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Abstract

Generalized Processor Sharing (GPS) is an efficient and
flexible scheduling mechanism for sharing server capac-
ity and providing differentiated Quality-of-Service (QoS)
owing to its appealing properties of fairness, traffic isola-
tion, and work conservation. This paper analytically in-
vestigates the loss probabilities of individual traffic flows
in GPS systems subject to heterogeneous Long-Range De-
pendent (LRD) and Short-Range Dependent (SRD) traffic,
which have not been studied in the open literature. We de-
rive and validate the closed-form expressions of the loss
probabilities of both traffic flows. We then evaluate the ef-
fects of Hurst parameter of LRD traffic on the performance
of GPS systems in terms of traffic loss probability.

1 Introduction

Traffic scheduling mechanisms are crucial to provide
differentiated Quality-of-Service (QoS) (e.g., packet delay
and loss) for a diverse spectrum of network applications.
As a promising traffic scheduling mechanism, Generalized
Processor Sharing (GPS) [13] has attracted tremendous re-
search efforts owing to its appealing features, such as, fair-
ness, traffic isolation, and work conservation [17, 18]. The
GPS mechanism assigns each traffic flow a fixed weight
which can then guarantee a minimum service rate for the
flow even though other traffic flows may be greedy in de-
manding service. This property helps GPS achieve relative
fairness among traffic flows, and meanwhile makes it possi-
ble to isolate different flows and provide differentiated QoS.
GPS is work-conserving in that it can redistribute any ex-
cess service to backlogged traffic flows.

Long-Range Dependent (LRD) characteristics (i.e.,
large-lag correlation and scale-invariant burstiness) of net-
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work traffic have been discovered by many recent measure-
ment studies [1, 7, 14]. The fractal-like nature of LRD
traffic has significantly different theoretical properties from
those of the conventional Short-Range Dependent (SRD)
processes (e.g., Poisson processes, Markov modulated fluid
processes [15]). However, most existing studies based on
analytical models have been limited to GPS systems subject
to either SRD traffic or LRD traffic only, such as, [5, 15, 19]
for SRD traffic and [2, 3, 8, 18] for LRD traffic. Although
packet loss probability, as one of the most important QoS
metrics, plays a key role in the design, evaluation, and opti-
mization of traffic scheduling mechanisms, no efforts have
been reported in the open literature to analytically investi-
gate the loss probability of GPS systems in the presence of
heterogeneous LRD and SRD traffic.

Based on the analytical upper and lower bounds for the
queue length distributions of GPS systems reported in [4],
we derive the closed-form expressions of the loss probabili-
ties of both flows in GPS systems fed with heterogeneous
LRD fractional Brownian motion (fBm) traffic and SRD
Poisson traffic. We demonstrate the validity and accuracy of
the obtained loss probabilities through comparison between
analytical results and extensive simulation results. Besides,
we study the performance of GPS systems in terms of traffic
loss probability under different working conditions. The re-
sults reveal that the loss probability of LRD traffic increases
sharply as its Hurst parameter increases, but the loss prob-
ability of SRD traffic remains unchanged due to the flow
isolation nature of GPS.

The rest of the paper is organized as follows. In Section
2, we introduce the characteristics and mathematical de-
scription of heterogeneous LRD fBm traffic and SRD Pois-
son traffic. We briefly review the upper and lower bounds
for the tails of queue length distributions of individual traf-
fic flows in GPS systems subject to heterogeneous fBm and
Poisson traffic in Section 3. Next, Section 4 derives the
loss probabilities of fBm and Poisson traffic. Section 5 val-



idates the analytical results through extensive experimental
simulations and analyzes the performance of GPS systems.
Finally, Section 6 concludes the paper.

2 LRD versus SRD Traffic

This paper is intended to study the loss probabilities of
heterogeneous traffic in GPS scheduling systems. Specif-
ically, we address two types of traffic, namely, LRD fBm
traffic and SRD Poisson traffic. In what follows, we will
briefly review the modelling issues of LRD and SRD traf-
fic.

Generally speaking, a traffic flow1 can be modelled as a
stochastic process and denoted in a cumulative arrival form
as A = {A(t)}t∈N, where A(t) is the cumulative num-
ber of traffic arrivals at time t. Consequently, A(s, t) =
A(t) − A(s) denotes the amount of traffic arriving in time
interval (s, t]. Traffic flow A can also be denoted in an in-
crement form, i.e., A = {B(t)}t∈N, where B(t) is the traf-
fic arriving in time interval (t − 1, t] with B(0) = 0. These
two representation forms have the following relationship:
A(t) =

∑t
i=0 B(i) and B(t) = A(t) − A(t − 1).

