
Exploiting Communication Concurrency for Efficient Deadlock Free Routing in
Reconfigurable NoC Platforms

Maurizio Palesi1, Shashi Kumar2, Rickard Holsmark2, and Vincenzo Catania1

1Dept. of Computer Science and 2Embedded Systems Department
Telecommunication Engineering Electronics and Computer Engineering

University of Catania, Italy School of Engineering, Jönköping University, Sweden
{mpalesi, vcatania}diit.unict.it {Shashi.Kumar, Rickard.Holsmark}@jth.hj.se

Abstract

In this paper we make a case for the use of NoC
paradigm to develop future FPGAs in which large compu-
tational blocks (cores) are connected to each other through
a packet switched communication network. We propose a
methodology to develop efficient and deadlock free routing
algorithms for such NoC platforms which can be special-
ized for an application or a set of concurrent applications.
Application specific topology of communicating cores as
well as information about their communication concurrency
over time is exploited to maximize communication adaptiv-
ity and performance. We demonstrate, both through anal-
ysis of adaptivity as well as simulation based evaluation
of latency and throughput, that our algorithm gives signifi-
cantly higher performance as compared to general purpose
deadlock free algorithms like XY and Odd-Even.

1. Introduction

There is a general consensus that Network on Chip
(NoC) paradigm is one of the important alternatives for
implementing multi-core heterogeneous Systems on Chip
(SoCs). Still only a few publications report the actual use of
NoC idea for implementing real application specific SoCs.
Low volume of production continues to be an argument
against large investments in a relatively untested technol-
ogy. Of course there are other reasons, including non-
availability of development tools, which prevent use of NoC
idea in design of industrial SoCs. One way to practically af-
ford large development cost of a NoC system is to amortize
it among a large number of applications.

It is possible to envision a chip based on NoC paradigm
as a future FPGA. Such Field Programmable Resource Ar-

1-4244-0910-1/07/$20.00 c©2007 IEEE.

ray (FPRA) will use grosser level of configurable compu-
tational resources and grosser level of configurable packet
switched communication resources. One can easily envi-
sion a scenario in which a mesh topology NoC chip pop-
ulated with an application area specific set of cores could
be available as off the shelf standard product. Such future
FPGAs are likely to be provided with small table based
routers for efficient, adaptive and deadlock free routing
among cores. This paper is in the direction of develop-
ment of routers for such application area specific field pro-
grammable NoC systems.

One of the main criticism about adaptive routing algo-
rithms is related to the problem that packets can reach the
destination in an out-of-order fashion due to the difference
in congestion levels on the multiple paths. However, this
problem can be efficiently coped with by using the sim-
ple re-ordering mechanism at network re-convergent nodes
proposed in [16]. Adaptive routing algorithms, if not de-
signed carefully, have a danger of causing traffic deadlocks.
Many deadlock free routing algorithms have been proposed
in literature for mesh topology networks [4, 8, 12]. In most
of these algorithms freedom from deadlock is achieved at
a high loss of adaptivity. Odd-Even routing algorithm [4]
provides deadlock free routing only for homogeneous mesh
topology NoC architectures. Bolotin et al. [2] have pro-
posed static hard coded paths for deadlock safe routing for
an application in a heterogeneous mesh topology NoC. A
non-minimal deadlock free routing algorithm is described
for an irregular mesh topology NoC with regions in [9].
Based on the concept of channel dependency graphs given
by Dally and Seitz [5], Duato has proposed a general the-
ory to develop adaptive deadlock free routing algorithms
for communication networks which use wormhole switch-
ing technique [6]. Duato’s method takes only the network
topology as input and generates a routing algorithm which
will work for all possible communication traffic situations.

A NoC system which is specialized for a specific ap-
plication or a set of concurrent applications can be con-
sidered as a semi-static system. We have the information
about the set of pairs of cores which communicate and other
pairs which never communicate. After application mapping
and scheduling phase of system development, we also have
information about the set of communication transactions
which are concurrent and others which are non-concurrent.

