
Abstract 

Private Computing on a Public Platform (PCPP) is a 

new paradigm in public computing in which an 

application executes on a previously unknown remote 

system securely and privately.  The first step in the PCPP 

process is remote assessment of a prospective remote host 

to determine whether it is capable of executing the PCPP 

application and to classify the host as a potential threat 

or non-threat.  This paper explores the use of a Naive 

Bayesian classifier to classify prospective remote hosts.  

We show that the Naïve Bayesian classifier learns to 

recognize subtle patterns in historical host measurements 

and performs the classification task accurately and with 

minimal negative performance implications. 

1. Introduction 

Recently, we introduced Private Computing on a Public 

Platform (PCPP) [8] [11] as a method for allowing clients 

to securely and privately execute applications on foreign 

hosts previously unknown to the client. PCPP is a two step 

process.  First, PCPP performs a remote assessment of the 

prospective remote host to determine if the remote host is 

a threat or non-threat.  After an acceptable remote host is 

found PCPP launches the application on the remote host 

and enforces a set of active security properties which 

assure that the PCPP application’s control and data flow 

remain unaltered, unmonitored, and unrecorded. 

In [11], we analogize PCPP to the security provided to a 

traveling dignitary.  When a dignitary travels abroad his or 

her security is a two step process.  First, an advance team 

is sent to scout the remote location.  This advance team 

will work with local authorities to understand the security 

risks and safeguards that are already in place.  If the 

advance team finds the risk at the remote location to be 

acceptable the trip will be approved.  However, security 

does not stop there; rather, the visiting dignitary will also 

bring his or her own security detail when traveling.  This 

security team will provide an additional security layer, in 

excess of local security safeguards, around the foreign 

dignitary while he or she is in the country. 

This paper focuses on the PCPP remote assessment, 

which is akin to the work done by traveling dignitary’s 

advance team.  The PCPP remote assessment measures 

characteristics of the remote host via external scans and an 

on-host PCPP server daemon.  These measurements are 

used to assess whether the PCPP client may proceed with 

execution on a given host.   First, a checklist of minimum 

requirements is used to perform a relatively quick go-no-

go check of the remote host.  After the minimum 

requirements are met the PCPP client applies a Bayesian 

classifier on a larger set of measurements from the remote 

host.  The Bayesian classifier, which has been trained from 

historical PCPP data, classifies the remote host as a threat 

or non-threat.  If the Bayesian classifier classifies the host 

as a non-threat then execution on the remote host may 

commence.  

In this paper we first provide a brief overview of the 

entire PCPP process.  Next, we discuss the PCPP 

minimum requirements checklist.   We then introduce the 

Naïve Bayesian classifier including a discussion of the 

data used to assess the classifier and the results we 

obtained from our classification experiments.  Finally, we 

offer a section on future works and a conclusion. 

2. Related Work 

Grid computing allows pooling of compute resources 

across geographic areas and across organizations. Globus 

[1] offers a popular toolkit which can be used to create a 

working grid. Grids generally use some form of access 

control list to limit use of the grid to approved users.  Once 

on a grid the user has access to an account with a set of 

privileges defined for his user type. User identity is 

commonly attained from PKI certificates for the users.  

Grid offers the ability to encrypt the communication 

channel between the user’s computer and the grid host.   

Grid does not make guarantees about user privacy while 

executing on the remote host.  Grid is intended to formally 

PCPP: On Remote Host Assessment via Naïve Bayesian Classification 

Thomas H. Morris and V.S.S. Nair 

High Assurance Computing and Networking Lab (HACNet)  

Southern Methodist University 

Dallas, TX, USA 

{tmorris, nair}@engr.smu.edu 

1-4244-0910-1/07/$20.00 ©2007 IEEE



link networks of computers across university campuses or 

businesses.  

Mobile agents are small code snippets which traverse 

networks performing tasks for their owner.  These agents 

often run in sandboxes which allow them to be platform 

independent and contain the agent to reserved portions of 

the host machine to offer the host security against the 

agent.  Many approaches have been proposed to ensure 

that the mobile agents control flow and data flow have not 

been altered [5] [6] [7] [8], or reversed engineered to 

invade the agents privacy [4].  We find no proposals for an 

assessment of the prospective host prior to agent execution 

outside of requiring a voucher or certificate from a third 

party [14]. 