Note that for the sake of clarity of the model derivation,
hereafter we will use subscripts f and p to distinguish a
given quantity of fBm and Poisson traffic, respectively.

2.1 LRD fBm traffic

Since the innovative study of Leland et al. [7] on LRD
traffic, many models and techniques have been developed to
characterize traffic long-range dependence or generate LRD
traffic traces. Among the existing models, fractional Brow-
nian motion (fBm) is identified as the most efficient and ac-
curate way for modelling and generating LRD traffic [11].
An fBm traffic flow can be expressed as Af = {Af (t)}t∈N

[11]:
Af (t) = λf t + Zf (t), (1)

where λf is the mean arrival rate and Zf (t) =√
afλf Z̄f (t). Z̄f (t) is a centered (i.e., E(Z̄f (t)) = 0)

fBm with variance V ar(Z̄f (t)) = t2Hf . The variance and
covariance functions of Af can be given as follows:

V ar(Af (t)) = afλf t2Hf , (2)

Γf (s, t) = 1
2afλf

(
t2Hf + s2Hf − (t − s)2Hf

)
, (3)

where H ∈ ( 1
2 , 1] is Hurst parameter indicating the degree

of long-range dependence.
In the increment form, traffic flow Af can be expressed

as Af = {Bf (t)}t∈N with mean arrival rate E(Bf (t)) =
λf and variance V ar(Bf (t)) = afλf .

1 All traffic flows are modelled in discrete time in this paper.

2.2 SRD Poisson traffic

Using the similar notation of fBm traffic in Eq. (1), a
Poisson traffic flow can be denoted as Ap = {Ap(t)}t∈N:

Ap(t) = λpt + Zp(t), (4)

where λp is the mean arrival rate of Ap(t) and Zp(t) is a
stochastic process with expectation E(Zp(t)) = 0. The
variance and covariance functions of Ap are as follows:

V ar(Ap(t)) = λpt, (5)

Γp(s, t) = λp min(s, t). (6)

Similarly, the Poisson traffic flow can be expressed in the
increment form as Ap = {Bp(t)}t∈N with mean arrival rate
E(Bp(t)) = λp and variance V ar(Bf (t)) = λp.

3 Upper and Lower Bounds of the Tails of
Queue Length Distributions

For the sake of the model description, we define some
notations first. Let C be service capacity of the GPS system,
and µf and µp represent the weights assigned to fBm and
Poisson traffic flows, respectively. The guaranteed service
rates for fBm and Poisson traffic can then be denoted as
µfC and µpC. Qf (t) and Qp(t) denote queue lengths of
fBm and Poisson traffic, respectively, at time t.

In [9, 10], an approach based on large deviation principle
was developed to derive the upper and lower bounds of the
aggregate queue length distribution of GPS systems subject
to general Gaussian traffic. By approximating a Poisson
traffic flow as a Gaussian process, the above approach is
extended to deal with heterogeneous LRD fBm traffic and
SRD Poisson traffic in [4]. More specifically, the analytical
upper and lower bounds for the tails (i.e., P(Q > x)) of the
queue length distributions of individual traffic flows were
developed.

In order to address their queue length distributions, indi-
vidual traffic flows are classified as Primary Queue Contrib-
utors (PQCs) or Secondary Queue Contributors (SQCs) of
the GPS system in [4]. PQCs refer to traffic flows with high
arrival rates, large variances of arrivals, and/or low guaran-
teed service rates, whilst SQCs are traffic flows with low
arrival rates, small variances of arrivals, and high guaran-
teed service rates. Obviously, PQCs cannot be served timely
and thus act as the dominating contributors of the aggregate
queue. On the other hand, SQCs make minor contribution
to the aggregate queue because their arrivals can be handled
in time. Therefore, in a two-queue GPS system the queue
length distribution of the PQC traffic flow can be reason-
ably approximated by that of the aggregate queue. Further,
the upper and lower bounds for the tail of the queue length



distribution of the PQC traffic flow can be given as follows
[4]:

P(Qpqc > x)≤ exp
(
−1

2
Y (tx)

)
, (7)

P(Qpqc > x)≥ Φ̄
(
|
√

Y (tx)|
)