Such information has been taken into account by Mu-
rali et al. in [17, 18]. In [17] the authors motivate the need
to consider multiple use-cases during the NoC design pro-
cess and present a method to map the applications onto the
NoC architecture, satisfying the design constraints of each-
individual use-case. The proposed method, which works
on a synthetic worst-case use-case, performs poorly on sys-
tems where the traffic characteristics of the use-cases are
very different or when the number of use-cases are large.
The same authors, in [18], present a variant of the method
that resolve such problems. However, both the methods,
do not take advantage of the knowledge of the use-cases to
improve the underlying routing algorithm. They, in fact,
address only the mapping problem and consider a fixed
static path routing as implemented in the Æthereal archi-
tecture [21]. The problem of switching between different
use-cases requires the presence of mechanisms to manage
the dynamic reconfiguration of the network assuring, for in-
stance, deadlock freeness during the transition periods. This
problem has been addressed by Duato et al. in [7] and by
Lysne et al. in [15] and will be referenced again later in this
paper.

In [19] we extended Duato’s theory and presented a
methodology to exploit static communication topology of
an application to develop efficient deadlock free routing al-
gorithms for NoC systems. In this paper, we extend the
methodology presented in [19] to exploit information about
an application’s dynamic communication topology (concur-
rency of communication transactions) for the same purpose.
We show that this extension leads to a significant improve-
ment of performance of the resulting routing algorithm. We
think these results can be used for development of future
field programmable NoC systems.

2. Terminology and Definitions

In this section we briefly report some definitions which
will be used in the rest of the paper.

Definition 1 A Communication Graph CG = G(T,C) is a
directed graph where each vertex ti represents a task, and
each directed arc ci j = (ti,t j) represents the communication
from ti to t j.

Definition 2 A Topology Graph T G = G(P,L) is a directed

graph where each vertex pi represents a node of the net-
work, and each directed arc li j =(pi, p j) represents a physi-
cal unidirectional channel (link) connecting node pi to node
p j.

Definition 3 A Mapping Function M : T → P maps a task
t ∈ T on a node p ∈ P.

Definition 4 A Routing Function for a node p ∈ P, is a
function R(p) : Lin(p)×P→℘(Lout(p)). R(p)(l,q) gives
the set of output channels of node p that can be used to send
a message received from the input channel l and whose des-
tination is q ∈ P.

Where Lin(p) and Lout(p) are the set of input channels and
output channels for node p. The ℘ indicates a power set.
We indicate with R the set of all routing functions: R =
{R(p) : p ∈ P}.

Definition 5 Given a communication graph CG(T,C), a
topology graph T G(P,L), and a routing function R, there
is an application specific direct dependency from li ∈ L to
l j ∈ L iff

dst(li) = src(l j) (1)

∃ c ∈C : l j ∈ R(dst(li))(li,M(dst(c))) (2)

Condition (1) states that there exists a possibility for a mes-
sage to use l j immediately after li. Condition (2) states that
there exists a communication that will actually use l j imme-
diately after li.

Definition 6 An Application Specific Channel Dependency
Graph ASCDG(L,D) for a given CG, a topology graph T G,
and a routing function R, is a directed graph. The vertices
of ASCDG are the channels of T G. The arcs of ASCDG are
the pair of channels (li, l j) such that there is an application
specific direct dependency from li to l j.

In [19] we have proved the following theorem.

Theorem 1 A routing function R for a topology graph T G
and for a communication graph CG is deadlock-free if there
are no cycles in its application specific channel dependency
graph ASCDG.

3. APSRA Design Methodology

A brief overview of the APSRA design methodol-
ogy [19] is depicted in Figure 1. The input to the method-
ology is the application modeled as a task graph along with
the NoC architecture in which the table based routers can be
configured. We assume that the tasks in the application have
already been mapped and scheduled on the available NoC

Figure 1. Overview of the APSRA design
methodology.

resources. Using this information, APSRA generates a set
of routing tables (one for each router of the NoC) which not
only guarantee both the reachability and the deadlock free-
ness of communication among tasks but also try to max-
imise routing adaptivity [4,8]. Adaptivity ((a.k.a. degree of
adaptiveness) is an important metric for judging the ability
of a network to provide alternative paths to packets to han-
dle contention and faults. A network with high adaptivity
helps packets to avoid hot spots or faulty components and
reduces the chances that packets are continuously blocked.
The information about communication concurrency could
also be exploited to improve routing adaptivity and repre-
sents the main contribution of this paper. Finally, a com-
pression technique can be used to compress the generated
routing tables [20].

