A Scenario-Based Protocol Checker
for Public-Key Authentication Scheme

Takamichi SAITO

Abstract— Communication security depends on security
protocol such like Secure SHell or Secure Socket Layer. One
of the important features is authentication. Its correctness is
strongly related with the whole of communication security.
In this paper, we introduce three types of attack-models
that can be actualized as their attack-scenarios, and provide
an authentication protocol checker to apply the three types
of the attack-scenarios. We also show some problems in
security protocols.

I. INTRODUCTION

Security protocol between two parties, SSH[1], [2],
SSL/TLS[3], [4], and IPsec are widely utilized for obtain-
ing secure communication. It can ensure authenticity, data
integrity and confidentiality over TCP/IP communication.
Especially, authenticity provided by authentication scheme
is an axis of communication security. Therefore, the se-
curity of authentication in security protocol is needed to
analyze by utilizing a reliable way.

Many works have been done in these years in this field.
NRL Protocol Analyzer [6] is one of the first tools to utilize
reachability toward the insecure state. The effective result
using FDR [7] is known as having found the flaw of the
Needham-Schroeder public-key authentication protocol [8].
BAN logic [9] can provide a partial analysis using logic
for authentication. More formal and logical methodology
is provided by the inductive approach [10]. The recent
works [11], [12], using the strand space, are focusing on
matching between the two parties’ protocol run. Since a
model-checking tool such like SPIN can work effectively in
software engineering [13], such formal method with using
automatic tool has been applied to security protocol [14].

As the other approach, there are some informal but
highly edifying discussions provided by W. Diffie et al. [17],
M. Abadi et al. [18] and C. Meadows [19]. They can
rather provide the protocol designers some guiding princi-
ples. One of the reasons why they can is that those provide
some actual and practical examples: authentication proto-
col itself, their runs and processes of attacks. Especially,
the processes can persuade us to design security protocol.

A solution for showing security of a protocol is to spec-
ify demonstration of an attack, rather than reasoning in
an ideal box. Then, in this paper, for obtaining visi-
ble results, we introduce three types of attack-models for
authentication scheme to specify the process of an at-
tack. One of them is abstraction of the Man-In-The-Middle
(MITM) attack described in many textbooks such like [15],
[16], occurred in a naive usage of the Diffie-Hellman key-
exchange [20] utilized in security protocols. Based on the

saito@cs.meiji.ac.jp, Meiji University, 1-1-1 Higashimita Tama-ku
Kawasaki 214, Japan.

1-4244-0910-1/07/$20.00 ©2007 IEEE

proposed three attack-models, we also provide the way of
making the corresponding scenarios as a concrete process
of attack. Since the MITM scenario can be compatible
with others, the rests of scenarios are harmonized with the
MITM scenario in the proposed system.

Besides the methodology, there is the other important
point in practical analysis. It is to abstract the essence from
security protocols. For examples, while there are ten mes-
sages in SSL Handshake, excluding ChangeCipherSpec mes-
sages, in client authentication mode, the messages related
directly with authentication are just four ones. Not as a
simple authentication protocol or a cryptographic protocol,
security protocol has some functions for obtaining total se-
cure communication. Therefore, when we discuss its secu-
rity or analysis, we have to decide to select correctly which
messages are related with authentication in the protocol. If
we misjudge it, the methodology like even a formal method
or logic can’t be effective to work. Therefore, we propose
to implement a scenario-based checker that can deal with
an expression of original meaning of security protocols. For
expressing security protocols, a simple language is defined
in the appendix A, and semantics in the appendix B. Since
there are lots of protocols to deal with, they are specified
in the Appendix C as reference.

II. SYsTEM DESIGN
A. Requirements and Design Concepts

Requirements of the proposed system are followings:

1. It can handle the concrete expressions of security pro-
tocols.

2. It can provide an attack process based on the attack-
model. The process shows to be a series of the attack.

3. It can be expanded to add other new attack-models
or checks to analyze additionally.

B. System Design

The implementation consists of the following elements:

1. Server Side
{a) Web server --- Apache [21], ver.1.3.29
(b) Web application --- PHP, ver.4.3.8 [22]
(c) Check engine - - - developed by gee, ver.3.2
2. Client Side
(a) Web browser - - - IE 6.0.29, Netscape 7.1

The web application and the check engine are imple-
mented in this paper. The detailed features of the check
engine are explained in the section III. The web application
with a file uploader is for user interface of the engine.

III. ATTACK-MODELS AND THEIR SCENARIOS
A. Three Types of Attack-Models
A.1 Fake-Initiator’s Attack-Model

In this attack-model, since an initiator A considers an
attacker C as a legitimate responder (not B), the initiator
A is voluntarily connecting with the attacker’s machine.
On the other, a responder B considers the connecting as
the initiator A. However, in reality, as the attacker C' de-
ceives the responder B by masquerading the initiator A,
it could finally seize the session key shared between A and
B (see Figure 1). This type of attack is defined as fake-
initiator. This attack-model can be seemed to be abstrac-
tion of Lowe’s attack [7].

The Needham-Schroeder public-key authentication (NS)
protocol is vulnerable to this attack.