, (8)

where

Y (t) =
(−x + (C − λf − λp)t)2

Γf (t, t) + Γp(t, t)
, (9)

and tx = arg mint Y (t). Φ̄(·) is the residual dis-
tribution function of the standard Gaussian distribu-
tion. A commonly adopted approximation is Φ̄(x) ≈
exp(− 1

2x2)/
√

2π(1 + x)2.
Since an SQC makes minor contribution to the aggregate

queue of a GPS system, it seems to be served in a manner
as if its arrivals are handled in an isolated system with its
guaranteed service rate as the service capacity of the sys-
tem. Therefore, the upper and lower bounds for the tail of
the queue length distribution of the SQC traffic flow can be
derived as follows [4]:

P(Qsqc > x)≤ exp
(
−1

2
Yi(tx)

)
, (10)

P(Qsqc > x)≥ Φ̄ (Yi(tx)) , (11)

where i represents f if fBm traffic is SQC, otherwise p for
Poisson traffic.

Yi(t) =
(−x + (µiC − λi)t)2

Γi(t, t)
, (12)

and tx = arg mint Yi(t).
It has been experimentally proven in [4] that although

the derivation of the bounds of individual queue length dis-
tributions is subject to the distinction of the PQC and SQC
traffic flows, the developed bounds are applicable to the case
where the difference between the contribution of fBm and
Poisson traffic flows to the aggregate queue length is rela-
tively small.

4 Loss Probabilities of Individual Traffic
Flows

In this section, we estimate the loss probabilities, PL(x),
of both fBm and Poisson traffic flows, respectively, in the
GPS system based on the tails (i.e., P(Q > x)) of individ-
ual queue length distributions presented in Section 3. Given
that the GPS system is stable (i.e., λf + λp < C), the
relationship between loss probability and the tail of queue
length distribution can be given as follows [6]:

PL(x)
P(Q > x)

=
PL(b)

P(Q > b)
, (13)

where b is an arbitrary constant. Let α = PL(b)/P(Q > b).
Eq. (13) can be rewritten as

PL(x) = αP(Q > x). (14)

In what follows, we will present an approximation to
P(Q > x) and calculate α for both PQC and SQC traffic
flows in order to obtain their loss probabilities.

Given Φ̄(x) ≈ exp(− 1
2x2)/

√
2π(1 + x)2, the differ-

ence between the upper and lower bounds for the tail of
the queue length distribution of the PQC traffic flow is the
coefficients of exp(− 1

2Y (tx)). Examining the upper and
lower bounds corresponding to the SQC traffic flow reveals
the same phenomenon. This finding inspires us to take a
certain mean (e.g., arithmetic, geometric) of the upper and
lower bounds for the tail of a queue length distribution as
its approximation. In this paper, we employ the geometric
mean that has been proven effective in [16]. As a result,
we have the following approximations to the PQC and SQC
traffic flows, respectively:

P(Qpqc > x) ≈ 1
4
√

2π(1 + Y (tx))2
exp(−1

2
Y (tx)), (15)

P(Qsqc > x) ≈ 1
4
√

2π(1 + Yi(tx))2
exp(−1

2
Yi(tx)). (16)

Next, we calculate αpqc and αsqc for the PQC and SQC
traffic flows, respectively. For a Gaussian traffic flow A =
{B(t)}t∈N with mean arrival rate E(B(t)) = λ and vari-
ance V ar(B(t)) = σ2, if setting b = 0 the constant α can
be readily calculated [6]. Let c be the service rate obtained
by the Gaussian traffic flow. α can then be calculated as
follows:

α =
1

λ
√

2πσ
exp

(
(c − λ)2

2σ2

)
×

∫ ∞

c

(z − c) exp
(
− (z − λ)2

2σ2

)
dz.(17)

• αpqc for the PQC traffic flow

In [4], the Poisson traffic flow is approximated as a
Gaussian one. Actually, the feasibility of such an ap-
proximation has been widely proven. When the mean
arrival rate of the Poisson traffic flow is large or the
process time tends to infinity, the approximation is
considerably exact. Therefore, in this paper we also
approximate the Poisson traffic flow Ap as a Gaussian
one with mean arrival rate E(Bf (t)) = λp and vari-
ance V ar(Bf (t)) = λp. As a result, the aggregate
traffic flow, A{f,p}, of fBm and Poisson traffic can be
regarded as a Gaussian process, which has mean arrival
rate

E(B{f,p}(t)) = E(Bf (t)+Bp(t)) = λf +λp, (18)



and variance

V ar(B{f,p}(t)) = V ar(Bf (t)+Bp(t)) = afλf + λp.
(19)

