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Abstract 
 

Widely available and utilized Grid servers are 
vulnerable to a variety of threats from Denial of Service 
(DoS) attacks, overloading caused by flash crowds, and 
compromised client machines. The focus of our paper is 
the design, implementation and evaluation of a set of 
admission control policies that permit the server to 
maintain sustained throughput to legitimate clients even 
in the face of such overloads and attacks. We propose 
several schemes to effectively, and importantly in an 
automated fashion, deal with these attacks and 
overloads. We discuss how these schemes can be 
efficiently implemented on an active network adapter 
based gateway that controls access to a pool of backend 
data servers. Performance tests conducted on a system 
based on a dual-ported active NIC demonstrate that 
efficient optimization schemes can be implemented on 
such a gateway to minimize the grid service response 
time and to improve server throughputs under heavy 
loads and DoS attacks. Our results, using the GridFTP 
server available with Globus Toolkit 4.0.1, demonstrate 
that even in adverse load conditions, the response times 
can be maintained at a level similar to normal, low-load 
conditions. 
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1. Introduction 

 
The rapid increase in network capacity, coupled with 

the requirements of data intensive applications, has 
fueled research on various optimizations for efficient 
large data transfers. Some examples include GFPS, XCP, 
XTP, Optiputer, and GridFTP. Among these, the 
GridFTP framework has emerged as a standard that 
provides a modular and extensible architecture to serve 

the needs of high performance applications. The features 
of GridFTP include support for striped data transfer, 
collective operations to transfer data between clusters, 
uniform interface across various data sources and sinks 
in a distributed environment, tuning of TCP parameters 
such as window size and number of parallel streams on a 
per connection basis, reliable re-start of transfers, and 
support for authentication, data integrity and 
confidentiality [1, 2, 16].  

Even though the GridFTP framework provides a wide 
range of optimization options for high performance data 
transfer, its performance is vulnerable to various forms 
of Denial of Service (DoS) attacks, malicious clients that 
subvert the overall performance by deliberately tying up 
resources, flash events caused by legitimate clients, a 
few large requests monopolizing the available 
bandwidth, and constant interrupts to ongoing transfers. 
In this paper we discuss the design, rationale, and 
performance of a set of policies and optimization 
schemes that can serve as attractive solutions to this 
problem. We have implemented these schemes on an 
active network adapter based gateway that controls 
access to a pool of backend GridFTP (version  4.0.1) 
servers. 

With the standardization efforts of GGF, it is 
expected that many popular grid services, such as 
GridFTP, Replica Location Services (RLS), and 
Metadata Catalog Services (MCS) will be available on 
well known locations for use by the grid community. 
The motivation is to facilitate the easy development of e-
science applications. However, the availability of these 
servers on openly published locations can also expose 
them to a wide range of client abuses. For example, a 
sudden and heavy load on a server caused by a set of 
legitimate clients can severely impede its performance. 
This phenomenon, called flash crowd, is often in 
response to a specific event and requires the grid server 
to process an intense and overwhelming volume of 



requests. Another well known vulnerability of such 
servers is a denial-of-service attack, which is usually 
launched by a set of compromised client machines or 
maliciously configured set of grid nodes. These attacks 
can prevent genuine users from utilizing grid servers by 
saturating the compute, network, and storage resources 
with bogus requests.  

Distributed DoS (DDoS) attacks have in the recent 
past affected many popular web portals. Widely 
deployed grid servers are also susceptible to such 
attacks. In this paper we focus on the design of the 
GridFTP (also referred to as just servers in this paper) 
servers that will prevent a fluctuation in its performance 
when exposed to these kinds of attacks. The GridFTP 
server’s performance is sensitive to a sustained or 
sudden momentary increase in the server’s load.  
Moreover, an existing transfer by itself can demand 
additional processing (and memory) resources at the 
server if concurrent channels are used and when retries 
are automatically invoked on some of these channels 
because of networking errors or congestion. This 
problem is exacerbated when transfer requests for files 
that are significantly large or not have been cached.   