One’s intention

Actual connection

Fig. 1. Image of Fake-Initiator’s Attack
For examples, the process of the Lowe’s attack [7] is the

followings:

(Pl) A—T : {A,NA}PI

(Pll) I(A) — B : {A,NA}pB

(PQ) B—)I(A) : {NA,NB}pA (1
(PQ’) T— A : {NA7NB}PA)
(P3) A>T : {NB}PI

(P?)/) I(A) — B : {NB}PB

Where, 7 is the attacker itself, but Z(A) is the attacker
who masquerades the initiator A.

A.2 Fake-Responder’s Attack-Model

In this attack-model, opposite to the fake-initiator’s
attack-model, since a responder B misidentifies an attacker
C as a legitimate initiator (not A), B is connecting with
C. On the other, the initiator A considers the connecting
as the responder B. However, in reality, as the attacker
C deceives the initiator A by masquerading the responder
B, it could finally seize the session key shared between A
and B (see Figure 2). This type of attack is defined as
fake-responder. This attack-model is the reverse version of
the fake-initiator’s attack-model.

- -
——————————»
¢ Actual connection

Fig. 2. Image of Fake-Responder’s Attack

For examples, now given the following aho protocol for
this attack:

(Pl) A—B :A

(P2) B—A :{A B Ngp}p,

(P3) A B :{Na Nslp, 2)
(P4) B— A : {H(B,NA)}NB

The initiator A and the responder B with their public
key, i.e., Pa, Pg, try the mutual authentication to share
the session key Ng. However, it can’t work secure:

(P1) A—>I(B) A

(P1)y I B T

(P2) BT : {Z,B,Ng}p,

(P2')y I(B)— A :{A B Ngplp,

(P3) A—I(B) :{NiNp}p, (3)
(P?)/) 77— B : {NA7NB}PB

(P4) BT {H(B,NA)in,

(P4') I(B) + A : {H(B.Ni)}n.

Where, Z(B) is the attacker who masquerades the re-
sponder B.

A.3 MITM Attack-Model

This type of attack is considered to be abstraction of the
MITM attack. In the model, an initiator A and a respon-
der B are mutually connecting each other, but, in actual
connection for an application over TCP/IP, an attacker C
can control to obtain all of messages (see Figure 3). Tt
can’t prevent over the network without the proper usage of
security protocol such as [Psec, SSL and SSH.

As described around security protocols, the raw DH pro-
tocol is vulnerable to this attack. The example process of
this attack is shown in [17]. And checking result shows in
the subsection IV-C.

_—
Actual connection

Fig. 3. Image of MITM Attack

B. Scenario of Fake-Initiator’s Attack

Instantiation of the attack-model is called as its scenario.
The scenario is shown to be a process of an attack, how-
ever it is just scenario, therefore it is needed to decide the
possibility explained in the subsection III-E after making
a scenario.

In this subsection, we explain how to make a scenario of
the fake-initiator’s attack.

B.1 Preconditions of the Attacker

In this scenario, the attacker holds these following knowl-
edges previously:
1. Symbols, e.g., A, B and C, expressed as parties
(the attacker is expressed as C'.)
2. Their corresponding public key, e.g., P4, Pg, and Pg
3. The attacker’s secret key: PCTl
4. The attacker’s nonce: N.(C) where z > 1
(the attacker can create any number of nonce if it
needs.)

B.2 How to Make a Scenario
Now, let the target protocol for checking by the fake-

initiator scenario is the followings between the initiator A
and the responder B:

(stepl) A— B:msq
(step2) B — A: msg
(step3) A — B: msgs 4
() B— A: msgs 4

There are two types of ways to make it scenario: the one
is the messages from A to B, the other is the ones from B
to A.

B.2.a (1) The Messages from A to B. Let n-th message
‘A — B :msg, wheren =1,3,5,---. It can be applied by
the following procedures, which is called as AtoB-1:

(a) For making a message from A to C, its destination
of the transmission is altered. Namely, the symbol
B, which means the access with B, is replaced by the
symbol C, including in msg,. The modified message
is expressed as msgl,:

(stepn) A—C: msgl,

(b) Next, for making the message from C(A) to B,
the symbol A of the original is replaced by the sym-
bol C(A), where C(A) means the attacker who mas-
querading as A. In this case, the message msg, is not
modified:

(stepn+1) C(A) = B : msg,

B.2.b (2) The Messages from B to A. Let m-th message
‘B — A :msg,,’ where m = 24,6,---. It can be applied
by the following procedures, which is called as BtoA-1:

(a) For making a message from B to C'(A), its destina-

tion of the transmission is altered. Namely, the symbol

A is replaced by the symbol C'(A). In this case, the
message msg., is not modified as before:
(stepm+1) B— C(A): msgm

(b) Next, for making the message from C to A, the sym-

bol B of the original is replaced by the symbol C, in-

cluding in msg,,. The modified message is expressed

as msgh,:
(stepm+2) C— A: msg,
Finally, we can obtain the following process of the attack:
(stepl) A—=C : msgl,
(step2) C(A)—= B : msgn
(step 3) B — C(A) : msgm
(stepd) C— A : msgh,
(step5) A—C D mSgy 4y

C. Scenario of F;zke—Responder’s Attack

In this subsection, we explain about making the scenario
of the fake-responder’s attack.

C.1 Preconditions of the Attacker

In this scenario, the attacker holds the same knowledges
as those described in the subsection III-B.1, too.

C.2 How to Make a Scenario

Now, let the target protocol for the checking is same as
the protocol (4) shown in the subsection III-B.2.