There are many commercial and freeware tools 

available to scan computers for security policy adherence 

and vulnerabilities.  Virus scanners and spy ware scanners 

are found on large percentage computers and scan for two 

common types of vulnerabilities.  I.T. departments use 

more sophisticated tools to scan for policy adherence and 

vulnerabilities.  Such tools include the CIS Next 

Generation Scoring Tool [3] and NMAP [9].   With the 

exception of the virus and spy ware scanners these 

scanners are generally not used by the average computer 

user. 

3. PCPP Overview 

We have previously introduced PCPP [8] [11] as a two 

step process which allows applications to run securely and 

privately on foreign remote hosts.  The two steps to the 

PCPP process are:  first the initial remote assessment of a 

prospective host; and second the enforcement of a set of 

active security properties on the remote host while the 

PCPP application runs. 

The PCPP remote assessment is also broken into a two 

step process.   Measurements gathered from a remote scan 

of the prospective host and from a PCPP daemon running 

on the remote host are used to grade the host against a set 

of minimum requirements.  If the minimum requirements 

are met, a Naïve Bayesian classifier is used to classify the 

remote host as a threat or non-threat. 

First, the PCPP client scans the remote host externally. 

Second, a daemon running on the remote host gathers 

information directly from the host operating system.  

Depending upon the quantity and type of data gathered 

about the remote host, the length of these surveys can be 

extensive.    However, it is expected that prospective hosts 

wishing to participate in the PCPP process will have 

previously installed and executed the PCPP remote host 

daemon, as well as all the PCPP host software, needed to 

provide the necessary measurements to the PCPP client.    

We anticipate that a PCPP host will re-execute the internal 

scan periodically, and when queried by a PCPP client, will 

provide the results of the latest scan. 

Once the remote host assessment is completed a PCPP 

application may be launched on the remote host.  In 

addition to the PCPP application, several other PCPP 

processes run on the remote host which work together to 

enforce a set of active security properties.  The overall 

goals of these active security properties are to ensure that 

the PCPP application’s control and data flow remain 

unaltered, unmonitored, and unrecorded.  

Table 1: PCPP Control Flow Properties 
Property 

1 Order of instruction execution must not be altered 

2 The PCPP application execution must begin at a valid pre-

determined start point 

3 The PCPP application execution must end at a valid 

stopping point 

4 The application code execution order must follow a legal 

path through all branches 

5 Instruction execution shall not be monitored or recorded 

6 Application code shall not be accessed by any process other 

than the PCPP application process itself 

7 Detect control flow violations 

8  Emergency shutdown/ clean-up upon control flow violation 

The PCPP control flow properties listed in Table 1 protect 

the application control flow, while the PCPP data 

protection properties from Table 2 protect the PCPP 

application data. 

Table 2: PCPP Data Protection Properties 
Property 

1 Application data (stack, heap, files) shall remain unaltered 

2 Application data (stack, heap, files) shall not be accessed by 

any process other than the PCPP application process itself 

3 Application data (stack, heap, files) encrypted when not in 

use 

4 Access to application data (stack, heap, files) restricted when 

not in use 

5 Encryption of all input and output channels to and from a 

PCPP application 

6 Encryption key protection 

7 Detect data protection property violations 

8 Emergency shutdown/ clean-up upon data protection 

property violation 

PCPP processes running on both the PCPP client and 

remote host. 

The PCPP client searches for prospective remote hosts.  

When a remote host is found, an assessment engine on the 

PCPP client scans the remote host and queries the remote 

host for the previously gathered on host remote assessment 

measurements.  The assessment engine decides whether 

the host is an acceptable risk by first checking a set of 

minimum requirements and then by applying a Naïve 

Bayesian classifier to classify the host as either a threat or 

non-threat.  The data used to train the Bayesian 

classification process is historical data from prior PCPP 



jobs which is collected and stored on the PCPP client. 

When a remote host decides to become a prospective 

PCPP host, a set of PCPP applications are started on the 

hosts.   These applications run as background tasks and 

include a virtual machine which provides a consistent 

environment for PCPP applications to run.  An active 

security monitor application is also run which verifies the 

properties listed in tables 1 and 2 are met. 

The active security monitor detects control flow 

violations using ECCA (Enhanced Control-flow Checking 

Using Assertions) [15] which requires modification of the 

application code at compile time and generates exceptions 

when the control-flow diverts from the legal path.  The 

active security monitor prevents and detects data 

protection violations through a set of modifications of the 

operating system context switch and file access routines 

which apply an encryption process to all PCPP application 

data. 