An example of a possible DDoS attack on a GridFTP 
server could be the use the SYN flood attack.  In this 
case the malicious host sends a series of SYN packets to 
the server, seemingly to initiate a TCP connection via the 
3-way handshake protocol. The attacking host uses a 
spoofed source IP address and does not respond to the 
ACK packets sent by the grid server host. Ultimately, the 
grid server will timeout after 70 seconds (or a few 
minutes depending on the kernel configuration). In this 
process vital resources that could have been used by 
legitimate clients are instead tied up in the failed 
handshake protocol. A variation of this attack is also 
harmful wherein maliciously configured hosts repeatedly 
send requests for large files. In this case the hosts send 
their correct IP addresses and complete the TCP 
handshake, but waste precious bandwidth and processing 
power of the server. 

It is essential to minimize the number of requests to 
the GridFTP server that time-out because of packets that 
are dropped during high load periods. Thus, a vital 
requirement to deal with attacks is to enable 
preferentially serving active (ongoing) data transfers 
over new transfer requests. In the absence of such 
preferential service, the ongoing transfer will time out 
and get resubmitted soon thereafter, adding to the 
server’s load, further hurting the performance.  
Additionally, the server’s utilization is also reduced as 
some or all of partial progress made on the transfer is 
aborted.   

Grid services are usually designed such that resources 
within an organization are governed by local rules and 
policies. The gateway to the resources of a local 
organization is often responsible for handling load-

balancing, minimizing response-time, maximizing 
throughput, and for verifying the security credentials of 
each incoming request. The schemes that we propose in 
this paper are consistent with the tenet of allowing the 
configuration of resources in accordance with local 
policies.  

In this paper, we present a technique for selective 
admission control, implemented on an active network 
card based gateway (aka intelligent gateway) to a pool of 
GridFTP servers, which allow these servers to 
selectively process requests related to an ongoing 
transfer under heavy, unanticipated load conditions.  The 
intelligent gateway relieves the actual servers from: 
• Identifying packets that belong to ongoing packets 

and treating them separately from those that belong 
to new requests.  

• Wasteful processing of packets that anyway will 
have to be dropped later on during heavy load due to 
the policy of prioritizing existing transfers.  

• The bookkeeping overhead needed to resume an 
ongoing GridFTP transfer that was disrupted due to 
network errors/conditions. 

Consequently, the utilization of the GridFTP server 
improves dramatically and the response time to transfer 
requests remain relatively stable under a DoS attack or 
on unexpected heavy load. We evaluate our technique 
using a prototype implementation and present the 
experimental results. Our tests involve running several 
concurrent downloads in striping mode under different 
conditions. The requesting scripts record the connection 
time (time from initiation until actual transfer begins) as 
well as the total transfer time and number of bytes 
received. The conditions under which we test include: 
DDoS attack (large number of spoofed SYN packets), 
high server CPU load, and high server I/O load. Our 
results show that in each case, we can provide a similar 
level of service to ongoing clients as during normal, 
“base case” conditions.  We have designed a set of 
policies and described their rationale and experimental 
results to quantify the gains due to smart and adaptive 
admission control policies.   
 
2. Smart Admission Control 
 

We consider a locally distributed server 
configuration, such as the one shown in Figure 1, where 
a pool of server machines implements the GridFTP 
server.  The GridFTP server’s performance can be 
severely limited by sudden increases in the requests for 
its services. Such increases will result in long response 
times or even in request time-outs. In general, as the 
request rates increase, the resultant increase on the server 
load causes the server response time to go up 
commensurately. Additionally, existing transfers are also 
delayed.  To provide stable transfer times under abrupt 



increases in the load due to hostile events (such as a DoS 
attack) or due to rare but natural events (such as transfer 
resumption requests on network problems), an effective 
solution is to admit request packets selectively to the 
server.  We now argue that such limiting is best 
performed by an intelligent gateway as it relieves the 
already-loaded server from the chores associated with 
such admission control. 