There are many ways in which such a NoC architecture
can evolve. For a custom NoC solution, a set of IP cores
are selected matching application characteristics. Tasks are
then mapped and scheduled on these IP cores before these
cores are assigned slots in the given network topology of the
architecture. On the other extreme the implementor may get
an application area specific general purpose configurable
FPRA chip in which IP cores are already placed in spe-
cific positions in the network. Then a tool is required for
mapping tasks to the available IP cores and then schedul-
ing their computation on the resources and scheduling their
communication using the network. These problems related
to NoC architecture design and mapping applications to a
fixed NoC architecture have been extensively addressed in
literature [1, 3, 13, 14]. In this paper we refer to the latter
scenario.

For the sake of example, let us consider the communica-
tion graph and the topology graph depicted in Figure 2(a)
and 2(b) respectively. Although for this example the topol-
ogy is mesh-based, the approach is general and can be ap-
plied to any network topology without any modification. As
mapping function let us consider M(Ti) = Pi, i = 1,2, . . . ,6.
The channel dependency graph (CDG) [6] for a minimal

fully adaptive routing algorithm is shown in Figure 2(c).
Since it contains six cycles, Duato’s theorem [6] cannot as-
sure deadlock freeness of the minimal fully adaptive rout-
ing for this topology. The number of cycles is reduced to
two for the ASCDG as shown in Figure 2(d). We observe
that some dependencies in the CDG are not present in the
ASCDG. For instance, the edge corresponding to depen-
dency l1,2 → l2,3 in CDG does not appear in ASCDG. In
fact, channels l1,2 and l2,3 can be used in sequence only
for the communications T1 → T3, T1 → T6, and T4 → T3

which are not present in the CG. Although in this case
we still cannot assure deadlock freeness, we can simply
break the cycle as follows. The application specific chan-
nel dependency l4,1 → l1,2 is due to the communication
T4 → T 2. Such communication can be realized by both
paths P4 → P5 → P2 and P4 → P1 → P2. If the rout-
ing function is restricted in such a way as the latter path
is prohibited, the application specific channel dependency
l4,1 → l1,2 does not exist any longer. In a similar way it is
possible to break the second cycle, removing, for instance,
the dependency l1,4→ l4,5 due to communication T1→ T5.

However, this restriction reduces the adaptivity of the
routing. Now suppose that we have some knowledge about
communication concurrency and suppose that communica-
tion T1→ T 5 and communication T 2→ T 4 do not overlap
in time. Figure 2(e) highlight the dependencies due to such
communications. Since these communications are not con-
current, the associated dependencies are also not concur-
rently active. The result is that the two cycles are actually
false cycles. In conclusion, for this latter case a minimal
fully adaptive routing is deadlock free.

3.1. APSRA Overview

The APSRA methodology can be summarised as fol-
lows.

APSRA (in : CG , T G , M ; out : RT) {
R← MinFullyAdaptiveRouting(CG , T G , M) ;
BuildASCDG (CG , T G , M , R , ASCDG) ;
GetCycles (ASCDG ; C) ;
RemCycles (C , ASCDG , CG , T G , M , R , success) ;
i f (success)

ExtractRoutingTables(R , RT) ;
e l s e

RT ← /0 ;
}

The APSRA procedure gets as inputs a communication
graph CG, a topology graph TG and a mapping function M
and returns a set of routing tables. The procedure starts ini-
tializing R with a minimal fully adaptive routing, then calls
the procedure BuildASCDG which builds the ASCDG.
The procedure GetCycles returns the set C of cycles in
the ASCDG. RemCycles tries to remove all the cycles C

Figure 2. Comparison of cyclic dependencies without and with APSRA methodology.

from ASCDG with the objective to minimising the loss in
adaptivity and with the constraint to guarantee the reacha-
bility between all communicating pairs. If it succeeds, it re-
turns true and the procedure ExtractRoutingTables
is used to extract routing tables from R, otherwise an empty
set is returned. For a detailed description of the last two
steps see [19].

