, if
the interference contribution of some job is larger than Dk−Ck

(the black job), we only need to consider the(Dk − Ck) part.
To apply the schedulability test of Lemma 3, the most

straightforward approach is to compute the interference
Ii, k(rj

k, dj
k) for each task τi in every interval [rj

k, dj
k] until the

end of the hyper-period. This is not possible without running
a simulation of the system. To avoid the complexity of this
approach, we will derive an upper bound on the interference.
Obviously, we know that the interference Ii,k(rj

k, dj
k) cannot

be larger than the time work WT
i (rj

k, dj
k), so the upper bound

of WT
i (rj

k, dj
k) is also the upper bound of Ii,k(rj

k, dj
k).

In the context of multiprocessor scheduling, the worst case
for this time work is when the deadlines of job Jj

k and its in-
terfering task τi are aligned, because in this case the number
of instances of τi that interfere with τk is maximized [4]. This
conclusion also holds true for FPGA scheduling, since the inter-

ference that Jj
k suffers from task τi in some given time interval

is only related to their execution times, not to their area sizes.

Lemma 4 An upper bound on the time work of τi in the interval
[rj

k, dj
k) is:

Wi(r
j
k, dj

k) ≤ NiCi + min(Ci, max(Dk − NiTi, 0)).

Proof 2 We only consider the worst case mentioned above. In
this situation, the time work Wi(r

j
k, dj

k) ≤ NiCi + εi(r
j
k, dj

k),
where εi(r

j
k, dj

k) is the carry-in[4] of task τk in interval
[rj

k, dj
k). Ni = (�(Dk − Di)/Ti� + 1) is the maximum number

of jobs of τi that can be completely contained in [rj
k, dj

k) in this
situation.

Now we look for the upper bound of the carry-in. Obviously,
We have εi(r

j
k, dj

k) ≤ Ci. When Ti > Di and Dk − NiTi > 0,
we can see that the carry-in will never be larger than Dk−NiTi

in the worst-case situation mentioned above.

We can then prove Theorem 2 based on Lemma 3 and
Lemma 4.

Theorem 2 (GN1) A taskset Γ is schedulable using EDF-NF
if, for each τk ∈ Γ
∑
i �=k

Ai min(βi, 1 − Ck/Dk) < (A(H) − Ak)(1 − Ck/Dk)

where βi = (NiCi + min(Ci, max(Dk − NiTi, 0)))/Di.

5 Schedulability Bound Test for EDF-FkF

From Lemma 1, we know that EDF-FkF is global-α-work-
conserving, where α = 1 − (Amax − 1))/A(H). As a result,
the lower bound of system resource utilization in the analysis
interval [t − δ, t) for task τk is unrelated to the area size Ak

of τk. This fact gives us an opportunity to taking advantage
of Baker’s idea of problem window1 extension [4]. Baker [4]
showed that if one can find a lower bound on the interference
load in the problem window that is necessary for a job Jj

k to
miss its deadline, and it can be guaranteed that a given set of
tasks cannot possibly generate so much load in the problem
window, then Jj

k will meet its deadline. Baker showed that one
can obtain a tighter lower bound on the interference by consid-
ering an extension of the problem window, and in turn obtain
a tighter schedulability bound. We will follow the same idea
here. Next, we derive lower bound of the interference of τk that
causes it to miss its deadline.

Lemma 5 If t is the time of τk’s first deadline miss of τk and
[t − δ, t) is the corresponding maximal τk-busy interval then:

Ik(t − δ, t) > δ − (δ + Tk − Dk)Ck/Tk.

1Let τk be the task of a job that misses its deadline for the first time, then
τk’s problem window is [t, t + dk).

The proof is similar to [8] although it is in the context of
FPGA scheduling, since the interference is only related to task
execution times. We will not repeat the proof here, and refer
the interested reader to the technical report [12] for details.

The time work WT
i (t−δ, t) done by τi in an interval [t−δ, t)

has an upper-bound of the interval length δ, and may include the
following components:

1. A portion of the execution times of the jobs that are re-
leased before t − δ but unable to complete by that time,
called the carry-in, as defined in [4].

2. The full execution time Ci of the jobs released on or after
t − δ and completed by time t.

3. A portion of the execution time of at most one job released
at some time t− ε, 0 < ε ≤ δ but is uncomplete by time t.

To bound the carry-in time contribution by τi, the maximal
τk-busy interval is extended downward, i.e., keeping the right
endpoint fixed and moving the left endpoint earlier, as far as
possible while still maintaining a lower bound on block busy
time as in Lemma 5.

Definition 5 An interval [t − δ, t) is τλ
k -busy for a given con-

stant λ ≥ Ck/Tk if B(t − δ, t) > δ − λ(δ + Tk − Dk). It is a
maximal τλ

k -busy interval if it is τλ
k -busy and there is no δ′ > δ

such that [t − δ′, t) is also τλ
k -busy.