To implement preferential admission control, the 
server has to track all ongoing transactions, the number 
of active service requests for each type of service 
(GridFTP and possibly others), and accept or deny 
incoming requests based on some criteria. However, this 
solution has some drawbacks. An individual server in a 
locally distributed server pool does not have information 
on the load and status of other servers. Consequently, 
server local decisions are not adequate in implementing 
load balancing or in inferring malicious events directed 
to the pool. Furthermore, under heavy load, the 
bookkeeping needed to monitor requests and to 
implement admission control policies can itself impose 
additional work on an already loaded machine. Finally, 
any malicious activity is hard to detect on individual 
servers. 

Another solution may be to naively limit the 
incoming requests at the gateway leading to the server 
pool. This has some disadvantages. The ongoing 
GridFTP transfers are unknown to the gateway and 
associated packets may be dropped. It is also possible to 
deny the resumption request for an interrupted ongoing 
transaction request. A complete solution thus needs to 
take into account the context of a request. The load 
information of the servers is important as well; it is not 
possible to estimate a server machine’s load by just 
examining the incoming packets.  Load balancing can 
only be performed with accurate global knowledge of the 
load on each server machine. 

It is precisely for the reasons listed above that we 
propose a solution of load and context conscious 
admission control to a GridFTP server pool using an 
intelligent gateway. 
 
3. Prototype System Details 
 

Figure 1 shows the overall configuration for our 
prototype. One port of a dual-ported active NIC 
(network interface card) based gateway acts as an 
interface to the GridFTP server. All admitted client 
traffic goes through the active NIC portal towards the 
server pool via the second interface on the active NIC.  
Responses from the server use a different path as shown, 
bypassing the gateway. 

 The active NIC is responsible for selecting and 
distributing incoming packets to the servers after 
subjecting them to a filtering rule. In particular, the 
intelligent gateway maintains information to prioritize 

ongoing transfers and information to perform load 
balancing.  The server cluster provides a single IP 
(virtual IP, VIP) address to the Internet, which is 
assigned to the incoming port of active NIC. The 
incoming packet headers are modified by the gateway, 
which changes the VIP with the IP address of the 
selected server machine. When the server machine 
responds to the request it uses VIP as the source IP. 

The host, where active NIC is mounted (called the 
active NIC host), runs a daemon called the control agent. 
The control agent periodically collects information from 
server agents that run on the servers.  The control agent 
uses this information to determine the dynamic packet 
filtering rules that have to be deployed on the gateway 
and updates the existing filtering rule set on the active 
NIC. Keeping the control agent on the active NICs host 
significantly eases the processing load on the active NIC. 

In our prototype implementation, we have used a 
Ramix PMC 694 active NIC with dual 100 Mbits/sec 
Ethernet interfaces, two autonomous DMA controllers, a 
233 MHz. Power PC CPU and 32 Mbytes of RAM and 8 
Mbytes of Flash memory [3].  The Ramix PMC 694 is a 
PCI card. 

The proposed gateway should have at least three 
capabilities from the standpoint of performance.  These 
are as follows: 
1. The gateway should not impede the traffic directed 

at the servers.  The gateway should be able to pass 
traffic at a rate that is equal to or higher than what it 
takes to saturate the servers. 

2. The gateway should be able to react very quickly to 
attack traffic. 

3. The path to the servers via the gateway must have a 
low latency - this is necessary for keeping the 
overall server response time down. 

All of these requirements essentially call for a fast 
packet classification and filtering scheme, a low latency 
packet transport path from the input port to the server-
side port and a simple packet dropping policy that allows 
the gateway to quickly clamp down on the attack traffic.  
We meet these requirements as follows: 
• The packet filter used in our implementation is the 

widely used BPF+ packet filter [4].  We modified 
the native BPF+ code slightly to optimize the 
performance of the data cache on the Power PC 
processor on the PMC 694.  