Obviously, the service rate obtained by the aggregate
traffic flow is equal to the service capacity, C, of the
GPS system. Therefore, by substituting c = C, λ =
λf + λp (Eq. (18)), and σ =

√
afλf + λp (Eq. (19))

into Eq. (17), we obtain αpqc:

αpqc =
1

(λf + λp)
√

2π(afλf + λp)
×

exp
(

(C − (λf + λp))2

2(afλf + λp)

)
×

∫ ∞

C

(z − C) exp
(
− (z − (λf + λp))2

2(afλf + λp)

)
dz.(20)

• αsqc for the SQC traffic flow

To obtain αsqc, we need to address the following two
cases. If fBm traffic acts as the SQC, upon substitution
of c = µfC, λ = λf , and σ =

√
afλf into Eq. (17),

we obtain αsqc as follows:

αsqc =
1

λf

√
2πafλf

exp
(

(µfC − λf )2

2afλf

)
×

∫ ∞

µf C

(z − µfC) exp
(
− (z − λf )2

2afλf

)
dz. (21)

If Poisson traffic acts as the SQC, following the above
Gaussian approximation of the Poisson traffic flow, we
may substitute c = µpC, λ = λp, and σ =

√
λp into

Eq. (17) to obtain αsqc as follows:

αsqc =
1

λp

√
2πλp

exp
(

(µpC − λp)2

2λp

)
×

∫ ∞

µpC

(z − µpC) exp
(
− (z − λp)2

2λp

)
dz. (22)

Upon obtaining αpqc and αsqc and following Eq. (14),
the loss probabilities of individual fBm and Poisson traffic
flows can be derived by integrating Eqs. (15) and (20), and
Eqs. (16) and (21)/(22), respectively.

5 Model Validation and Analysis

This section investigates the accuracy and analyzes
the performance of the derived analytical loss probability
model of individual traffic flows based on comparison be-
tween analytical and simulation results. To facilitate the in-
vestigation, we developed a simulator for the GPS system
with the C++ programming language. In our simulation,

the conditionalized Random Midpoint Displacement algo-
rithm (RMD3,3) [12] was adopted to generate fBm traffic
traces because the computational complexity of this algo-
rithm is linear with respect to the simulation trace length.
Besides, we employed the method of batch mean to calcu-
late 95% confidence intervals for all loss probabilities ob-
tained through simulations.

5.1 Model Validation

In order to examine the validity and accuracy of the an-
alytical model, we have conducted extensive simulation ex-
periments under various scenarios corresponding to differ-
ent parameter settings. We have reached consistent perfor-
mance conclusions when different scenarios were taken into
account. To specifically illustrate the accuracy of the de-
rived model, in what follows we will present the perfor-
mance results of a typical scenario, where the parameters
are set as follows: server capacity C = 120, Hurst param-
eter Hf = 0.8, variance coefficient af = 1.0, and mean
arrival rates λf = 55 and λp = 55. Under this scenario, we
further studied different combinations of weights, µf and
µp, of fBm and Poisson traffic flows so as to examine the
effect of different weight combinations on the accuracy of
the model. Figure 1 shows the detailed results of this sce-
nario.

First of all, Figure 1 reveals that the simulation results
of fBm (i.e., the solid curves with sign ‘◦’) and Poisson
(i.e., the dashed curves with sign ‘◦’) traffic flows closely
match the corresponding analytical estimations (i.e., the
solid curve with sign ‘∗’ for fBm traffic and the dashed
curve with sign ‘∗’ for Poisson traffic). This finding high-
lights the fact that the analytical model performs fairly well.

It is worth noting that in the cases shown in Figures 1 (a)-
(c), fBm traffic acts as the SQC and can be served timely
whilst Poisson traffic, acting as the PQC, cannot be han-
dled in time because fBm traffic is assigned larger guaran-
teed service rates than Poisson traffic (i.e., µf > µp). As
a result, Eqs. (16) and (21) are adopted to produce the an-
alytical loss probability of fBm traffic in Figures 1 (a)-(c),
while the corresponding curves for Poisson traffic are plot-
ted using Eqs. (15) and (20). On the contrary, fBm traf-
fic acts as the PQC while Poisson traffic as the SQC in the
cases shown in Figures 1 (d)-(f). Therefore, Eqs. (15) and
(20) are used to depict the analytical loss probability curves
corresponding to fBm traffic; Eqs. (16) and (22) for Pois-
son traffic, respectively. Figure 1 (d) reveals a special case
where fBm and Poisson traffic flows are assigned the same
weights (µf = µp = 0.5) and their mean arrival rates are
also identical (λf = λp = 55). However, due to the bursty
feature over multiple time scales, fBm traffic is more likely
to be piled up in its buffer than Poisson traffic. Thus, fBm
traffic acts as the PQC in Figure 1 (d).
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(a) µf = 0.8 and µp = 0.2
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(b) µf = 0.6 and µp = 0.4
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(c) µf = 0.55 and µp = 0.45
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(d) µf = 0.5 and µp = 0.5
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(e) µf = 0.4 and µp = 0.6
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(f) µf = 0.2 and µp = 0.8

