
Adaptive Distributed Database Replication Through Colonies of Pogo Ants

Sarah Abdul-Wahid, Răzvan Andonie, Joseph Lemley, James Schwing, and Jonathan Widger

Central Washington University
Computer Science Department
Ellensburg, WA 98926, USA

abdulwahids@gmail.com, andonie@cwu.edu,
joelemley@gmail.com, schwing@cwu.edu, jon.widger@gmail.com

Abstract

We address the problem of optimizing the distribution
of partially replicated databases over a computer network.
Replication is used to increase data availability in the pres-
ence of site or communication failures and to decrease
retrieval costs by local access if possible. We present a
new bio-inspired replication management approach which
is adaptive, completely decentralized, and based on swarm
intelligence. Each node has the autonomy to start at any
time, depending on the internal state of its stored data
objects, a redistribution process. “Redistribution” means
replicate, create, delete, update, or move data objects to
other nodes of the network. The redistribution process is a
dynamic load-balancing scheme which runs with lower pri-
ority in the background. The system is event-driven, but the
learning process is not synchronized with the events.

1 Introduction

Data replication consists of maintaining multiple copies
of data, called replicas, on separate computers. Replication
improves availability by allowing access to the data even
when some of the replicas are unavailable. It also improves
performance by the following: i) reducing latency, since
users can access nearby replicas, thus avoiding remote net-
work access; and ii) increasing throughput, since multiple
computers can serve the data simultaneously. Replication
management in distributed database systems concerns the
decision of when and where to allocate physical copies of
logical data fragments and when and how to update them
to maintain an acceptable degree of mutual consistency. In
this paper, we focus on adaptive data placement, in which

Authors are listed in alphabetical order. Răzvan Andonie is the correspond-
ing author.

each node maintains statistics about the query workload and
automatically moves data and establishes copies of data at
different nodes in order to adjust the data placement to the
current demand. We approach a solution to this problem
using swarm intelligence.

Swarm intelligence [6, 8], is intrinsically a bottom-up
approach. Through the cumulative action of agents, con-
structive behavior emerges. This is similar to what happens
in insect colonies that create complex social behavior and
structures from the combined efforts of individuals having
extremely limited intelligence. There is much recent inter-
est in the synthesis of bio-inspired swarming behavior for
engineered systems. Colonies of mobile software agents
can solve complex tasks, including distributed dynamic load
balancing. Such a system consists of a finite collection of
agents, each of which has fairly limited capabilities on its
own. Interactions between agents can arise through direct
or indirect communication; two agents interact indirectly
when one of them modifies the environment and the other
responds to the new environment at a later time. By ex-
ploiting such local communication mechanisms, agents can
detect changes in the environment dynamically [6]. Thus,
agents can autonomously adapt their own behavior to the
new changes. The intelligence exhibited is not present in
the individuals, but rather emerges out of the entire colony.
The colony is self-organizing, robust, redundant, and flexi-
ble. No central coordination takes place, which means that
there is no single point of failure. No single agent is essen-
tial and therefore can be dynamically added or removed.

Our paper describes a novel distributed data replication
management system. Replicas of data objects are created
dynamically on nodes which frequently access these ob-
jects, in order to minimize inter-node communications and
response time. Conversely, these replicas are deleted af-
ter being idle for a period of time. The system ensures a
minimum number of replicas, thus making the database re-
sistent to node failures. In addition, nodes can be dynami-

1-4244-0910-1/07/$20.00 ©2007 IEEE

cally added. They are then populated with data as the need
arises. The system is based on swarm intelligence and com-
pletely decentralized. It can improve its performance by
dynamic load balancing.

We use a partially replicated distributed database to eval-
uate our system. The database is distributed over a P2P net-
work. Transactions (which can be queries or updates) from
any node trigger events. Events change the internal states
of the accessed data objects. In our experiments, the trans-
actions are queries.

After describing in Section 2 how our contribution re-
lates to previous work, in Section 3 we introduce our partial
replication scheme. Section 4 describes our load balancing
scheme. In Section 5 we explain how the database is gener-
ated and queried. Sections 6 and 7 contain the preliminary
results and the conclusions.