• The packet filter was embedded into the TCP/IP 
stack running on the active NIC immediately on top 
of the IP layer.  The TCP layer was completely 
bypassed within the gateway.  Although the packet 
filtering and classification module was deployed at 
the exit from the IP layer on the incoming side, one 
can still examine and classify packets using the TCP 
header and parts of the payload.  

• Packets were forwarded from the incoming 
port/interface on the active NIC to the selected 



server via the service side port/interface without any 
packet copying between the two interfaces.   

• The load balancer within the gateway selected a 
server for the admitted request using a simple round-
robin scheduling policy.  However, alternative 
scheduling policies using the server feedback. 
Information can also be used [17, 18]. 

• To keep overall processing delays small, the 
traditional interrupt-driven packet-receiving 
interface was replaced by a polled mode of 
operation.  A real-time task was created to poll the 
input port for an incoming packet.  When a packet 
arrived, the packet classification, filtering and 
forwarding functions were completed before 
resuming the polling.  

 Figure 1: Active NIC enabled GridFTP 
Server Architecture. 
Additional functions are provided on the machine 

hosting the intelligent gateway to quickly update the 
packet filtering rules and to read out packet classification 
statistics. 

A proprietary library is used for communicating from 
the host PC to the PMC 694; this interface is not critical 
to the performance of our scheme. 

 
 
The server agents gather the information used to 

classify incoming packets as admissible or non-
admissible on a regular basis and pass this information to 
the control agent on the active NIC’s host.  The final 
decision for admission control and the dynamic 
alteration of the packet-filtering rule at the gateway is 
left to the control agent. 

The data structure used to keep track of the IP 
addresses of hosts requesting a GridFTP transfer is a 
PATRICIA trie, which is extremely efficient for 
inserting and searching such information [5]. The control 
agent, the server agent and the active NIC all use this 
data structure.   The IP addresses of the clients constitute 
the keys in this data structure. Each entry has a time 
stamp for last access time. Entries are aged according to 
this time stamp, and eventually removed from the data 

structure when the last access time becomes older than 
one hour. 

 
4. Admission Control Policies 

 
To implement admission control policies for the 

GridFTP server, the intelligent gateway classifies 
requesting hosts by their source IP addresses into the 
following categories: 
• Green: These are hosts that are currently in the 

middle of a GridFTP transfer. Our aim is to keep 
servicing these addresses regardless of the DoS 
attacks and loading caused by (non-GridFTP) 
services. This class has a dynamic nature and has to 
be updated regularly. 

• Unknown:  These are the hosts that have not used 
the GridFTP server within the finite history of server 
logs. 

• Preferred: This optional class of hosts is specific to 
the server. The server can choose the set of preferred 
hosts that request file transfers based on the 
GridFTP authentication information, the host’s 
domain, or any other criteria. Preferred hosts can 
also be specified through a static list. 

 After classifying the requesting hosts into groups, the 
control agent transfers the corresponding filter rule 
updates to the active NIC gateway. The load on the 
server and the number of half-open connections are the 
main criterion to decide what packets are allowed to 
enter the server.  We considered two types of loading 
information for each server machine in the pool: CPU 
load and I/O load. CPU load can be measured by 
monitoring CPU utilization and the I/O load is measured 
by monitoring number of I/O interrupts per second, and 
number of block operations done per second. 

 
4.1 Admission Control Policy for Coping with 
Server Overloads 

 
When a GridFTP host node provides other services 

also, we need to have policies that allow the GridFTP 
services to remain stable despite loading on the server 
caused by these other services.  We have considered two 
different types of loading on the server: (a) “compute” 
loading caused by the execution of scripts (such as cgi) 
that mostly consume CPU resources, and (b) I/O loading 
caused by the file I/O accesses made by standard 
services (such as http). 