Similarly, there are two types of ways to make the sce-
nario: the messages from A to B and the ones from B to

A.

C.2.a (1) The Messages from A to B. Let n-th message
‘A — B :msg, wheren =1,3,5,---. It can be applied by
the following procedures, which is called as AtoB-2:

(o) For making the message from A to C(B), its des-
tination of the transmission is altered. Namely, the
symbol B is replaced by the symbol C(B). In this
case, the message msg, is not modified:

(step n) A — C(B): msg,

(b) Next, for making the message from C to B, the sym-
bol A of the original is replaced by the symbol C,
including in the msg,. The modified message is ex-
pressed as msg.,:

(step n + 1f) C — B : msg,
C.2.b (2) The Messages from B to A. Let m-th message

‘B — A :msg,,’ where m =24.6,---. It can be applied
by the following procedures, which is called as BtoA-2:

(a) For making the message from B to C, its destination
of the transmission is altered. Namely, the symbol A
is replaced by the symbol C, including in msg,,. The
modified message is expressed as msg., .

(stepm+1) B —C: msgl,

(b) Next, for making the message from C'(B) to A, the
symbol B of the original is replaced by the symbol
C(B). In this case, the message msg,, is not modified:

(stepm+2) C(B)— A: msgn
D. Scenario of MITM Attack

In this subsection, we explain how to make the scenario
of the MITM attack, it can be just for the key-exchange
protocol such like DH. Therefore, it can work with the fake-
initiator and the fake responder.

D.1 Preconditions of the Attacker

In this scenario, the attacker holds these following knowl-
edges:

1. Symbols, i.e., A, B and C, expressed as parties

2. The attacker’s nonce: N,(C) where x > 1
(the attacker can create any number of nonce if it
needs.)

3. Random numbers, i.e., w and z, created by the at-
tacker

4. The generator g shared between an initiator A and a
responder B

D.2 How to Make a Scenario

Now, let the target protocol for check is same as the
protocol (4) in the subsection III-B.2 between an initiator
A and a responder B.

There are two types of ways to make the scenario: the
messages from A to B and the ones from B to A.

D.2.a (1) The Messages from A to B. Let n-th message
‘A — B :msg, wheren =1,3,5,---. It can be applied by
the following procedures, which is called as AtoB-3:

(o) For making the message from A to C(B), its des-
tination of the transmission is altered. Namely, the
symbol B is replaced by the symbol C(B). In this
case, the message msg, is not modified:

(stepn) A — C(B): msg,

(b) Next, for making the message from C(A) to B, its
source of the transmission is altered. Namely, the sym-
bol A is replaced by the symbol C'(A). And, the DH
public value is altered by the attacker’s one, i.e., g%, in
the message msg,. The modified message is expressed
as msg.,:

(stepn+1) C(A) — B : msg,
D.2.b (2) The Messages from B to A. Let m-th message
‘B — A :msg,’ where m = 2,4,6,---. It can be applied
by the following procedures, which is called as BtoA-3:

(a) For making the message from B to C(A), its des-
tination of the transmission is altered. Namely, the
symbol A is replaced by the symbol C(A). In this
case, the message msg,, is not modified:

(step m+1) B — C(A): msgn

(b) Next, for making the message from C(B) to A, the
symbol B is replaced by the symbol C(B). And, the
DH public value is altered by the attacker’s one, i.e.,
g%, in the message msg,,. The modified message is
expressed as msg.,:

(step m+2) C(B)— A: msgl,

AtoB-3 can be applied simultaneously with AtoB-1 and
AtoB-2, and BtoA-3 can be done with BtoA-1 and BtoA-2.
Therefore, in this implementation, the check for the fake-
responder and fake-initiator are expanded to collaborate
with the MITM attack.

E. Semantics of Attack Scenario

As described before, since the generated scenarios are
an only hypothetical process of an attack, it is needed to
evaluate its realization as an actual attack. Namely, it is
needed to estimate whether the message created by each
procedure, e.g., AtoB-1, BtoA-1 and so on, could be pro-
vided by the attacker’s knowledge in each step, or not.
When it evaluates the realization, the attacker can utilize
the followings:

1. The pre-knowledge described in the subsection III-

B.1, ITII-C.1 and ITI-D.1.

2. Knowledges newly obtained until applying the proce-
dure, such like the attacker’s received messages or a
message made by the received ones.

Only when all messages in each step can be provide by

utilizing the above, there is possibility to realize the attack.

Moreover, only in the case, the engine decides whether
the attacker holds or creates the shared secret as the ses-
sion key, or not. If the attacker obtains the shared secret,
the engine finally asserts the possibility: attack success,
which can be seen in the subsection IV-A.1.

From the above discussion, we define the following two
concepts around the decision of application of each sce-
nario:

Strong Secure

The attack-scenario can’t be realized.
Weak Secure
The shared secret can’t be acquired by the attacker.

The former definition could be equivalent to the secure
protocol defined in the paper of Diffie at el [17]. In this

case, the protocol can detect the attack in its run. In other
words, in one of steps, there is the message that ‘the at-
tacker can’t make the message’ in the engine’s output.

On the other, the latter is not indicated to be vulnerable.
In this case, although there is not the assertion, but the
attacker can’t obtain the shared secret. Namely, the weak
secure protocol can’t detect the attack in its run. There
are examples showed about differences between them in the
subsection TV-A.