3.2. Exploiting Communication Concur-
rency

Starting from an application (or a set of concurrent appli-
cations) it is possible to extract a communication graph CG
defining which tasks communicate and which do not com-
municate. After task mapping and scheduling step of sys-
tem level design, it is possible to know whether two com-
munications are concurrent or not. In general, it is possible
to divide the execution of the application (or a set of con-
current applications) into intervals. A generic interval is
characterized by a Communication Scenario (CSi). A CSi

can be seen as a subgraph of the CG and specifies which
node pairs in the architecture communicate during that in-
terval. CSs in different intervals may be different but some
non-consecutive intervals may have the same CS.

Now, let us suppose to have identified a succession of in-
tervals and the associated communication scenarios CSi, i =
1,2, . . . ,N. The APSRA design methodology can be ex-
tended to exploit the communication concurrency informa-
tion as follows.

APSRA_Concurrency(in : CSi, i = 1, . . . ,N , T G , M ;
out : RTv)

{
f o r (i = 1 to N) {
APSRA (CSi.CG , T G , M , RT) ;
i f (RT = /0)
printf ("No deadlock free algorithm

exist for scenario %d" , i) ;
e l s e

RT v[i]← RT ;
}

}

The input parameters of APSRA Concurrency proce-
dure are the succession of communication scenarios CSi,
the topology graph T G, and the mapping function M. The
output, is the vector of routing tables, RTv, one for each
interval (i.e., RTv[i] holds the routing tables associated to
CSi). For each communication scenario CSi the APSRA pro-
cedure is invoked and acting on the communication graph
associated to CSi. If APSRA fails, it returns an empty set
and an error message is shown. Such situations occurs if
there exists at least one pair communicating tasks such that
we can not find a path for them without causing deadlock.
Otherwise, if APSRA succeeds, the returned set of routing
tables is stored in RTv and the next communication scenario
is processed.

It should be pointed out that interval based routing
scheme has some overhead and issues regarding interval
boundaries. The first one is regarding the “cooling period”
required to complete all the communications started in a
communication scenario before starting the next commu-
nication scenario. The second one is regarding reconfigu-
ration of the routing tables before starting a new commu-
nication scenario. In this work, we assume that both these
intervals are much smaller as compared to the intervals for
the communication scenarios. This assumption is not as re-
strictive as one might intuitively think. As a practical ex-
ample, let us consider a digital video camera application
with the common recording/playback functions. Since such
functions are never used simultaneously, it is simple to en-
vision two communication scenarios one for the recording
and the other for the playback. In this case, the hypothe-
sis about the negligible duration of both the cooling period
and the reconfiguration time as compared to the intervals for
the communication scenarios is valid since the time spent
to switch between the two scenarios can be considered as
negligible as compared to the time spent in recording and
playback.

The process of defining communication scenarios is the
responsibility of task scheduling phase of NoC specializa-
tion. The task scheduler can either use CS period as a con-
straint, or it can produce communication scenario periods
as output while optimizing some objective function. The
granularity of intervals will affect routing adaptivity as well

Table 1. Silicon area occupancy in µm2 for
various blocks of a router.

XY OddEven RT4 RT8

Routing func. 803 1365 17051 36384
Input FIFOs 132891 132891 132891 132891
Crossbar 14041 14041 14041 14041
Arbiter 2007 2008 2009 2010

Total 149745 150307 165995 185329

as routing performance. Large intervals will effectively in-
crease communication density leading to decrease in adap-
tivity [19], but will have lower reconfiguration overheads.
On the other hand, routing algorithms generated by APSRA
will have almost 100% adaptivity for very small intervals.
The drawback is that performance improvement due to this
could be lost due to heavy overheads of frequent reconfigu-
ration. Deciding optimal communication scenario intervals
is an interesting future research problem.

3.3. Design Issues

Cost of implementing a table in every router is an argu-
ment against APSRA methodology. In [20] we presented a
method for router table compression for application specific
routing in mesh-based NoC architectures.