The admission control policy implemented in this 
case requires the server agents to monitor the load level 
on their respective server machine.  When the loading 
crosses a threshold level of L, the machine is considered 
to be heavily loaded and the server agent notifies the 
intelligent gateway to perform dynamic load balancing 
of the non-GridFTP requests at the gateway.  As new 
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non-GridFTP requests arrive, they are preferentially 
directed to the machines that are not heavily loaded. 

For the results reported later, we used L as 0.8 (that is 
80%) of the peak compute or I/O load.  
 
5. Scalability 
 

The proposed solution was evaluated using a single 
active NIC gateway controlling access to a small server 
pool.  A single gateway device may not be able to cope 
with the processing requirements for traffic directed at 
large server pools.  The potential bottlenecks are the 
storage needed for the green or preferred class of IP 
addresses, the processing overhead for packet filtering 
and collection of statistical data at the gateway, and the 
performance of the gateway's network interfaces. 

The proposed solution can be scaled up to meet the 
processing needs for protecting large-scale server pools 
as follows: 
• Several active NIC gateways operating in parallel 

can be used.  Multiple active NICs can be hosted on 
the common PCI bus of a single host. The PCI 
driver for the active NICs need to be modified to 
support the "broadcast" of status information to all 
cards on a common PCI bus. This can be easily done 
by passing on the status information via a common 
memory-mapped buffer in the RAM of the host of 
the gateways. Additionally, a front-end load 
balancing switch can be used to direct the incoming 
server traffic to a specific gateway. Alternative 
configurations that using independent gateway hosts 
can be used to improve overall reliability. 

 The memory requirements for the IP address classes 
on each gateway can be prohibitive as the number of 
attacking clients increase. A solution here will be to 
use a dynamic data structure like MULTOPS [7]. 
This will limit the storage usage and switch 
dynamically between maintaining information on a 
per IP address basis or on a subnet address basis 
depending on the amount of traffic data and offered 
traffic volume. We are currently implementing this 
alternative on our prototype. 

 The processing capabilities on the active NIC 
gateways continue to increase steadily, and this 
offers some relief for the solutions targeting larger 
scale systems and traffic volumes.  The emerging 
generation of cards from Ramix has such 
capabilities (dual or quad 1 GBits/secs interfaces, 
faster CPU, additional RAM etc.). 

 100000

 1e+06

 1e+07

 1e+08

 10  20  30  40  50  60

T
h

ro
u

g
h

p
u

t 
(B

/s
)

Time (s)

Realized Server Throughput Over Time

NORMAL
ATTACK, no policy

ATTACK, small favored 3
ATTACK medium favored 3

ATTACK, large favored 3

 Figure 2:  shows the server throughput 
under different conditions. We ran the test 
under five different conditions on our 
network: (1) normal conditions (Base Case) 
when there is no load on the server, (2) 
Base: Under heavy load and the server is 
not protected against attacks, (3) when 
small file class requests are favored and (4) 
when large file class requests are favored, 
(5) when the medium file class requests are 
favored. 

An alternative to using active NIC gateways is to use 
network processors. We have an ongoing effort using the 
Intel IXP2400 NPU. 
 
6. Experimental Results 
 

The servers used for the evaluation system are 
Pentium IV PCs running a modified version of Linux 
kernel 2.4.18. We used two switches and constructed 
two subnets with 100 Mbits/sec Ethernet.  The server 
pool constitutes one subnet and the client GridFTP 
machines are from another subnet (representing the 
outside world). The active NIC is positioned as a 
gateway with its two ports connected to the two subnets. 
Multiple addresses are assigned to network interfaces of 
client and load machines to extend the IP range.  For 
each request, clients are able to select an IP assigned to 
the interface. 
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(a)Large File Class 
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(b) Medium File Class 
Requestors connect directly to the gateway, which in 

turn forwards packets to the server, rewriting packet 
headers, or potentially dropping packets when necessary. 
Connections are normal GridFTP connections requesting 
transfers of files be sent in four parallel data connections 
in the “Extended Block Mode”. The GridFTP requestor 
and server are both the official Globus 4.0.1 globus-
url-copy and gridftp daemon, while the active NIC 
gateway software is written in C. 