More details of the active security monitor and the 

implementation specifics required to enforce the properties 

in Tables 1 and 2 will appear in a subsequent paper which 

is under preparation.  

A TLS session is required to encrypt and authenticate 

traffic between the job dispatcher and the virtual machine.  

4. Go/No-Go Requirements 

The first step in the PCPP remote host assessment is 

verification of a set of go/ no-go properties pertaining to 

the host.  These properties are a minimum set of system 

capabilities and security requirements. 

Table 3: Remote Host Go/No-Go Requirements 
Requirement 

Number 

Description 

1 Virus detection present 

2 Virus signatures up to date 

3 Last virus scan <= 14 days 

4 Intrusion detection present 

5 Software firewall present 

6 Spyware detection present 

7 Spyware signatures up to date 

8 Last spyware scan <= 14 days 

9 Root kit detection present 

10 Root kit signatures up to date 

11 Last root kit scan <= 14 day 

12 Open critical ports 

13 OS Version 

14 OS security patches up to date 

15 External port scan data must match data gathered via 

internal host scan 

16 Prior host classification as non-threat 

Table 3 lists the minimum set of requirements for the 

no/go-scan.  For the items related to virus detection, 

intrusion detection, software firewall, spyware detection, 

root kit detection, and OS versions, an approved list of 

products will exist.   The remote assessment scanners will 

support only these approved versions.  If a remote host is 

using software unapproved by the PCPP client for one or 

more of the go/no-go requirements the requirement will 

not be satisfied. 

The remote host will be scanned externally to generate a 

list of open ports, software versions for services running 

on the open ports, and OS version information.  The data 

gathered externally must match data provided to the on-

host PCPP scanner.  Additionally, PCPP clients keep a 

database of information collected about previous PCPP 

jobs.  If the prospective host has been used for a previous 

job it must have been classified as a non-threat.  

5. Remote Host Classification 

The second phase of the PCPP remote host assessment 

employs a Naïve Bayesian classifier [12] to predict 

whether the remote host is a threat or non-threat based 

upon historical PCPP experience.  We measure the value 

of a set of 32 attributes primarily related to the security 

configuration of the remote host for each PCPP job run.  

We postulate that new PCPP hosts will violate the PCPP 

active security properties from Tables 1 and 2 when the 

new host has many attribute measurements in common 

with historical hosts which were detected for violation of 

the active security properties.  Therefore, we want new 

hosts, with a number of attributes in common with 

previously known malicious hosts, to be classified as 

threats.  Furthermore, we postulate that new PCPP hosts 

will not violate the PCPP active security properties from 

Tables 1 and 2 when the new host has many attribute 

measurements in common with historical hosts which 

were not detected violating the active security properties.  

We want new hosts with much in common with previously 

known non-malicious hosts to be classified as non-threats.   

We use a Naïve Bayesian classifier and a training 

database containing the historical attribute measurements 

and the posterior classification (result of active security 

monitors) from all prior PCPP jobs to predict if a 

prospective host is a threat or non-threat.  If a host is 

predicted to be a non-threat the pending PCPP job may be 

launched on the host.  If the host is classified as a threat 

the pending job will not be launched on the host. 

5.1. Naïve Bayesian Classification 

The Naïve Bayesian classifier classifies new hosts by 

applying equation (2) to compute the probability that tuple 

ti is a member of class Cj.. Tuple ti is the 32 attribute tuple 



collected from the prospective host.  We compute 

probabilities for each class Cj in C (1). The new host is 

assigned to the class with the higher probability from 

equation (2).  

The three terms of equation 2 each provide separate 

levers in predicting the class of the new tuple.    

First, the probability of tuple ti given class Cj, defined in 

(3), is a product of the rates of class membership for all of 

the attributes measurements found in the tuple.  When 

many attribute measurements have high rates of 

membership in class Cj, the probability that tuple ti is a 

member of class Cj increases.  Conversely, when few 

attribute measurements have high rates of membership in 

class Cj, the probability that tuple ti is a member of class Cj

decreases. 

Second, the probability of class Cj, defined in (5), is 

actually the portion of the historical data which belongs to 

each class.   When the historical data has a high rate of a 

given class, the probability of the new tuple being a 

member of that class increases and when a given class is 

rare, the probability of the new tuple being a member of 

that class decreases. 