Figure 1. Comparison between the analytical and simulation results of loss probabilities in a typical
scenario: server capacity C = 120, Hurst parameter Hf = 0.8, variance coefficient af = 1.0, and mean
arrival rates λf = 55 and λp = 55.



An important phenomenon in Figures 1 (a) and (f) is that
only the curves representing the analytical and simulation
results of the PQC traffic flow, rather then SQC flow, can
be plotted. This is due to the reason that the mean arrival
rates of the SQC traffic flows in these two cases are much
smaller than their guaranteed service rates. Consequently,
the buffers of these SQC traffic flows keep empty and no
packets are lost.

It is interesting to see that Figure 1 (c) reveals an im-
portant fact: The curves corresponding to simulation re-
sults of Poisson and fBm traffic, respectively, are close to
each other. That is to say, although Poisson and fBm traffic
flows act as the PQC and SQC, respectively, in the case with
µf = 0.55 and µp = 0.45, the difference between their
contribution to the aggregate queue is considerably small.
However, even in this special case, the derived analytical
loss probabilities for the PQC and SQC traffic flows are still
accurate.

5.2 Performance Analysis

In what follows, we will examine the effect of LRD fBm
traffic on the performance of GPS in terms of loss prob-
ability. To this end, we examined three values of Hurst
parameter, namely, Hf = {0.7, 0.8, 0.9} in a typical sce-
nario with server capacity C = 120, variance coefficient
af = 1.0, mean arrival rates λf = 70 and λp = 30, and
weights µf = 0.6 and µp = 0.4. This is a typical setting in
that fBm traffic has a relatively large mean arrival rate and
is assigned a large weight, while these two parameters of
Poisson traffic are relatively smaller. As a result, fBm traf-
fic acts as the PQC, while Poisson traffic is the SQC. The
results are shown in Figure 2.

It can be found from Figure 2 that as Hurst parame-
ter Hf increases from 0.7 to 0.9, the loss probability of
fBm traffic increases sharply. This phenomenon can be ex-
plained as follows. The larger Hurst parameter Hf is, the
higher the probability that bursts of fBm traffic are followed
by each other. As a result, such traffic burstiness span-
ning over many time scales gives rise to extended periods
of large queue build-ups and consequently more packets of
fBm traffic are lost due to buffer overflow.

Despite of the increase of Hurst parameter Hf from 0.7
to 0.9, the loss probabilities of Poisson traffic remains un-
changed (see Figure 2). This is because Poisson traffic is
always guaranteed a service rate larger than its mean arrival
rate. Therefore, it is not affected by the changes of fBm
traffic. This is exactly due to the flow isolation property of
the GPS scheduling mechanism.
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Figure 2. The effect of Hurst parameter Hf of
fBm traffic on loss probabilities.

6 Conclusions

Traffic loss probability is a primary QoS metric and plays
an important role in the design and performance of schedul-
ing systems. Many recent studies have convincingly re-
vealed the noticeable LRD nature of network traffic. This
paper has investigated the loss probability of heterogeneous
LRD fBm traffic and SRD Poisson traffic in GPS systems.
We first presented an approximation to the tails of queue
length distributions of individual traffic flows. We then
derived the closed-form formula for their loss probabili-
ties. Through comparisons between analytical and exten-
sive simulation results, we demonstrated that the derived
analytical model possesses a good degree of accuracy in
predicting the loss probabilities of individual traffic flows
under various working conditions. We also studied the per-
formance of GPS under different settings of Hurst param-
eter of LRD fBm traffic. We found that the larger Hurst
parameter, the higher the loss probability of LRD fBm traf-
fic. However, because of the flow isolation property of the
GPS scheduling mechanism, the loss probability of Poisson
traffic keeps unchanged as Hurst parameter varies.
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