Table 1 reports silicon area for each of the main blocks
of a router for three different routers implementing XY
routing, Odd-Even routing, and table-based routing respec-
tively. As regards the latter, two different implementations
which are able to manage compressed routing tables with
a budget of four (RT4) and eight (RT8) table entries have
been considered (see [20] for implementation details). The
cost overhead of a routing table implementation based on
the proposed compression technique and architecture rep-
resent only a small fraction of the overall router cost. The
overhead over a XY router is 10.9% and 23.8% for RT4 and
RT8 respectively. The overhead over an Odd-Even router is
10.4% and 23.3% for RT4 and RT8 respectively.

4. Performance Evaluation

In this section we evaluate the improvement in both av-
erage adaptivity and average delay when communications
concurrency information is exploited.

We generate random communication scenarios as fol-
lows. We consider randomly generated communication
graphs with a given communication density ρ . (The com-
munication density is defined as the ratio between the num-
ber of communications and the number of nodes). We
model a communication scenario as a random subset of all
possible communications using parameter χ for controlling

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

Concurrency factor

D
eg

re
e

of
 a

da
pt

iv
en

es
s

APSRA

Negative First

North Last

Odd Even

West First

Figure 3. Adaptivity vs. communication con-
currency probability for a 8×8 mesh and ran-
domly generated communication graphs with
ρ = 2.

the communication concurrency. χ is called concurrency
probability. The average number of concurrent communi-
cations in an interval is given by χ × (|C|− 1)+ 1. χ = 1
means that all communications are concurrent whereas χ =
0 means that no communications overlap in time.

Figure 3 shows the adaptivity vs. communication con-
currency probability for a 8× 8 NoC and randomly gener-
ated communication graphs with a communication density
ρ = 2. We define the adaptivity like in [4]. It is essentially
the number of shortest paths the routing algorithm allows
from the source to the destination normalized to the total
number of shortest paths. We see that APSRA adaptiveness
improve very fast starting from a concurrency probability
of 50%. For χ = 0.4, for example, the adaptivity provided
by APSRA is over 10% better than turn models and over
30% better than Odd-Even. For higher values of χ , the ex-
ploitation of communication concurrency information does
not result in any significant gain in adaptiveness over turn
model based routing algorithms.

To evaluate average delay we used a flit-accurate simula-
tor developed in SystemC. We compare APSRA with both a
deterministic routing algorithm (XY) and an adaptive rout-
ing algorithm (Odd-Even). We choose Odd-Even because it
has been proved to exhibit the best performance among dif-
ferent traffic scenarios [4]. It is also the most cited adaptive
routing algorithm proposed for mesh networks without us-
ing virtual channels. Recent algorithms such as DyAD [12]
and contention-look-ahead routing algorithm [23] have not
been considered for the following reasons. DyAD is a
methodology which can be applied to any adaptive routing
algorithm including APSRA. The second one has not been
proved to be deadlock free which is a necessary condition

Figure 4. Managing communication concur-
rency through communication scenarios.

in our work. Use of virtual channels will also improve net-
work performance for algorithms produced by APSRA. The
evaluations were made on a 8×8 network using wormhole
switching with a packet size randomly distributed between
2 and 16 flits. In our model, each router has an input-buffer
size of 2 flits. The maximum bandwidth of each link is
set to 1 flit per cycle. We use the source packet genera-
tion rate as load parameter with Poisson packet injection
distribution. For each load value, latency values are aver-
aged over 60,000 packet arrivals after a warm-up session of
30,000 arrived packets. The 95 percent confidence intervals
are mostly within 2 percent of the means.

Figure 4 gives a qualitative view about the way in which
communication concurrency has been modeled in the ex-
periments. Concurrent communications have been grouped
into the same communication graph. For each communi-
cation graph, CGi, is associated a communication scenario
CSi. Communication scenarios are executed in-sequence,
i.e., CSi is executed after CSi−1 and before CSi+1. The life
time of a CSi is |∆i|. During the interval ∆i only the com-
munications of CGi are active. Between the end of the CSi

and the start of CSi+1 there is an inactivity period of du-
ration δi→(i+1). In our experiments, we set |∆i| = 50,000
clock cycles, for i = 1,2,3,4 and δi→(i+1) = 500 clock cy-
cles. The inactivity period is large enough to host both a
cool down phase and a reconfiguration phase. As regards
the first one, for a 8× 8 mesh and 2 flits buffers, we found
that a budget of 200 cycles is sufficient to flush all the flits
in the network under all the traffic scenarios we considered.
The reconfiguration phase requires the replacement of rout-
ing tables and can be implemented locally in each router.
This is a very hot topic recently addressed by Duato et al.
in [7] and by Lysne et al. in [15]. They have developed a
new theory for determining deadlock properties of dynamic
network reconfiguration techniques which also serves as a
basis for the development of design methodologies to derive
deadlock-free reconfiguration techniques [15]. Although
this theory focuses on interconnection networks typically
used in multiprocessor servers, network-based computing
clusters, and distributed storage systems, it has a potential

application also to NoCs.