Finally, the denominator of equation (2) is the 

probability of the tuple itself.  We note that the 

denominator is independent of class.  It is the same for 

both classes and does not impact the comparison of 

P(threat | ti) and P(non-threat | ti).  As such, it can be left 

out of the calculations and the numerators alone can be 

computed and compared to provide our classification. 

The math used in our implementation of the Naïve 

Bayesian classifier is discussed below. Equations 1-5 are 

derived from discussion in [12]. 

),( threatnonthreatC −∈  (1) 

)(

)()(
)(

i

jji

ij
tP

CPCtP
tCP =  (2) 

When classifying a tuple we compute the probabilities 

(2) of each class Cj in C (1) given the tuple ti.  We classify 

tuple ti into the class with the higher probability. 

)()(
32

1

j

k

ikji CtPCtP ∏
=

=  (3) 

The probability of tuple ti given class Cj (3) is the 

product of individual conditional probabilities (4) for each 

attribute in the tuple.   The individual probabilities from 

equation (4) are computed by counting the occurrences of 

the attribute values for the given class Cj. In practice, 

during our training step we create a table of probabilities 

from equation 4 for each attribute value for each class.  

We then use this probability table in the classification step 

to look-up the probabilities needed for equation (2). 

)(

)(
)(

j

jik

jik
Ccount

Ctcount
CtP =  (4) 

The probability of threat or non-threat (5) is simply a 

count of all incidences of the given class in the training 

database divided by the total number of tuples in the 

training database.  We compute these probability values 

during training as they do not change when classifying a 

new tuple. 

)()(

)(
)(

threatnoncountthreatcount

Ccount
CP

j

j −+
=  (5) 

One of the primary advantages of the Naïve Bayesian 

classifier is its simplicity.  There is no complex difference 

equation required, there is no need for the measurements 

to take a numeric form and the math needed to compute 

the probabilities necessary for Bayesian classification are 

simple.  For each attribute we simply define sub-classes 

and then for computing the intermediate probabilities the 

majority of the work is spent counting occurrences of each 

attribute for each class. 

Naïve Bayesian uses historical data gathered from 

previous PCPP jobs to measure the similarity of the 

prospective host to the hosts in the training set.   Each 

attribute in the classification is treated independently, yet, 

Naïve Bayesian measures the probability of class member 

ship as product of probabilities from each attribute and 

therefore capable of noticing patterns of similarity in the 

data which humans and other classifiers such as decision 

trees cannot observe. 

For the exercises in this paper we chose to use just two 

classes, threat and non-threat.  It is possible to use the 

same Naïve Bayesian classification with more than two 

classes.  For instance, it may be desirable to break the 

threat class into multiple levels of risk which could allow 

certain PCPP jobs with lower value to be run on low risk 

hosts which must be avoided by higher valued PCPP jobs. 

5.2. Data collected from Remote Hosts 

When a new PCPP job is launched the PCPP client will 

gather a new remote assessment tuple from the prospective 

host.  After a PCPP job completes the host’s remote 

assessment tuple and the result of the job are added to the 

classification training data.  The result of the job, whether 

the active security monitor detected violations or not, is 

recorded as threat or non-threat, respectively. 

In order to minimize PCPP job startup latency, we 

expect that the host will have precompiled the data 

required for Bayesian classification.   This data will come 

from periodic scans of the host which are stored as tuples 

for use in the PCPP host assessment.  Because the scan is 



run periodically it may be scheduled as a low priority task. 

It is possible for the host to provide false answers to 

PCPP assessment inquiries.  In this event a prospective 

host may fool the PCPP assessment into providing a non-

threat classification when a threat was the correct 

classification.  In such cases presumably the host would 

attack the PCPP job and this would be detected by the 

PCPP active security monitors.  This would trigger an 

immediate shutdown of the PCPP job in progress, a 

classification of this host as a threat in the PCPP client 

training database, and seed the Bayesian classifier to 

classify similar hosts as threats in the future. 