IV. ExamMpPLES OF CHECK RESULTS

This section shows some examples with the results. All
outputs are printed only in the subsection IV-A.1, but ones
in the others are omitted to print. And, for explanation,
counting numbers are assigning in left-side.

A. Fake-Initiator’s Attack
A.1 Result of NS Protocol

The following results show that NS protocol is vulnerable
to the fake-initiator’s attack:

1 : authetication protocol checker ver.0.093

2 : loding file : NS.txt
(snip)
14 : --- loading done ------------
15 : checkl
16 : the attacker’s default store :
17 {nil , A,B,C,w, =z, N:1(C) }
18 :
19 stage 1 -—---------
20 step 1 A=>C {A, N:1(C A) }_P:1(C)
21 :
22 : store: {nil , A, B, C,w, 2z, N:1(CC) , N:1(A)
23 {A, N:1(CA) }_P:1(C)H }
24 :
25 : step 2: C(A) => B : {4, N:1(CA) }_P:1(B)
28 : stage 2 ----------
29 : step 3: B =>C(A) : { N:1(C A) , N:1(B) }_ P:1(4)
30 :
31 store: {nil , A,B,C,w, 2z, N:1(C) , N:1(A)
32 {4, N2CA) 3 _P:1(C)H,
33 {N:1CA) , N:1(B) }_P:1(A)}
34 :
35 step 4 C =>4 {N:1CA) , N:1(B) }_ P:1(A)
38 stage 3 --—--————-
39 : step 5: A =>C {N:1(B) }_P:1(C)
40
41 store: {nil , A,B,C, w,z , N:1(C) , N:1(A)
42 {A, N:1CA) I_P:1(CC)H ,
43 {N:1CA) , N:1(B) }_P:1(4&) ,
44 N:1(B) , { N:1(B) }_P:1(C) }
45 :
46 : step 6: C(A) => B : { N:1(B) }_ P:1(B)
49 : Attacker can get the shared secret: N:1(B)
50 : attack success!!

L.3 - 14 After parsing the input text loaded from the
file, the engine prints its data structure and each par-
ties’ knowledges. And the shared secret is specified by
the file.

L.17 The printing word ‘store’ means to be the at-
tacker’s knowledge in this step. Therefore, in this step,
it holds the symbols, random numbers and its nonce,
which meanings are described in the appendix B.

’

L.19 In here, the procedure described in the section III-
B.2 (1) is applied to the first message from A to B. Tt
is called as the ‘stage 1’ as in the print.

L.20 This is a result of applying AtoB-1 (a).

L.22, 23 After receiving the message, the attacker gets
to hold those knowledges.

L.25 This is a result of applying AtoB-1 (b).
case, there is no change in the store.

L.28 The procedure described in the section III-B.2 (2)
is applied to the second message from B to A. Tt is
called as the ‘stage 2’ as in the print.

L.29 This is a result of applying BtoA-1 (a).

L.31 - 33 After receiving the message, the attacker
holds those knowledges.

L.35 This is a result of applying BtoA-1 (b).
case, there is no change in the store.

L.38 The procedure AtoB-1(a) is applied to the third
message from A to B. It is called as the ‘stage 3’ as
in the print.

L.39 This is a result of applying AtoB-1 (a).

L.41 - 44 After receiving the message, the attacker
holds those knowledges. In the 44th line, since there
is the shared secret N:1(B), it is evident that the at-
tacker success this attack to obtain it.

L.46 This is a result of applying AtoB-1 (b).
case, there is no change in the store.

In this

In this

In this

A.2 Example of Weak and Strong Secure

Saito-Hagiya (SH) protocol shown in the appendix C-C
is an example of weak secure.

5 stage 1 ----------

6 : step 1: A =>C {A, N:1(CA) }_P:1(C)
7 :

8 : step 2: C(A) =>B: { A, N:1(CA) }_ P:1(B)
9 :

11 : step 3: B => C(A) {N:1CA), N:1(CB) }_P:1(4)
ig ; step 4 C =>4 {N:1CA) , N:1(B) }_P:1(&)

12 : stage 3 ----------

16 step 5 A =>C { nil }_ i:1(N:1(B))

ié ; step 6: C(A) => B : { nil }_ i:1(N:1(B))

20 : Attacker can’t get the shared secret: N:1(B)

21 : attack fail!

In this result, while the protocol run is finished without
detecting attack, an attacker can’t obtain the shared secret.

Next result is a case of strong secure. Hagiya-Saito (HS)
protocol[23], which is a revised version of the SH protocol,
shown in the appendix C-B.:

3 : stage 1 -—-----—--
4 : step 1: A =>C {4, N:1(A) }_P:1(C)

5 :

6 : step 2: C(A) => B {A, N:1(CA) }_P:1(B)

7 :

8 : stage 2 ----------

9 ¢ step 3: B =>C(A) : {N:1(A) , N:1(B) }. P:1(4)
10 :

11 : step 4: C=> A : {N:1(A) , N:1(B) }_P:1(A)

14 : step 5: A =>C: {C3}_ i:1(N:1(B))
15 :

16 : step 6: C(A) => B : { B }_ i:1(N:1(B))
17

18 : Attacker can’t make this massage.
19 : attack fail!