2 Related Work

2.1 Work related to data replication

There are several possible replication models considered
in the literature [10, 16–19, 24, 26, 37]; some of these are
dynamic. The problem of finding an optimal replication
scheme in a general network (i.e., a replication scheme
that has a minimum cost for a given read-write pattern),
has been shown to be NP-complete for the static case
[5, 18, 37, 38]. For this reason it is unlikely to find an effi-
cient and convergent-optimal dynamic allocation algorithm.

The synchronization and communication required to cre-
ate and update the replicas introduces a delay when opera-
tions are performed. In time-constrained systems, or sys-
tems distributed over a bandwidth-constrained area, such
operational delays generally prove unacceptable. Asyn-
chronous data replication is commonly used to mitigate
these delays [4].

2.2 Work related to swarm-type dis-
tributed systems

One group of swarm-type system applications is data
clustering, most inspired by the work of Deneubourg et
al. [11]: Mobile agents, such as ants, carry objects with
the goal of grouping similar objects [15, 22, 35]. The ants
can be endowed with a short-term memory. An overview
of proposed ant clustering algorithms can be found in [35].
Recent applications include Web mining [3,14]. These clus-
tering procedures use batch learning and the initial cluster-
ing conditions are stable. A different swarm-type model,
described by Bonabeau et al. [9], has inspired distributed
task allocation applications [20, 29].

Some progress has been made to provide general purpose
dynamic distributed swarm-type systems. Among these are

BISON and the Bio-Networking Architecture (BNA). The
BISON project (http://www.cs.unibo.it/bison), explores the
possibility of constructing distributed, self-organizing in-
formation systems as ensembles of agents that mimic the
behavior of biological processes. Anthill and Messor are
toolboxes implemented during this project [23]. An Anthill
system is composed of a collection of interconnected nests.
Each nest is a peer entity that makes its storage and com-
putational resources available to swarms of ants traveling
across the network to satisfy user requests. During their
life, ants interact with services provided by visited nests,
such as storage management and ant scheduling. The com-
putational power offered by a network of Anthill nests is
exploited by Messor, a grid computing system, by assign-
ing a set of jobs comprising a computation to a dispersed
set of nests. To determine how to balance the load among
the computing nodes, Messor uses a bio-inspired algorithm.
Messor ants drop objects they are carrying only after having
wandered about randomly “for a while” without encounter-
ing object concentrations. Colonies of such Messor ants try
to disperse objects (more specifically, jobs) uniformly over
their environment, rather than clustering them into piles.
Messor is completely decentralized, allowing every node in
the system to generate new jobs and submit them to the net-
work.

The BNA system [34, 36] applies key concepts and
mechanisms in biological systems to design network appli-
cations. A BNA application is a group of distributed, au-
tonomous, and diverse objects called cyber-entities (CEs).
Each CE implements a functional service related to the ap-
plication and follows simple behaviors similar to biological
entities, such as reproduction, death, migration, and envi-
ronment sensing. Different CEs may implement different
behavior policies. Each CE may store and expend energy
for living. CEs may gain energy in exchange for performing
a service, and they may pay energy to receive a service from
other CEs and to use network and computing resources. The
abundance or scarcity of stored energy may affect various
behaviors of a CE. For example, an abundance of stored en-
ergy is an indication of higher demand for the CE; thus, the
CE may be designed to favor reproduction in response to
higher levels of stored energy. A scarcity of stored energy
(an indication of lack of demand or ineffective behaviors)
may eventually cause the CEs death. In addition, CEs can
implement evolutionary adaptation mechanisms, such as se-
lection, crossover, and mutation [25].

In a previous paper [1], we have introduced a middle-
ware platform which performs a dynamic, event-driven, dis-
tributed load balancing. From each node, a swarm of agents
move objects to the other nodes, performing the load bal-
ancing. There is no central node and no single agent is
essential, since data is replicated. The system is event-
driven: Every node of the network is capable of producing

new events. Nodes can be added and eliminated dynam-
ically. Our mobile agents are similar to the red harvester
ants, Pogonomyrmex barbatus, described in [12, 13]. For
this reason we have named them “Pogo” ants.