Table 4: Attributes collected for Naïve Bayesian 
Classification 

Item Bayesian Ranges 

Virus protection present TRUE, FALSE 

Virus protection brand A,B,C,D,OTHER 

Virus Signatures up to date TRUE, FALSE 

Virus days since last complete 

scan 

GOOD, OKAY, BAD, 

TERRIBLE 

Intrusion detection present TRUE, FALSE 

Intrusion detection brand A,B,C,D,OTHER 

Software firewall present TRUE, FALSE 

Software firewall brand A,B,C,D,OTHER 

Spy ware detection present TRUE, FALSE 

Spy ware signatures up to date TRUE, FALSE 

Spy ware days since last 

complete scan 

GOOD, OKAY, BAD, 

TERRIBLE 

Spy ware scanner brand A,B,C,D,OTHER 

Root kit scan present TRUE, FALSE 

Root kit scan brand A,B,C,D,OTHER 

Root kit signatures up to date TRUE, FALSE 

Root kit days since last scan 

GOOD, OKAY, BAD, 

TERRIBLE 

Open critical ports TRUE, FALSE 

Port server software up to date TRUE, FALSE 

OS patches up to date TRUE, FALSE 

OS automatic updates TRUE, FALSE 

OS version 

XP_HOME, XP_PRO, WIN2K, 

OTHER 

File system NTFS,OTHER 

IP region 

USA, EUROPE, EASTEUROPE, 

ASIA, OTHER 

Known bad MAC address TRUE, FALSE 

Password complexity TRUE, FALSE 

Expired passwords TRUE, FALSE 

Auto login disabled TRUE, FALSE 

Guest accounts disabled TRUE, FALSE 

Anonymous login disabled TRUE, FALSE 

Number of administrator 

accounts TRUE, FALSE 

Active X security level TRUE, FALSE 

Item Bayesian Ranges 

Java Security level TRUE, FALSE 

MS Office macros TRUE, FALSE 

Table 4 shows all of the attributes and their legal values 

which we used in the Bayesian classification.  The set of 

attributes collected was derived from a survey of 

information gathered by various vulnerability scanners 

available as freeware and commercially [3][9][10].  

The cardinality of allowed values for most attributes 

was kept small intentionally.   This limits the possibility of 

missing data in the training set and limits the number of 

counting steps required during training.  Limiting allowed 

values also limits the granularity of the classifier.  

However, if it is found that more specificity is needed the 

possible value set can be expanded or single attributes can 

be replaced by multiple, more specific attributes.  An 

example of limiting the legal values is found for the case 

of attributes which measure the number of days since the 

last (virus, root kit, spy ware) scan.  We group these 

values in to the categories of GOOD, OKAY, BAD, and 

TERRIBLE.  If we had left this attribute to be an integer 

from 0 to N, we would be required to compute N

conditional probabilities for that attribute in the training 

step.  This would be extra work for little extra 

classification value. 

The actual attributes listed in Table 4 are less important 

than the concept of using a Naïve Bayesian classifier in 

this context.    It is relatively easy to scan a host for many 

different types of attributes.   If better indicator attributes 

are found, they can easily be used in place of or in addition 

to those listed in Table 4. 

Data from prior PCPP jobs may be shared amongst 

PCPP clients.  This would allow the training data to 

become sufficiently large for accurate classification 

sooner.  Sharing remote assessment tuples from prior 

PCPP jobs will also disseminate information about new 

threats faster and potentially limit the impact from these 

threats.  The remote assessment tuples from prior PCPP 

jobs may be shared via a central server or peer to peer 

exchange.  Tuples should be shared only if their validity 

can be guaranteed.  Without this guarantee shared data 

could be used to maliciously manipulate the results of the 

classifier. 

5.3. Synthetic Data used to test the classifier 

In order to judge the effectiveness of the Naïve 

Bayesian classifier we created synthetic constrained 

random data sets to both train our classifier and test our 

classifier.  In all we created seven constrained random data 

sets.   These data sets are listed in table 5.  



Table 5: Naïve Bayesian Classification with Synthetic 
Data 

Data Set Name Description 

1k 1K constrained random tuples with patterned 

threats and 1% random threats 

10k 10K constrained random tuples with patterned 

threats and 1% random threats 

100k 100K constrained random tuples with patterned 

threats and 1% random threats 

1k_nr 1K constrained random tuples with patterned 

threats 

10k_nr 10K constrained random tuples with patterned 

threats 

100k_nr 100K constrained random tuples with patterned 

threats 

Random 100K constrained random tuples with 50% random 

threats 

In the preceding table, we use the term constrained 

random to mean, first, that the attribute values for each 

tuple were generally chosen at random while only being 

allowed to take legal values for each attribute as listed in 

Table 4.  Second, some attributes where constrained to 

take a certain value for a certain percentage of the time 

and or situationally.  For instance, the virus protection 

present attribute on the system was constrained to be 

TRUE 95% of the time.  Further, if the virus protection 

present attribute was FALSE the virus brand attribute was 

forced to OTHER, the virus signatures up to date attribute 

was forced to FALSE, and the virus days since last 

complete scan attribute was forced to TERRIBLE. 