Our tests consist of running requestor scripts 
repeatedly under the different experimental conditions. A 
client script connects, authenticates, sets up the 
connection parameters, and requests the transfer of a file. 
The server transfers the file as requested after which the 
client quits and reports connection latency (time from 
initiation of the connection until transfer begins), total 
time (time from initiation of the connection until transfer 
completes). To gather performance results, the client 
script is run several times on each of the client machines.  
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(c) Small File Class 
Figure 3 (a), (b), and (c): shows the effective 
bandwidth of each file class under different 
conditions for (a) large file class (b) medium 
file class and (c) small file class. We ran the 
test under four different conditions on our 
network: (1) normal conditions (Base Case) 
when there is no load on the server, (2) 
Base: Under heavy load and the server is 
not protected against attacks, (3) when 
small file class requests are favored and (4) 
when large file class requests are favored 
(5) when the medium file class requests are 
favored.  
We designed and implemented an admission request 

policy that classifies files served by the GridFTP servers 
based on the file sizes. We defined three different classes 
of files: (1) small, (2) medium, and (3) large. The main 
motivation of applying the admission control policies 
based on file classes is to maintain acceptable 
performance under heavy load conditions for specific 
classes of client requests. Assuming that the clients 
expect a bound service time based on the file size, a 
transfer should finish within a time-out period whose 
duration is based on the expected service time.  In order 
to determine a time-out period for each file class, we 
measured the average transfer times for a wide range of 
file sizes within each class during lightly-loaded 
conditions and multiplied this duration by a factor of K 
to obtain the expected service time under heavy loading. 
A value of K=2 was found to be useful for the scenarios 
studied.  In order to minimize the number of time-outs 
during intervals of heavy server load, we use the Active 
NIC gateway to allow/deny requests based on the class 
of the requested file. A quota is set for requests 
belonging to each class (based on the file size).  The 
quotas for each class were determined through 
experimentation. A given class’ quota is determined as 
the number of requests that can be fulfilled in a certain 
window without causing time-outs. The gateway applies 



access control policies based on the quotas of each file 
class: requests submitted for a particular class of files are 
dropped at the gateway when the quota for that class is 
(momentarily) exceeded. Figure 2 shows how the server 
throughput varies under several different conditions. 
During an attack or when the server is heavily loaded, 
the server throughput, as perceived by the clients, varies 
quite dramatically. By using policies favoring a certain 
class, we can give guaranteed performance to the 
requests in that class. In Figure 2, we can see that the 
class-quota based admission control policy ensure that 
the server throughput is more reliable and predictable.  

We used 48 KB sized test files for small files, 2 MB 
sized test files for medium files, and 64 MB sized test 
files for large files. Our tests consist of running requestor 
scripts (calling globus-url-copy) repeatedly under 
different experimental conditions. We measure the time 
to run globus-url-copy to collect the effective client 
throughput data. We used three admission control 
policies in which a certain file class, chosen statically, is 
favored. (The file classes are defined by the size of the 
file in the GridFTP request, as defined earlier.) However 
the classes can be constructed by any type of criteria 
such as content, type, modification time, etc. As can be 
seen on Figure 3 (a), (b) and (c), the policies favoring 
each class give reliable performance, timeliness, and 
predictability for requests in the favored class. However, 
predictability of requests within a class drops when the 
admission control policies do not favor that class.  
.  
7. Related Work and Conclusions 
 

Our work involves providing differentiated service to 
GridFTP. A substantial amount of related work has been 
developed in support of these techniques for web 
servers, though little, as yet, as been developed for the 
GridFTP service.  