Lemma 6 If t is the time of the first deadline miss of τλ
k and

λ ≥ Ck/Tk, then there is a unique maximal τλ
k -busy interval

[t − δ, t), and δ ≥ Dk.

We call the unique interval [t− δ, t) guaranteed by Lemma 6
the maximal τλ

k -busy interval, denoted by [t − δ, t). The next
step is to find an upper bound on the time work WT

i (t − δ, t)
done by each task τi in a τλ

k -busy interval [t − δ, t).

Lemma 7 If t is the time of the first deadline miss of task τk,
and λ ≤ Ck/Tk and [t − δ, t) is the corresponding τλ

k -busy
interval, then for any task τi such that i �= k

WT
i (t − δ, t)

δ
≤ βi

k(i)

where

βλ
k (i) =

⎧⎪⎨
⎪⎩

max(Ci

Ti
, Ci

Ti
(1 − Di

Dk
) + Ci

Dk
) if Ci

Ti
≤ λ

Ck

Tk
if Ci

Ti
> λ ∧ λ ≥ Ci

Di
Ci

Ti
+ Ci−λDi

Dk
if Ci

Ti
> λ ∧ λ < Ci

Di

Lemma 8 If the interval [t− δ, t) is a block busy interval, then

∀i(A(H) − Amax + 1)B(t − δ, t) ≤
N∑

i=1

AiBi(t − δ, t).

Lemma 9 If the interval [t − δ, t) is block busy interval and
B(t − δ, t) > x, then

N∑
i=1

min(Bi(t − δ, t), x) > (A(H) − Amax + 1)x.

Lemma 10 If the interval [t − δ, t) is τk-busy, then we have:

WS(t − δ, t) > AbndB(t − δ, t) + Amin(δ − B(t − δ, t)),

where Abnd = A(H) − Amax + 1

We omit the proofs of Lemmas 6∼10 and refer the interested
reader to the technical report [12].

Now we present Theorem 3 and its proof:

Theorem 3 (GN2) Let βλ
k (i) be as defined as in Lemma 7 and

let λk = λ max(1, Tk/Dk). A taskset Γ is schedulable using
EDF-FkF if, for every task τk, there exists λ ≥ Ck/Tk, such
that one or more of the following conditions are satisfied:

1)
N∑

i=1

Ai min(βλ
k (i), 1 − λk) < (Abnd(1 − λk)

2)
N∑

i=1

Ai min(βλ
k (i), 1) ≤ (Abnd − Amin)(1 − λk) + Amin

where Abnd = A(H) − Amax + 1.

Proof 3 The proof is by contradiction. Suppose the taskset Γ
with a release time assignment r is not schedulable, then there
must be some task τk that first misses its deadline at time t.
Let [t − δ, t) be the maximal τλ

k -busy interval guaranteed by
Lemma 6. By the definition of τλ

k -busy,

B(t − δ, t)
δ

> 1 − λ + λ
Tk − Dk

δ
. (1)

There are two cases: If Tk ≤ Dk, obviously, B(t−δ,t)

δ
= 1 −

λ Tk

Dk
. If Tk > Dk, then the value of the expression on the

righthand side of inequality 1 is decreasing with respect to δ,
and so B(t−δ,t)

δ
≥ 1 − λ. Since λk = λ max(1, Tk

Dk
), so we

have
B(t − δ, t)

δ
≥ 1 − λk (2)

Since [t − δ, t) is τk-busy, from Lemma 10,

WS(t − δ, t) > (Abnd − Amin)B(t − δ, t) + Aminδ (3)

Since WT
i (t − δ, t) ≤ δ, by (2), (3) and Lemma 7, we have

N∑
i=1

Ai min(βλ
k , 1) > (Abnd − Amin)(1 − λk) + Amin (4)

Table 1. A taskset accepted by DP but rejected
by GN1 and GN2.

task C D T A
τ1 1.26 7 7 9
τ2 0.95 5 5 6

Table 2. A taskset accepted by GN1 but rejected
by DP and GN2.

task C D T A
τ1 4.50 8 8 3
τ2 8.00 9 9 5

Therefore condition 2) of the theorem must be false. It remains
to be shown that condition 1) must also be false.

By Lemma 9 with x = (1 − λk)δ and (2), it must hold that:

N∑
i=1

Ai min(
Bi(t − δ, t)

δ
, 1 − λk) > Abnd(1 − λk) (5)

Combining Lemma 7 and (5), and since Bi(t − δ, t) ≤ Wi(t −
δ, t), we have

N∑
i=1

Ai min(βλ
k (i), 1 − λk) > Abnd(1 − λk) (6)

This contradicts condition 1) of the theorem.
So the assumption cannot hold, hence the taskset Γ must be

schedulable.