There are three basic types of data listed in Table 5 

which differ by how the classification as threat or non-

threat was generated.  Except for the data called Random,

the data set names contain 1K, 10K, or 100K which 

indicate the number of tuples in the data set.   The Random

data set contains 100K tuples.   

The six data sets, 1k, 10k, 100k, 1k_nr, 10k_nr, and 

100k_nr all contain a set of hidden patterns. The hidden 

patterns are designed to show that the Naïve Bayesian 

classifier will generally detect these patterns and flag 

prospective hosts as threats.  These patterns were 

generated in the data as additional constraints.  First, 

anytime the bad MAC address attribute was TRUE, the 

tuple was classified as a THREAT.  The bad MAC address

attribute was allowed to be TRUE 0.5% of the time. 

Second, when the Virus protection brand attribute was B, 

the virus days since last complete scan attribute was BAD, 

and the OS patches up to date attribute was FALSE the 

class was forced to THREAT.  Finally, when root kit 

protection present attribute was FALSE and the open 

critical ports attribute was TRUE the class was forced to 

THREAT.

In addition to the embedded patterns the three sets 

called 1k, 10k, and 100k contain an additional 1% of tuples 

which were classified as threat regardless of the value of 

the attributes in the tuple.  The three sets called 1k_nr, 

10k_nr, and 100k_nr do not contain patterns randomly 

classified as threat. 

The Random data set contains no embedded patterns, 

rather 50% of the tuples are randomly classified as threats 

regardless of the value of the attributes and 50% are 

randomly classified as non-threats regardless of the value 

of the attributes.  

All of the data mentioned above was created using 

Cadence Specman Elite [13], a commercial software used 

to automate test benches used for digital integrated circuit 

verification.  Cadence Specman Elite executes code 

written in the ‘e’ language [14] which contains a random 

constraint solver which we used here to create our 

synthetic data.   The constraint solver has three features we 

used for this project.  First, we used the ‘e’ language to 

specify legal values for each of the attributes in our 

synthetic data tuple.  Second, we specified the distribution 

of attribute values for certain attributes in our tuple.  

Third, we specified relationships between the attributes 

which sometimes override the random behavior (our 

embedded patterns).  We then used the constraint solver to 

randomly choose tuples which met our specifications.   

5.4. Our Implementation 

We implemented our classifier in Perl.  Our 

implementation is broken into two parts.  First, we train 

our classifier with all of the tuples gathered from previous 

PCPP jobs, or in our case, randomly created synthetic 

tuples, and the resulting classification of those jobs.  

Second, our implementation classifies individual tuples 

from prospective hosts for new PCPP jobs. 

In the training step we build a table of conditional 

probabilities P(tik|Cj) (4) and compute the probabilities of 

each class P(Cj) (5).  These tables are built with a single 

pass through the data.  The probability tables are stored in 

hashes to speed up search in the classification step. 

Computing the probability tables ahead of time allows 

significant speed up in computation of the final 

classification of a new prospective host. 

For classification we simply look-up the P(tik|Cj) (4) 

probabilities for each attribute measurement in our tuple to 

generate P(ti | Cj) (3).  We then look up the class 

probability P(Cj) (5). Finally, we compute the probability 

of class Cj given the tuple ti, for each class in C (1), in our 

case threat and non-threat.   We classify the tuple as a 

member of the class with the higher probability. 

Occasionally in classification we encounter tuples with 

data values for attributes which require special treatment. 

We found two such cases. 

First, we may find an attribute value in classification 



which was never sampled in the training data.  In this case 

the conditional probability, P(tik | Cj) (4) is zero for both 

the threat and non-threat classes.   If these intermediate 

zero values are kept the resulting  probability of class 

membership P(Cj | ti) (2) for both classes will be zero.  In 

this case we ignore this attribute when computing the 

probability of class membership P(Cj | ti)  (2).     