Since the final message in the step 6 can’t be created by
an attacker, the attack can be detected.
B. Fake-Responder’s Attack

The following result shows that NS protocol is not vul-
nerable to the fake-responder attack. In here, the most
messages except its essence are omitted:

11 : stage 1 ----------

12 : step 1: A => C(B) {A, N:1(CA) }_P:1(B)
13 :

14 : store: {nil , A, B, C,w,z , N:1(C) ,
15 {4aA,N:1CA)I_P:1(B) }

16 :

17 : step 2: C => B {C, N:1CA) }I_P:1(B)
18 :

19 : Attacker can’t make this massage.
(snip)
L.12 This is a result of applying AtoB-2 (a).
L.1/ In here, the attacker can’t make the message.
C. MITM Attack

The following result shows that DH protocol is vulnera-
ble to the MITM attack, where it is omitted description:

stage 1 ----------

step 1: A => C(B) g:1(x)

step 2: C(4) => B g:1(w)

stage 2 --—----—--—-

step 3: B => C(A) g:1(y)

step 4: C(B) => A : g:1(z)

stage 3 ----------

step 5: A => C(B) {N:1CA) I_g:1(x, z)

step 6: C(A) => B {N A) }_g:it(w, y)

stage 4 -—-——----—---

step 7: B =>C(A) : { N:1(CA) , N:1(B) }_g:1(Cw , y)
step 8: C(B) =>4 : {N:1(CA) , N:1(B) }_g:1(x , z)

Attacker can get the shared secret: N:1(B)

attack success!!

In this protocol, the shared secret is utilized only as an
encryption key. Then, it needs to check whether the key
can be protected or not in the step 7 and 8.

D. All Results

All results including the above ones are shown in this
subsection. Other protocols are specified in the appendix
C.In the table I, ‘I-Attack’ is the fake-initiator’s attack, ‘R-
Attack’ is the fake-responder’s attack and ‘M-Attack’ is the
MITM attack. And, ‘X’ means to be success of an attack.
While ‘W’ is denoted as the weak secure, ‘S’ is the strong
secure. As some protocols are denoted as abbreviation, the

followings are descriptions:
‘SSL (RSA:server) + pass’ :
authentication mode using RSA key-exchanging.
‘SSL (RSA:client)’ : it is client authentication mode using RSA
key-exchanging.

it is basic authentication over sever

Protocol I-Attack | R-Attack | M-Attack
DH
NS
NSL
SH
HS
AHO

STS

SSL (RSA:server) + pass
SSL (RSA:client)

SSL (DH:server) + pass
SSL (DH:client)
SSH1+pass
SSH1+publickey
SSH2+pass
SSH2+publickey

w| v | vl | v vl vl waf| La| ol Lol | vl 4|

| A | 4| | o4 | o | Ll | | val tn| e W
| | wn| || | ta| | Ll | ta| Ll | La| Tl | B

TABLE I
ALL RESULTS OF CHECK

‘SSL (DH:server) + pass’ : it is basic authentication over sever
authentication mode using DH key-exchanging.

‘SSL (DH:client)’ : it is client authentication mode using DH
key-exchanging.

‘SSH1+4pass’ : it is using password authentication of SSH1.
‘SSH1+publickey’ : it is using public-key authentication of SSH1.
‘SSH2+pass’ : it is using password authentication of SSH2.

‘SSH2+4publickey’ : it is using public-key authentication of SSH2.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduce three types of attack-models
and their scenarios, and defined the concept of ‘strong
secure’ and ‘weak secure’ of an authentication protocol.
Based on the attack-models, we also provide to implement
the checker for analyzing the authentication scheme in se-
curity protocol. Moreover, we showed that, by using the
proposed scenario-based authentication checker, the fake-
responder’s attack is found in the SSH password-based au-
thentication and the SSL password-based authentication.

As future work, we need some graphical user interface to
manipulate this checker. And more samples can be helpful
for protocol designers.

REFERENCES

[1] D. Barrett, and R. Silverman: SSH, The Secure Shell,
O’REILLY, 2001, ISBN:0-596-00011-1.

[2] T. Ylonen: The SSH (Secure Shell) Remote Login Protocol, In-
ternet Draft, Network Working Group, November 1995.

[3] A. Freier, P. Kocher, and P. Kaltorn: SSL V3.0 Specification,
IETF Task Force, March 1996.
http://home.netscape.com/eng/ssl3/s-SPEC

[4] T. Dierks, C. Allen: The TLS Protocol Version 1.0, 1999, RFC
2246, http://wuw.ietf.org/rfc/rfc2246.txt

[5] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and S. Lehtinen:
SSH Transport Layer Protocol,
draft-ietf-secsh-transport-11.txt,

Internet Draft, Network Working Group,
November 2001/

[6] C.Meadows: The NRL Protocol Analyzer: An overview, Journal
of Logic Programming, 26(2):113-131, 1996.

[7] G.Lowe: Breaking and fixing the Needham-Schroeder public-key
protocol using FDR, Tools and Algorithms for the Construction
and Analysis of Systems, Lecture Notes in Computer Science
vol.1055, pp.147-166, Springer-Verlag, 1996.

[8] R. Needham, and M. Schroeder: Using Encryption for Authenti-

cation in Large Networks of Computers, Communications of the
ACM, 21, pp.393-399, 1978.

[9] M. Burrows, M. Abadi, and R. Needham: A Logic of Authenti-
cation, ACM Transactions on Computer Systems, Vol. 8, No. 1,
Feb 1990, pp. 18-36.