There is a plethora of work in supporting 
differentiated services on web servers.  Some examples 
follow. Operating System facilities for supporting 
differentiated services are explored in [8].  The work of 
[9] uses transcoding technique to vary content 
resolution/quality to meet QoS needs on a per-client 
basis. The work of [10] proposes a technique for 
dynamically partitioning a server pool into classes and 
assigning servers to a specific class. In [11], session-
based relationships among http requests are used to 
device traffic conformation functions that are used for 
resource allocation to limit server overloading.  In [12], 
an adaptive technique for determining the number of 
servers needed to service requests with specific targets is 
introduced and evaluated through simulations against 
optimal configurations. All of these techniques allow 
packets to enter the server and then are differentiated 
within the server.  This implies that the servers take a 
performance hit to examine an incoming request and 

then either rejecting it or delaying its service. The 
performance hit can be substantial under flash crowd 
traffic or when a DoS attack is in progress. We filter low 
priority requests at the gateway, freeing up the server 
resources to perform the services for the high priority 
classes. Our work in this paper represents a significantly 
enhanced version of the results and policies introduced 
in [15]. We have also included new policies, their 
rationale, and experimental results to quantify the gains 
from these policies.  

A complete solution for dealing with DDoS attacks, 
by necessity has to be distributed and requires the 
coordination of several entities on the network.  Since 
many types of DDoS attacks use spoofed IP source 
addresses, a rather naive prevention mechanism is to use 
simple egress filtering - filters in switches take the traffic 
out of a subnet to ensure that the source addresses of 
packets going out corresponds to valid host IP addresses 
within the subnet.  Although it sounds simple, this 
solution is not practical - the large majority of subnets do 
not have egress routers with this capability; neither will 
this scheme be of any use unless the filters are 
configured correctly. IP-traceback - tracing packets back 
to the source - and similar techniques can be used to 
trace a large and unusual influx of packets from a 
specific port (or set of ports).  With the use of traceback, 
controlling or limiting packet flow is a more 
sophisticated and distributed mechanism for coping with 
DDoS [13, 6].  Mazu networks offers a commercial 
product for defending against DDoS attacks, that relies 
on traffic flow monitoring [14]; some other vendors offer 
similar products as well.  Other distributed solutions for 
coping with DDoS are possible, including the use of 
trusted network components. Until these distributed 
solutions are standardized and widely adopted, servers 
have to deploy local solutions to protect themselves.  
Traceback and similar solutions (based solely on the 
monitoring of packet flow towards the servers) are 
generally incapable of dealing with load attacks, which 
do not always manifest themselves as a sudden burst of 
unusually heavy traffic.  Furthermore, to detect such 
attacks, the en-route routers need to have the capability 
of examining the payload in the requests.  Load attacks 
can be better dealt with by using the actual loading 
information at the servers.  Distributing such loading 
information to en-route routers can be time consuming 
and complex - and, perhaps, practically infeasible.  
Solutions implemented on gateways closer to the server 
that incorporate the servers' loading information to 
perform dynamic packet filtering, as proposed in this 
paper, appear to be more attractive in coping with DDoS 
attacks. 

We presented an intelligent gateway based solution 
for supporting differentiated service for a GridFTP 
server that preferentially services known clients under 
DDoS attack, and actively manages server load 



distribution based on the servers’ systems’ statistics. The 
capabilities of the active NIC-based gateway permit a 
dynamic mechanism to react intelligently to a denial of 
service attack, as well as external load on the servers to 
be efficiently implemented.  The packet filtering rules at 
the gateway are dynamically altered based on the 
incoming packet rate and dynamic loading information 
periodically collected from each of the servers in the 
server pool.  

We demonstrated how a flexible admission control 
policy can be implemented at the gateway to provide 
differentiated service to various client classes.  The 
clients are classified based on whether or not they are 
known to the server.  We also showed that the desired 
degree of real-time performance (bounded response 
time) can be guaranteed even under heavy server loading 
and denial of service attack by choosing rate limits 
appropriately. The proposed system is scalable, flexible 
and provides continuous service of the servers by 
performing dynamic request rate limiting at the active 
NIC-based gateway. 
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