The test in Theorem 3 has running time complexity of
O(N3), since the only values of λ need be considered are the
minimum points, and the points where βλ

k is discontinues, i.e.,
λ = Ci/Ti, i = 1, ..., N and λ = Ci/Di, ifDi > Ti.

6 Performance Evaluation

For EDF scheduling on FPGAs, the only known related work
is DP presented in Danne et al [9], so we compare our tests
GN1 (Theorem 2 (GN1) in Section 4) and GN2 (Theorem 3
(GN2) in Section 5) to DP (Theorem 1 in Section 3). Note that
if the scheduling algorithm is EDF-NF, then we can compare all
three tests DP, GN1 and GN2; but if the scheduling algorithm
is EDF-FkF, then we can only compare DP with GN2, because
GN1 is not applicable to EDF-FkF.

Tables 1, 2 and 3 show three tasksets that are accepted by
one test but rejected by another on a FPGA with 10 columns
(A(H) = 10). Take the taskset in Table 3 for example:

• DP:
US(Γ) = 4.94. When k = 2, (A(H) − Amax + 1)(1 −
UT (τ2)) + US(τ2) = 4.85 < 4.94, so the schedulability
test fails and the taskset is rejected.

(a) 4 tasks (b) 10 tasks

Figure 3. Tasksets with unconstrained execution time and area size distributions.

(a) 10 spatially heavy and temporally light tasks. (b) 10 spatially light and temporally heavy tasks.

Figure 4. Tasksets with constrained execution time and area size distributions.

Table 3. A taskset accepted by GN2 but rejected
by DP and GN1

task C D T A
τ1 2.10 5 5 7
τ2 2.00 7 7 7

• GN1:
When k = 2, (A(H) − A2 + 1)(1 − C2/D2) = 20

7
N1 = 1, β1 = 4.1

5 , so∑
i �=k Ai min(βi, 1 − Ck/Dk) = 5 > 20

7
The test fails when k = 2, and the taskset is rejected.

• GN2:
When k = 1 and λ = C1

T1 , βλ
1 (1) = 0.42, βλ

1 (2) = 0.29.
(A(H) − Amax + 1 − Amin)(1 − λk) + Amin = 5.26∑N

i=1 Ai min(βλ
k (i), 1 − λk) = 4.97 < 5.26. So condi-

tion 2) holds for k = 1.

When k = 2 and λ = C1
T1 , βλ

2 (1) = 0.42, βλ
2 (2) = 0.29.

(A(H) − Amax + 1 − Amin)(1 − λk) + Amin = 5.26∑N
i=1 Ai min(βλ

k (i), 1 − λk) = 4.97 < 5.26. Condition

2) also holds for k = 2. So the taskset is accepted.

Unlike SW tasks on CPU, HW tasks on FPGA are charac-
terized not only by their timing attributes, but also by their
area sizes. Each of the three tests (DP, GN1 and GN2) em-
phasizes different aspects of the taskset characteristics. For
example, GN1 has a more accurate bound of the task area
sizes since it uses the tighter lower bound on area utilization of
(A(H)−Ak + 1) rather than the (A(H)−Amax + 1) used by
DP and GN2, but the bound on the time work contributed by the
carry-in jobs may be too pessimistic. On the other hand, GN2
have a more accurate bound of the carry-in job than GN1, but
it uses (A(H)−Amax + 1) as the lower bound on area utiliza-
tion, because its analysis window is extended and not interval-
α-work-conversing anymore, where α = (1−(Ak−1)/A(H)).

We use randomly-generated synthetic tasksets with different
timing and area size distributions to evaluate the performance
of schedulability bound tests. Total area size of the FPGA is
100, and task area sizes are randomly distributed between 1
and 100. Task periods are randomly distributed in (5, 20). Each
task’s deadline is equal to its period, and its execution time is
the product of its period and a random factor. Each group of
experiments contains at least 10000 tasksets in order to guar-
antee a large enough sample space. The performance metric

is acceptance ratio, percentage of tasksets that are accepted by
each schedulability bound test, as well as by running simulation
with all tasks initially released at time 0. As noted by Baker [8],
it is not possible to determine exact schedulability without ex-
haustively simulating all possible task release offsets, so we use
simulation to provide a coarse upper bound on the fraction of
the task sets that are schedulable.

In Figs. 3 and 4, we plot the acceptance ratios against the
total system utilization as defined in Section 2. We can make
the following observations:

• All three tests are indeed pessimistic compared to simula-
tion results.

• For the same total system utilization, DP performs best for
large number of tasks, while GN1 performs best for small
number of tasks.