The second case which requires special treatment occurs 

when within the same tuple one or more attribute values 

always imply a threat classification while simultaneously 

one or more attribute values always imply a non-threat 

classification.   Here, we mean that the attribute value was 

always associated with one class and never occurs with the 

other class.  When we have separate attribute values that 

which always imply classification in opposite directions, 

the resulting posterior probabilities again become zero.  

We handle this case by dropping the attribute which 

implies non-threat and keeping the attribute which implies 

threat.  This sways the final classification towards threat 

which for our application is the more conservative choice.  

5.5. Classification Results 

We ran our Naïve Bayesian implementation with the 

synthetic data a total of twelve times.   For each run we 

trained the classifier with one data set and then classified 

all the tuples from a second data set.   

The classification of each tuple in the test data was 

checked against the actual class of the tuple.   We report 

the percentage of classifications which are correct, 

percentage of classifications which are incorrect, 

percentage of false negatives, and percentage of false 

positives in Table 6. 

All of the first nine runs are trained with data which 

contains embedded patterns as we discussed earlier.  We 

notice that when there is a pattern in the data, the Naïve 

Bayesian classification does a very good job of finding 

similar tuples in the test phase and classifying these 

correctly. 

When the data set name contains the post fix ‘_nr’ this 

means the data does not contain any random classification.  

In other words the class in these data sets always depends 

on the three patterns embedded in the data.  When the data 

set name does not contain the ‘_nr’ post fix the training 

data contains approximately one percent of the tuples 

randomly assigned to the threat class regardless of the 

presence of the aforementioned patterns.   This can be seen 

in the results.  For runs in which the test data contained 

this 1% random assignment to the threat class, the 

percentage of incorrectly classified tuples also approaches 

1%. 

In the final three runs the tuples in the training data 

were classified completely randomly.  Since we have 2 

classes, threat and non-threat, the split between classes 

was approximately 50% threat and 50% non-threat.  The 

results from these runs show that the classifier found no 

trends in the data and consequently incorrectly classified 

the data approximately 50% of the time. This illustrates 

that when the data has no trends, the Naïve Bayesian 

algorithm can not accurately classify tuples.   

 We expect in real world application, there will generally 

be trends in the data similar to the ones we placed in the 

synthetic data.   We know that certain attribute values lead 

to vulnerabilities which can be exploited. 

Generally, a system which works to quickly remove 

these vulnerabilities will be a more secure system.  

Conversely, a system which does not fix vulnerabilities in 

a timely manner will be less secure.   

TABLE 6: NAÏVE BAYESIAN CLASSIFICATION WITH SYNTHETIC DATA

Training Data Test Data % Correct % Incorrect 

%False Negative (Fatally 

Wrong) 

% False Positive (Missed 

Opportunity) 

10k 1k 99.2 0.8 0.8 0.0 

100k 10k 98.9 1.1 0.9 0.2 

10k_nr 1k_nr 99.3 0.7 0.2 0.5 

100k_nr 10k_nr 99.6 0.4 0.1 0.3 

10k_nr 1k 99.2 0.8 0.8 0.0 

100k_nr 10k 98.9 1.1 0.9 0.2 

1k 10k 98.9 1.1 0.9 0.2 

1k_nr 10k_nr 99.9 0.1 0.1 0.0 

10k 1k_nr 99.3 0.7 0.2 0.5 

random 100k 10k_nr 49.9 50.1 1.1 49.0 

random 100k 1k_nr 54.9 45.1 0.8 44.3 

random 100k random 100k 51.0 49.0 23.5 25.5 



When these observations hold true, the Naïve Bayesian 

will do a good job classifying hosts.  There will always be 

cases of new vulnerabilities which look like the random 

threats we introduced in our synthetic data.  Generally, new 

vulnerabilities will tend to be classified as non-threats at 

first, then as more PCPP jobs are encountered where the 

vulnerability is exploited the trend will become apparent to 

the classifier and these tuples will be classified as threats. 

A Dell branded Linux workstation was used to perform 

all of the computations for this paper.  The workstation 

contains 2 Intel Pentium 4 2.8 GHz processors with 512 KB 

cache each.  The workstation contains 4GB shared memory.  

The Linux kernel version is 2.4.21-37.ELsmp. 