[10] L. C. Paulson: The inductive approach to verifying crypto-
graphic protocols, Journal of Computer Security, 6:85-128, 1998.

[11] F. J. Thayer Fabrega, J. C. Herzog, and J. D. Guttman: Strand
spaces: Why is a Security Protocol Correct? Proceedings of 1998
IEEE Symposium on Security and Privacy, 1998, pp.160-171.

[12] D. Song: Athena: a New Efficient Automatic Checker for Secu-
rity Protocol Analysis, Proceedings of the 12th IEEE Computer
Security Foundations Workshop, 1999, pp.192-202.

[13] G.J. Holzman: The SPIN Model Checker: Primer and Reference
Manual, Addison-Wesley, 2004.

[14] P. Ryan and S. Schneider: Modeling and analysis of security
protocols. Addison-Wesley, 2001.

[15] W. Stallings : Cryptography and Network Security —Principles
and Practice— (2nd ed.), Prentice Hall, 1999.

[16] E. Rescorla: SSL and TLS: Designing and Building Secure Sys-
tems, Addison-Wesley, 2001 ISBN 0-201-61598-3.

[17] W. Diffie, P. C. Van Oorschot, and M.J. Wiener: Authentication
and authenticated key exchanges, Designs, Codes, and Cryptog-
raphy, 2:107-125, 1992.

[18] M. Abadi, and R. Needham: Prudent engineering practice for
cryptographic protocols. IEEE Trans. Soft. Eng. 22, 1 (Jan.),
6-15.

[19] C. Meadows: What Makes a Cryptographic Protocol Secure?
The Evolution of Requirements Specification in Formal Crypto-
graphic Protocol Analysis, LNCS Vol.2618, Springer, pp.10-21,
2003.

[20] E. Rescorla:
RFC2631,
http://www.ietf.org/ric/rfc2631.txt

] http://www.apache.org/

[22] http://www.php.net/

] M. Hagiya, R. Takemura, K. Takahashi, and T. Saito, Verifica-
tion of Authentication Protocols Based on the Binding Relation,

LNCS Vol.2609, Springer, pp.299-316, 2003.

Diffie-Hellman IKey Agreement Method, 1999,

APPENDIX
I. SYNTAX OoF INPUT LANGUAGE
A. Input File Format

The followings are description about format of an input
file.

1. A line started with // is a comment.

2. A null line is ignored.

Proc, KeyHolder and Line, explained in A-B, are writ-
ten in the following order in the input file:

‘comment comment’

{//)
Proc
(:)

¢ H

KeyHolder
[

o
Line
z//; ‘EQF’

B. Language for Protocol

Proc, KeyHolder and Line are defined by expanded BNF
as follows:

Symb := ‘A’ | ‘B’ | ‘C’ | ‘CA’ | ‘nil’
| x| (y: | w? | ¢z
| ‘sad’ | ‘saB’
| ‘uname’ | ‘pass’
| ‘ackl’ | ‘ack2’

Subject := ‘4’ | ‘B’ | ‘C> | ‘CA’
Seq iz Q7 | ‘10 | 20 | ‘30 | ‘4
‘62 | ‘67 | ‘77| ‘8 | ‘9
Key := ‘i:’ Seq ‘(’ Linelist ©)’
| ‘P:? Seq ‘(’ LinelList ‘)’
| ‘S:’ Seq ‘(’ Linelist ‘)’
| ‘K:’ Seq ‘(’ Linelist ‘)’
q
| ‘h:’ Seq ‘(’ Linelist ‘)’
| ‘g:’ Seq (’ Linelist ¢)’
Nonce := ‘N:’ Seq ‘(’ Symb)’
Line := Symb
| Key
| Nonce
| “{’ LineList ‘}’
| ‘H(’ LineList ¢)’
| “{’ LineList ‘}_’ Key
LineList := Line
| Line ¢,’ LineList
Proc := Subject ‘->’ Subject ‘:’ Line
KeyHolder := ‘[’ KeyHolderList ‘]_’ Subject

KeyHolderList := Key
| Key ¢,’ KeyHolder

II. SEMANTICS OF INPUT LANGUAGE

¢ Initiator

: Responder

. Attacker

: Certificate Authority as in PKI

¢ Initiator’s random number

: Responder’s random number

: Attacker’s random number

¢ Pubic key

. Private key

: Shared key

: Value of argument

: Generator, e.g., g(x)=g7x, g(x,y)=g {xy}
: Nonce, e.g. N:1(A) : Initiator’s nonce
uname : User’s identifier

pass : password for user authentication
ackl, ack2 : Acknowledgement

nil : nil string

b

22 PR UNTs< X QO
N

I1I. SAMPLES

In this section, we provide some results of samples. For
printing, some spaces are omitted from originals.

A. NSL protocol

This is a revised version of NS protocol [7].

A->B: {A, N:1(A) }_P:1(B)
B->A:{B, N:1(A) , N:1(B) }_P:1(Q)
A ->B : {N:1(B) }_P:1(B)

B. HS protocol

A->B:4{A, N:1(4) }_P:1(B)
B -> 4 : { N:1(4) , N:1(B) }_P:1(4)
A->B: {B } i:1(N:1(B))

C. SH protocol

A ->B:{A, N:1(A) }_P:1(B)
B ->4 : { N:1(4) , N:1(B) }_P:1(4)
A ->B : {nil }_i:1(N:1(B))

D. STS protocol

A->B: g:1(x)

B >4 : {g:1(y), {{ g:1(x), g:1(y)3_S:1(B)}_g:1(x,y)}
A->B: {{g:1(x), g:1(y) }_S:1(4) Y_g:1(x,y)

E. SSL

In here, B is SSL client, A is SSL server.