• For spatially-heavy tasksets, i.e., tasksets with high spatial
utilization, all three tests exhibit poor performance.

• For temporally-heavy tasks, i.e., tasksets with high time
utilization, GN1 performs best while DP performs worst.

We can see that no single utilization bound test consistently
out-performs others, and each may have better performance
for tasksets with different characteristics. In practice, differ-
ent schedulability bounds should be applied together, i.e., de-
termine that a taskset is unschedulable only if all tests fail.

7 Conclusions and Future Work

We have presented two schedulability bound tests for EDF
scheduling of HW tasks on FPGAs, one for EDF-Next-Fit and
one for EDF-First-k-Fit, and used synthetic tasksets to evalu-
ate their performance compared to previous work and simula-
tion results. For future work, we plan to relax some of the as-
sumptions mentioned in Section 1 to handle 2D reconfigurable
FPGAs, pre-configured cells, FPGA reconfiguration overheads,
partitioned scheduling, restricted task migration and FPGA area
fragmentation. Especially for 2D reconfiguration, task place-
ment strategy has a large effect on FPGA fragmentation, and we
cannot assume that a task can fit on the FPGA as long as there
is enough free area, even with free task migrations. We plan
to study the impact of different free area management and task
placement strategies on the schedulability bound tests. We also
plan to investigate the applicability of hybrid scheduling algo-
rithms such as EDF-US[m2/(2m−1)] [13] (m is the number of
processors), in which a few high-utilization tasks are assigned
top priority and other tasks are assigned priorities in EDF or-
der. We may need to extend the concept of “high-utilization” to
refer to system utilization instead of time utilization in order to
take into account impact of a task’s area size.

References

[1] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Ander-
son, and S. Baruah, A Categorization of Real-Time Multi-

processor Scheduling Problems and Algorithms. Chap-
man and Hall/CRC, 2004, pp. 30–1 – 30–19.

[2] M. Harbour, M. H. Klein, and J. Lehoczky, “Timing
Analysis for Fixed-Priority Scheduling of Hard Real-Time
Systems,” IEEE Trans. Software Eng., vol. 20, no. 2, pp.
13–28, 1994.

[3] J. Goossens, S. Funk, and S. K. Baruah, “Priority-Driven
Scheduling of Periodic Task Systems on Multiproces-
sors.” Real-Time Systems, vol. 25, no. 2-3, pp. 187–205,
2003.

[4] T. P. Baker, “Multiprocessor EDF and Deadline Mono-
tonic Schedulability Analysis.” in IEEE Real-Time Sys-
tems Symposium (RTSS), 2003, pp. 120–129.

[5] ——, “An Analysis of EDF Schedulability on a Multipro-
cessor.” IEEE Trans. Parallel Distrib. Syst., vol. 16, no. 8,
pp. 760–768, 2005.

[6] M. Bertogna, M. Cirinei, and G. Lipari, “Improved
schedulability analysis of edf on multiprocessor plat-
forms.” in Euromicro Conference on Real-Time Systems
(ECRTS), 2005, pp. 209–218.

[7] T. P. Baker, “A comparison of global and parti-
tioned edf schedulability tests for multiprocessors,” in
International Conference on Real-Time and Network
Systems (RTSN), 2006, pp. 119–130. [Online]. Available:
http://rtns07.irisa.fr/

[8] ——, “Further improved schedulability analysis of EDF
on multiprocessor platforms,” Florida State University,
Tech. Rep. TR-051001, Oct 2005.

[9] K. Danne and M. Platzner, “An EDF Schedulability Test
for Periodic Tasks on Reconfigurable Hardware Devices.”
in ACM Conference on Languages, Compilers, and Tools
for Embedded Systems (LCTES), 2006, pp. 93–102.

[10] ——, “Partitioned Scheduling of Periodic Real-Time
Tasks onto Reconfigurable Hardware,” in Interna-
tional Parallel and Distributed Processing Sympo-
sium (IPDPS’06), Reconfigurable Architecture Workshop
(RAW’06), 2006.

[11] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A.
Varvel, “Proportionate Progress: A Notion of Fairness in
Resource Allocation.” Algorithmica, vol. 15, no. 6, pp.
600–625, 1996.

[12] N. Guan, Z. Gu, Q. Deng, W. Liu, and G. Yu, “Improved
Schedulability Analysis of EDF Scheduling on Reconfig-
urable Hardware Devices,” in Technical report, available
online at http://www.cse.ust.hk/∼zgu/FPGA/.

[13] A. Srinivasan and S. K. Baruah, “Deadline-based schedul-
ing of periodic task systems on multiprocessors.” Inf. Pro-
cess. Lett., vol. 84, no. 2, pp. 93–98, 2002.