Figure 5 shows average delay variation for different in-
jection loads and for uniform (a) and hot spot traffic (b).
In the uniform traffic for a source node, all other nodes
have equal probability to be selected as a destination. In
the hot spot traffic, the four hot spot nodes are located at
the top-right corner of the NoC. We considered four non-
concurrent communication scenarios randomly generated
with χ = 0.3. Although APSRA outperforms the other rout-
ing algorithms, an additional improvement of 29% in de-
lay (from 34 cycles to 22 cycles) is obtained by exploiting
the information about communications concurrency in the
uniform traffic scenario. Compared to XY and Odd-Even,
APSRA concurrency improves the average delay of 65%
and 53% respecively. Similar results are obtained for the
hot-spot traffic scenario with improvements in average de-
lay ranging from 41%, 33%, and 17% over XY, Odd-Even,
and APSRA respectively.

As a more realistic communication scenario we consider
a generic MultiMedia System which includes an h263 video
encoder, an h263 video decoder, an mp3 audio encoder and
an mp3 audio decoder [11] whose communication graph
is depicted in Figure 6(a). For this scenario we used self-
similar packet injection distribution which has been ob-
served in the bursty traffic between on-chip modules in typ-
ical MPEG-2 video applications [22]. Average delay and
throughput variation for different injection load are reported
in Figure 6(a) and Figure 6(b) respectively. For this example
we consider two communication scenarios. To the first one,
belongs all the communications which refer to the encoding
part of the codec. To the second one, belong those which
refer to the decoding part of the codec. The 25 cores im-
plementing the system have been randomly mapped on the
NoC. Adaptivity is 0.62 and 0.79 for Odd-Even and AP-
SRA respectively. It reaches 0.98 for APSRA when com-
munication concurrency information is considered. As can
be observed, a great improvement in delay can be obtained
by using adaptive routing algorithms. For an injection load
of 0.03 (below saturation for all the algorithms as can be
seen from the throughput curve) APSRA performs better
than Odd-Even by almost 7% (28 cycles vs. 30 cycles). Us-
ing the concurrency version of APSRA improvement grows
to 20% (24 cycles).

Finally, Table 2 reports a summary of the results regard-
ing improvement in average delay obtained by APSRA with
respect to other algorithms for different traffic scenarios.
The average delay has been measured at the highest possible
packet injection rate such that none of the algorithms show
a sign of saturation. In Locality traffic scenario, the proba-
bility of selecting a destination node B for a source node A
is inversely proportional to the distance between A and B.
In Transpose 1 and Transpose 2 scenarios, a node (i, j) only
sends packets to a node (j, i) and (N−1− j,N−1− i) re-

2 4 6 8 10 12

x 10
−3

0

20

40

60

80

100

120

140

160

180

200

Packet injection rate (packets/cycle/IP)

A
ve

ra
ge

 d
el

ay
 (

cy
cl

es
)

XY
Odd−Even
APSRA
APSRA concurrency

22

34

42

63

4 5 6 7 8 9 10 11

x 10
−3

0

20

40

60

80

100

120

140

160

180

200

Packet injection rate (packets/cycle/IP)

A
ve

ra
ge

 d
el

ay
 (

cy
cl

es
)

XY
Odd−Even
APSRA
APSRA concurrency

29

35

43

49

(a) (b)
Figure 5. Delay variation under uniform (a), and hot spot traffic (b).