We measured the time spent in training and the time 

spent classifying the test data for each run.   The average 

training time per tuple was 148 µS.  The average time spent 

in classification per tuple was 422 µS. The time spent in 

training per tuple was about 1/3 of the time spent in 

classification per tuple. However, generally we will train 

with thousands of tuples, while we always classify only one 

tuple at a time.  This means that the majority of time will 

actually be spent in training.  This is acceptable because the 

training can be done on the PCPP client as a background 

task periodically as new tuples are collected.   The 

classification step must always be done before a new PCPP 

job is launched on a remote host.  As such, the 

classification step adds delay to the PCPP job completion 

time and therefore should be as fast as possible.

6. Future Work 

 We find that Naïve Bayesian classification fits our PCPP 

remote host classification problem well.  However, we 

would like to follow up this research with more details in 

some areas.  First, we would like to examine the use of 

clustering algorithms and visualization techniques to 

discover and show patterns in the collected PCPP 

assessment data.  Second, we would like to explore the use 

of more classes perhaps having classes with varying 

degrees of risk for PCPP jobs with varying value.  Third, 

we need to explore answering the question how much 

training data is required before we can trust the 

classifications our classifier. 

7. Conclusion 

In this paper we offer an approach for assessing PCPP 

remote hosts to determine if the host is acceptable 

candidate for running PCPP applications.  Our solution 

breaks the problem into two parts.  First, we scan the 

remote host to ensure that a set of go/no-go requirements 

are met.  Second, we used historical data collected from 

previous PCPP jobs to train a Naïve Bayesian classifier.   

We then demonstrated the use of this classifier to classify 

prospective hosts as threats or non-threats.  We found this 

approach to meet the needs of the PCPP remote assessment 

step. 

References 
[1] www.globus.org 
[2] Wang, C. and Wulf, W. A, "A Framework for Security 

Measurement." Proc. National Information Systems Security 
Conference, Baltimore, MD, pp. 522-533, Oct. 1997. 
http://citeseer.ist.psu.edu/wang97framework.html 

[3] The Center for Internet Security, http://www.cisecurity.org/
[4] Wang, C., Hill, J., Knight, J., and Davidson, J. 2000 Software 

Tamper Resistance: Obstructing Static Analysis of Programs. 
Technical Report. UMI Order Number: CS-2000-12., 
University of Virginia 

[5] Farmer, W. M., Guttman, J. D., Swarup, V. 1996b. Security 
for mobile agents: Authentication and state appraisal. In 
Proceedings of the Fourth European Symposium on Research 

in Computer Security (ESORICS), E. Bertino, H. Kurth, G. 
Martella, and E. Montolivo, Eds., Lecture Notes in Computer 
Science, vol. 1146, Springer-Verlag, New York, 118–130. 

[6] Vigna, G. 1997. Protecting mobile agents through tracing. In 
Proceedings of the Third ECOOP Workshop on Mobile 
Object Systems: Operating System Support for Mobile 
Object Systems 

[7] Yee, B. S. 1999. A sanctuary for mobile agents. In Secure 

Internet Programming: Security Issues for Mobile and 
Distributed Objects, J. Vitek and C. Jensen, Eds., Lecture 
Notes in Computer Science, vol. 1603, Springer-Verlag, New 
York, 261–274 

[8] Morris, T., Nair, V.S.S., Private Computing on a Public 
Platform, Department of Computer Science and Engineering, 
Southern Methodist University, Technical Report 06-CSE-
01, 2006 

[9] Free Security Scanner For Network Explorations & Security 
Audits, www.insecure.org/nmap

[10] SANS Institute, www.sans.org
[11] Morris, T., Nair, V.S.S., PCPP: Private Computing on Public 

Platforms A New Paradigm in Public Computing, 2nd IEEE 
International Conference on Wireless Pervasive Computing, 
2007,  Feb. 2007 (to appear) 

[12] M.H. Dunham. Data Mining: Introductory and Advanced 

Topics. Prentice Hall,Upper Saddle River, NJ, 2003 
[13] Specman Elite Testbench Automation, 

http://www.verisity.com/products/specman.html
[14] Chess D., B. Grosof, C. Harrison, D. Levine, C. Parris and G. 

Tsudik, Itinerant Agents for Mobile Computing. Technical 
Report, October 1995, IBM T.J. Watson Research Center, 
NY.  

[15] Z. Alkhalifa, V. S. S. Nair, N. Krishnamurthy, and J. A. 
Abraham. Design and evaluation of system-level checks for 

on-line control flow error detection. IEEE Trans. Parallel
Distrib. Syst., 10(6):627–641, 1999. 