E.1 SSL (Server auth. mode: RSA key-exchange)

Basic Authentication over SSL in server authentication
mode is executed. pass is a shared secret as password.

E.1.a Protocol.

B->4:{B, saB }

A->B: {4, sah}

B->A: {saA , saB , N:1(B) }_P:1(4)

B -> A : {H(N:1(B),H(saA, saB, B, N:1(B)))}_i:1(N:1(B))
A ->B : {H(N:1(B),H(saA, saB, A, N:1(B)))}_i:1(N:1(B))
B -> A : { uname , pass }_i:1(N:1(B))

E.1.b Attack Process.

stage 1 ----------
step 1 B=>C¢C {B, saB }
step 2 C(B) => A {B, saB }
stage 2 ----------
step 3: A => C(B) { A, sah }
step 4: C => B {C, sadA }
stage 3 ----------
step 5 B=>C {sab , saB , N:1(B) }_ P:1(C)
step 6 C(B) => A { sadh , saB , N:1(B) }_ P:1(4)
stage 4 ----------
step 7 B=>¢C: {H(N:1(B) ,

H(saA , saB , B, N:1(B)))}_ i:1(N:1(B))
step 8 C(B) => A : {H(N:1(B) ,

H(saA , saB , B, N:1(B)»))}_ i:1(N:1(B))
stage 5 ----------
step 9: A => C(B) {H(N:1(B) ,

H(sad , saB , A , N:1(B)))}_ 1:1(N:1(B))
step 10: ¢ => B : { H(N:1(B) ,

H(saA , saB , C , N:1(B)»))}_ i:1(N:1(B))
stage 6 -—--------
step 11: B => C : { uname , pass }_ i:1(N:1(B))
step 12: C(B) => A : { uname , pass }_ i:1(N:1(B))

Attacker can get the shared secret:
attack success!!

pass

E.2 SSL (Client auth. mode: RSA key-exchange)

N:1(B) is a shared secret as the session key.

A->B: {A, saA }
B->4A:4{B, saB }
B->A: {sah, saB , N:1(B) }_P:1(R)
B ->4A { H(N:1(B), H(saA, saB, A, B,
N:1(B))) }_S:1(B) // Attacker can’t make this.
B -> A : {H(N:1(B), H(saA, saB, B, N:1(B)))}_i:1(N:1(B))
A ->B : {H(N:1(B), H(saA, saB, A, N:1(B)))}_i:1(N:1(B))

E.3 SSL (Server auth. mode: DH key-exchange)

Basic Authentication over SSL handshake in server au-
thentication mode is executed. pass is a shared secret.

E.3.a Protocol.

-> : {B, saB }

-> : { A, sah }

->B : {g:1(x) , { H(saA , saB , g:1(x)) }_S:1(A) }
:og:1(y)

: {H(g:1(x,y), H(saA, saB, B, g:1(x,y)))}_g:1(x,y)
: {H(g:1(x,y), H(sah, saB, A, g:1(x,y)N}_g:1(x,y)
: { uname , pass }_i:1(g:1(x,y))

W wE >
1
v
o e oW

E.3.b Attack Process.

stage 1 ---------—-

step 1 B=>C {B, saB }

step 2: C(B) =>4 : { B, saB}

stage 2 ----------

step 3 A C(B) : { A, saA }

step 4: C=>B: {C, sah }

stage 3 ----------

step 5 A =>C(B) : {g:1(x), {H(sahA, saB, g:1(x))}_ S:1(A)}
step 6: C =>B : {g:1(w), {H(sah, saB, g:1(w))}_ S:1(C)}
stage 4 ----------

step 7: B =>C g:1(y)

step 8: C(B) => A g:1(z)

stage b —---------

step 9 B=>C: {H(g:1(w, y),

H(sah , saB , B, g:1(w , yO)N}I_g:1(w , y)

step 10: C(B) => A : { H(g:1(x, z) ,

H(saA , saB , B, g:1(x , z)))}_g:1(x , z)
stage 6 ----------
step 11: A =>C(B) : { H(g:1(x, z) ,

H(sad , saB , A , g:1(x, z)IN}_g:1(x, z)
step 12: C=>B : {H(g:1(w,y),

H(sah , saB , €, g:1(w , y IN3I_g:1(w , y)
stage 7 -—--------
step 13: B => C : { uname , pass }_ i:1(g:1(w , y))
step 14: C(B) => A : { uname , pass }_ i:1(g:1(x , z))

Attacker can get the shared secret:
attack success!!

pass

E.4 SSL (Client auth. mode: DH key-exchange)
N:1(B) is a shared secret as the session key.

A->B:{A, sad }
B->A:{B, saB }
A->B: {g:1(x) , { H(sah , saB , g:1(x)) }_P:1(A) }
B -> A : g:i(y)
B -> A : { H(g:1(x,y), H(saA, saB, A, B,

g:1(x,y))) }_S:1(B) //Attacker can’t make this.
B -> 4 : { H(g:1(x,y), H(sah, saB, B, g:1(x,y)))}_g:1(x,y)
A -> B : { H(g:1(x,y), H(saA, saB, A, g:1(x,y))} _g:1(x,y)
F. SSH

B is SSH client, A is SSH server.