0.015 0.02 0.025 0.03 0.035 0.04
0

20

40

60

80

100

120

140

160

180

200

Packet injection rate (packets/cycle/IP)

A
ve

ra
ge

 d
el

ay
 (

cy
cl

es
)

XY
Odd−Even
APSRA
APSRA concurrency

2428

30

78

0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Packet injection rate (packets/cycle/IP)

T
hr

ou
gh

pu
t (

fli
ts

/c
yc

le
s/

IP
)

XY
Odd−Even
APSRA
APSRA concurrency

(a) (b) (c)

Figure 6. Communication graph of the multimedia system (a). Delay variation (b) and throughput
variation (c) for a multimedia application.

Table 2. Improvement in average delay of APSRA as compared to XY and Odd-Even for different
traffic scenarios.

Traffic pir Avg. delay (cycles) APSRA improvement
scenario (packets/cycle/IP) XY OE APSRA APSRA conc. vs. XY vs. OE vs. APSRA

Uniform 0.008 63 42 34 22 65.08% 47.62% 35.65%
Locality 0.020 39 34 29 22 43.59% 35.29% 24.14%

Transpose 1 0.011 91 39 19 17 81.32% 56.41% 10.53%
Transpose 2 0.011 82 31 19 17 79.27% 45.16% 10.53%
Hotspot-4c 0.003 50 46 34 29 42.00% 36.96% 14.71%
Hotspot-4tr 0.008 49 43 35 29 40.82% 32.56% 17.14%
Hotspot-8rs 0.003 34 25 20 16 52.94% 36.00% 20.00%

Mms 0.030 78 30 28 24 69.23% 20.00% 14.29%

Average improvement 59.38% 39.75% 18.34%

spectively, where N is the size of the mesh. Hotspot-4c, -4tr,
-8rs refer to hot-spot traffic scenarios where hot-spot nodes
are located at center, top-right and right-side of the NoC re-
spectively. Finally, Mms is the traffic scenario generated by
the multimedia system example. For the first seven traffic
scenarios, we considered a χ value of 0.4. We observe that
on average, the concurrency version of APSRA exhibits an
improvement in the average delay of about 59%, 40% and
18% compared to XY, Odd-Even, and APSRA respectively.

5. Conclusions

In this paper we have made a case for using NoC
paradigm for building future FPGAs in which large com-
putational blocks will be connected to each other through
packet switched networks. We proposed a methodology
to develop application specific efficient deadlock free rout-
ing algorithms to specialize such general purpose devices.
Our methodology not only uses the information about topol-
ogy of communicating cores but also exploits information
about concurrency of communication transactions. Results
from analysis and simulation based evaluation demonstrate
that routing algorithms developed using our approach sig-
nificantly outperform general purpose routing algorithms
like XY and Odd-Even for mesh topology NoC. APSRA
methodology is general and can be applied to irregular
networks also. In fact, in [10] we show that routing al-
gorithm generated by the earlier version of APSRA has
even higher performance and adaptivity advantage for non-
homogeneous mesh NoCs.

Our methodology assumes that communication con-
currency information is available after task mapping and
scheduling step of system level design. Developing an inter-
val based task mapping and scheduling methodology is an
interesting research problem. Our approach also assumes
configurable SRAM based tables in every router of the net-
work. It will be interesting to investigate the performance
and routability when only a very small sized router table is
available in routers.

References

[1] G. Ascia, V. Catania, and M. Palesi. Multi-objective mapping for
mesh-based NoC architectures. In 2nd IEEE/ACM/IFIP Int’l Conf.
on Hardware/Software Codesign and System Synthesis, pp. 182–
187, Stockholm, Sweden, Sept. 2004.

[2] E. Bolotin, A. Morgenshtein, I. Cidon, and A. Kolodny. Automatic
and hardware-efficient SoC integration by QoS network on chip. In
IEEE Int’l Conf. on Electronics, Circuits and Systems, Dec. 2004.

[3] J.-M. Chang and M. Pedram. Codex-dp: Co-design of com-
municating systems using dynamic programming. IEEE Trans.
on Computer-Aided Design of Integrated Circuits and Systems,
19(7):732–744, July 2000.

[4] G.-M. Chiu. The odd-even turn model for adaptive routing. IEEE
Trans. on Parallel Distributed Systems, 11(7):729–738, 2000.

[5] W. J. Dally and C. Seitz. Deadlock-free message routing in mul-
tiprocessor interconnection networks. IEEE Trans. on Computers,
C(36):547–553, 1987.