2.3 Relation to our present work

A good survey of replicated database systems can be
found in [26]. The partially replicated database scheme we
introduce here differs from these and from those described
in [10, 16–19, 24, 37]. In our model, the number of replicas
varies with conditions, but never goes below a certain level.
To our knowledge, a swarm intelligence approach has not
previously been applied to database replication.

Our present work is an enhancement of the Pogo ants
software platform [1], which we have now customized for
distributed database systems. We introduce here a fully
functional partially replicated database and explore group-
ing behaviour of the replication management tool as com-
plex event interactions occur.

There are obvious similarities between the life cycle of
Pogo ants and CEs. As in all biological entities, they initial-
ize, reproduce, migrate and die. In addition, the energy in a
CE is similar to the hunger in a Pogo ant. However, our plat-
form and BISON/BNA are different. In our approach, we
distribute objects on a computer network. Objects may be
partially replicated on different nodes, each node contain-
ing unique objects. This not only makes the system robust
to individual node failures but also increases performance
in the distributed environment. In contrast, the BISON and
BNA systems do not deal with object replication.

3 An adaptive partial replication scheme

We introduce a new replication model. Each data ob-
ject is physically replicated at least r ∈ {1, 2, ..., n} times
on different nodes, where n is the number of nodes in the
network. A value of r = 1 does not necessarily mean “no
replication,” whereas r = n means “full replication.” The
number of nodes that can be safely eliminated from the sys-
tem without information loss is r − 1. Replicas of data
objects are created dynamically on nodes which frequently
access these objects, in order to minimize inter-node com-
munications and response time. Conversely, these replicas
are deleted after not being accessed for a period of time.
It is not assumed that the replicas are distributed evenly
across the sites and it is undefined which copies are placed
on which site, so that different degrees of quality of a repli-
cation schema can be modeled. Each node has knowledge
only of its local state; it requires no knowledge of where
data replicas exist.

The system is completely decentralized. Transactions
(which can be queries or updates) from any node trigger

events. Events change the internal states of the accessed
data objects. Each node has the autonomy to start the re-
distribution process at any time, depending on the internal
state of its stored data objects. “Redistribution” means cre-
ate, delete, update, or move data objects to other nodes
of the network. The redistribution process is a dynamic
load-balancing scheme which runs with lower priority in
the background. The system is event-driven, but the learn-
ing process is not synchronized with the events (i.e., we use
asynchronous replication.) It has the ability to dynamically
adjust to changing requirements based on a short-memory
mechanism.

4 The swarm intelligence approach for load
balancing

We summarize the behavior of social insects such as
Pogo ants as follows. Pogo ant colonies operate without
central control; no ant directs the behavior of another. The
number of ants engaged in any task is determined by current
environmental conditions and colony needs. Task allocation
is the process of adjusting the number of ants engaged in
each task according to varying conditions.

Our algorithm is designed to capture the essence of this
description. The components of the algorithm are the envi-
ronment (tied to a node in the system), Pogo ants (intelligent
agents), and cells (containers for objects such as data, tasks,
or events). The environments are stationary, whereas the
ants are mobile. The ants, serving as containers for cells,
move from environment to environment, following simple
rules of behavior. External events drive this behavior in
various directions. The ants possess short-term memory of
their connection to nodes requiring the cells they carry. The
collective result of these behaviors is event-driven, with dy-
namic load balancing of the replicated objects. The remain-
der of this section further details these components and their
interactions.

Adaptive Environment. A single environment object ex-
ists on each node of the network. The state of the envi-
ronment changes, but its position is fixed. Pogo ants exist
within the environment. The environment interacts with the
ants within its borders and with ants requesting migration to
it. The environment serves as the intermediary for events,
as shown in Fig. 1.

Connecting Cells to Nodes on the Network. Each cell has
a short term memory of nodes which have interacted with
it. The memory decays slowly over time, analogous to the
concept of pheromone dissipation. Eventually, a cell can
“forget” that it has ever interacted with a particular node.