F.1 SSH1 (password user authentication)

F.1.a Protocol. pass is a shared secret as password.
A->B : {P:1(a) , P:2(A) , sah , x }

B->A:{saB, vy, {{ N:1(B) }_P:1(A)}_P:2(4) }

A ->B : { ackl }_i:1(N:1(B))

B ->A : { uname }_i:1(N:1(B))

A ->B : { ackl }_i:1(N:1(B))

B -> 4 : { pass }_1:1(N:1(B))

A ->B : { ack2 }_i:1(N:1(B))

F.1.b Attack Process

stage 1 ---------—-

step 1: A =>C(B) : {P:1(A) ,P:2(A) , sah, x }
step 2 C=>B: {P:1(C),P:2(C) , sah , w }
stage 2 -—--------

step 3: B =>C : { saB, y, { {N:1(B)}_P:1(C) }_P:2(C) }
step 4: C(B) => A : { saB, z, { {N:1(B)}_P:1(4) }_P:2(4)}
stage 3 —---------

step 5: A => C(B) : { ackl }_ i:1(N:1(B))

step 6: C => B { ack1l }_ i:1(N:1(B))

stage 4 ----------

step 7: B =>C : { uname }_ i:1(N:1(B))

step 8: C(B) => A { uname }_ i:1(N:1(B))

stage 5 ----------

step 9: A => C(B) : { ackl }_ i:1(N:1(B))

step 10: € => B : { ackl }_ i:1(N:1(B))

stage 6 ----------

step 11: B => C { pass }_ i:1(N:1(B))

step 12: C(B) => A { pass }_ i:1(N:1(B))

stage 7 ------—----

step 13: A => C(B) : { ack2 }_ i:1(N:1(B))
step 14: € =>B : { ack2 }_ i:1(N:1(B))
Attacker can get the shared secret: pass
attack success!!

F.2 SSH1 (public-key user authentication)

z is modulus, N:2(B) is challenge.

A ->B : {P:1(a) , P:2(A) , sad , x }
B->4:{saB,y, {{ N:1(B) }_P:1(A)}_P:2(4) }
A ->B : { ackl }_i:1(N:1(B))
B -> A : { uname }_i:1(N:1(B))
A->B : { ackl }_i:1(N:1(B))
B->4: {2z} 1:1(N:1(B))
A->B: { {N:2(B) }_P:1(B) }_i:1(N:1(B))
B->4:{H(A, B, N:1(B) ,
N:2(B)) }_i:1(N:1(B)) //Attacker can’t make this.
A ->B : { ackl }_i:1(N:1(B))

F.3 SSH2 (password user authentication)

F.3.a Protocol. pass is a shared secret as password.

A ->B : sahA

B -> A : saB

B ->4: g:i(y)

A->B: {g:1(x) , P:1(4) , { H(sah , saB , P:1(4) ,
g:1(x) , g:1(y) ,g:1(x,y))}_8:1(4) }

B -> 4 : { ackl }_g:1(x,y)

A ->B : { ack2 }_g:1(x,y)

B -> 4 : { uname , pass }_g:1(x,y)

A ->B : { ackl }_g:1(zx,y)

F.3.b Attack Process.

stage 1 ----------
step 1: A => C(B) : sald
step 2: C => B : sald

stage 2 ----------

step 3: B =>C : saB

step 4: C(B) => A saB
stage 3 -——---—----

step 5: B =>C : g:1(y)
step 6: C(B) => A : g:1(z)
stage 4 ----------

step 7: 4 => C(B) : { g:1(x), P:1(A) , { H(sah , saB, P:1(4),
g:1(x) , g:l(z) , g:l(x,2))3_S:1(A)}

step 8: C=>B : { g:1(w), P:1(C) , { H(sah, saB, P:1(C),
g:1(w) , g:1Cy), g:1(w, y))}_ s:1(C)}

stage 5 ----------

step 9: B =>C { ackl }_g:1(w, y)

step 10 C(B) => A { ackl }_g:1(x, z)

stage 6 ----------

step 11: A => C(B) { ack2 }_g:1(x, z)

step 12: € =>B : { ack2 }_ g:1(w , y)

stage 7 ----------

step 13: B => C { uname , pass }_ g:1(w , y)

step 14: C(B) => A { uname , pass }_ g:1(x , z)

stage 8 ----------

step 16: A => C(B) { ackl }_g:1(x, z)

step 16: € =>B : { ackl }_ g:1(w, y)

Attacker can get the shared secret:
attack success!!

pass

F.4 SSH2 (public-key user authentication)
In this case, g:1(x,y) is a shared secret.

A -> B : sah

B -> A : saB

B ->4: g:i(y)

A->B: {g:1(x) , P:1(4) , { H(saA , saB , P:1(4) ,

g:1(x) , g:1(y) ,g:1(x,y))}_S:1(A) }
A { ackl Y _g:1(x,y)
B : { ack2 }_g:1(x,y)
B -> A { uname , P:1(B) , { uname , P:1(B) , A , B ,
g: l(x y) }_S:1(B) }_g: 1(x y) //Attacker can’t make this.
A > B : { ackl }_g:1(x,y)

> o
Ul
Vv v