[6] J. Duato. A necessary and sufficient condition for deadlock-free
routing in wormhole networks. IEEE Trans. on Parallel and Dis-
tributed Systems, 6(10):1055–1067, Oct. 1995.

[7] J. Duato, O. Lysne, R. Pang, and T. M. Pinkston. Part I: A theory
for deadlock-free dynamic network reconfiguration. IEEE Trans. on
Parallel and Distributed Systems, 16(5):412–427, May 2005.

[8] C. J. Glass and L. M. Ni. The turn model for adaptive routing.
Journal of the Association for Computing Machinery, 41(5):874–
902, Sept. 1994.

[9] R. Holsmark and S. Kumar. Design issues and performance evalu-
ation of mesh NoC with regions. In IEEE Norchip, pp. 40–43, Nov.
2005.

[10] R. Holsmark, M. Palesi, and S. Kumar. Deadlock free routing algo-
rithms for mesh topology NoC systems with regions. In EUROMI-
CRO Conf. on Digital System Design, Architectures, Methods and
Tools, pp. 696–703, Sept. 2006.

[11] J. Hu and R. Marculescu. Energy-aware mapping for tile-based NoC
architectures under performance constraints. In Asia & South Pa-
cific Design Automation Conference, pp. 233–239, Jan. 2003.

[12] J. Hu and R. Marculescu. DyAD - smart routing for networks-on-
chip. In ACM/IEEE Design Automation Conference, pp. 260–263,
June 2004.

[13] J. Hu and R. Marculescu. Energy- and performance-aware mapping
for regular NoC architectures. IEEE Trans. on Computer-Aided De-
sign of Integrated Circuits and Systems, 24(4):551–562, Apr. 2005.

[14] T. Lei and S. Kumar. A two-step genetic algorithm for mapping task
graphs to a network on chip architecture. In Euromicro Symposium
on Digital Systems Design, Sept. 2003.

[15] O. Lysne, T. M. Pinkston, and J. Duato. Part II: A methodol-
ogy for developing deadlock-free dynamic network reconfigura-
tion processes. IEEE Trans. on Parallel and Distributed Systems,
16(5):428–443, May 2005.

[16] S. Murali, D. Atienza, L. Benini, and G. D. Micheli. A multi-path
routing strategy with guaranteed in-order packet delivery and fault-
tolerance for networks on chip. In Design Automation Conference,
pp. 845–848, July 2006.

[17] S. Murali, M. Coenen, A. Radulescu, K. Goossens, and G. D.
Micheli. Mapping and configuration methods for multi-use-case
networks on chips. In Asia and South Pacific Design Automation
Conference, pp. 146–151, 2006.

[18] S. Murali, M. Coenen, A. Radulescu, K. Goossens, and G. D.
Micheli. A methodology for mapping multiple use-cases onto net-
works on chips. In Conf. on Design, Automation and Test in Europe,
pp. 118–123, 2006.

[19] M. Palesi, R. Holsmark, S. Kumar, and V. Catania. A methodology
for design of application specific deadlock-free routing algorithms
for NoC systems. In Int’l Conf. on Hardware-Software Codesign
and System Synthesis, pp. 142–147, Oct. 2006.

[20] M. Palesi, S. Kumar, and R. Holsmark. A method for router ta-
ble compression for application specific routing in mesh topology
NoC architectures. In SAMOS VI Workshop: Embedded Computer
Systems, pp. 373–384, July 2006.

[21] E. Rijpkema, K. G. W. Goossens, A. Radulescu, J. Dielissen, J. van
Meerbergen, P. Wielage, and E. Waterlander. Trade offs in the
design of a router with both guaranteed and best-effort services
for networks on chip. IEE Proc. of Computer Digital Techniques,
150(5):294–302, Sept. 2003.

[22] G. Varatkar and R. Marculescu. Traffic analysis for on-chip net-
works design of multimedia applications. In ACM/IEEE Design
Automation Conf., pp. 510–517, June 2002.

[23] T. T. Ye, L. Benini, and G. D. Micheli. Packetization and routing
analysis of on-chip multiprocessor networks. Journal of System Ar-
chitectures, 50(2-3):81–104, 2004.