The Event. An event can be initiated from any node on
the network, triggered by a transaction. Each event is as-
signed a unique identifier which includes the identifier of
the node initiating it. The event is broadcast to all envi-

Figure 1. Data Flow.

ronments, which process the event in parallel and return all
results to the node that initiated it.

Similar Cells. Two cells are similar if they have been
accessed by the same environment at the same rate, plus or
minus a given threshold value.

Mobile, Adaptive, Autonomous Agents (Pogo Ants) as
Containers for Cells. Cells do not exist “unattached” in the
environment; they exist only within the framework of Pogo
ants. Each ant may hold one or more cells. A colony of ants
exists in each environment. Ants can send replicas to other
environments, taking with them the cells they contain. Ant
operations include join and split. An ant can interact with
another ant carrying similar cells by joining. In the join pro-
cess the two ants merge into one ant. Thus, similar cells are
grouped together in a single ant and the number of ants is
reduced. If an ant holds dissimilar cells, the ant can split
into as many as three ants. In this process, the cells are as-
signed to new ants according to their measure of similarity.
The split operation increases the number of ants. Thus, as
event patterns change, cells can be regrouped according to
their similarity. Thus, the state of the colony changes.

Determining an Ant’s Fitness for an Environment. Each
cell a Pogo ant carries may have been requested by one or
more environments. The average access counter is the aver-
age of the number of times all cells within an ant have been
accessed by the ant’s current environment. A hunger value
is computed as the inverse of the average access counter. A
low hunger value indicates that the ant fits well in its current
environment. If none of the cells an ant carries have been
accessed by the current environment, the hunger value is set
at the maximum integer value. If an ant replica migrates to
a new environment, the hunger value is automatically recal-
culated from the perspective of the new environment.

Generating and Distributing Food for the Pogo Ants.
Food is an attribute of the environment. A Pogo ant requires
food before it can search for another ant to join with. Food
within an environment is generated when the environment
initiates an event. The amount of food generated with each
event is determined by the number of cells within the en-

vironment’s colony, the number of results obtained by the
event, and several parameters, according to formula:

foodGen = A(optn−#cells)/B − C/(maxn − #cells)

The value foodGen is the food generated by a specific
event, where:

• optn is the environment’s optimum number of cells.

• maxn is the maximum number of cells for the envi-
ronment’s colony (the node’s storage limit); this value
is enforced by the system.

• #cells is the current number of cells in the colony and
is always less than maxn.

• A, B, and C are parameters of the problem.

The food generated from each event is added to the envi-
ronment’s current food value. The environment distributes
the food to the Pogo ants in its colony. The ants are first
sorted, in non-decreasing order, according to their measure
of fitness (the hunger value). The most fit ants receive food
first, analogous to “survival of the fittest.” The amount of
food required by an ant is determined by the following for-
mula:

requiredFood = hunger ∗ #cells

The term hunger is the measure of fitness (smaller is
better) of the ant for the environment, and #cells is the
number of cells carried by the ant. Thus, the fittest ants
require less food per cell and are more likely to be fed. The
ants are fed until the food is consumed, or until each ant has
received its required amount of food.

If there is not enough food to feed an ant, it is marked as
being unfed. The fed ants now seek to join with another ant
within the environment. They search for the most compati-
ble union.

The Signal to Swarm: Dynamic Load Balancing. Fol-
lowing distribution of food and execution of the join opera-
tion, the environment signals all Pogo ants within its colony
to swarm. The ants cannot ignore this signal. Each ant
broadcasts a request to send a clone (replica) of itself to
all other environments on the network. The environment
receiving the request examines its current state and deter-
mines the relative fitness of the incoming ant. The request
is granted only if this ant is a good fit. When an ant replica
migrates, it does so as a complete entity, carrying all its
cells. It is possible that more than one environment grants a
particular ant’s request. This results in multiple replication
of the ant, and thus multiple replication of all cells carried
by the ant. If an ant does not fit well into any environment,

Figure 2. Database of Two Tables.

it is not replicated. Cells in excess of the minimum replica-
tion factor may be deleted, depending on their state. Ants
without cells are deleted. This event driven swarming ac-
complishes dynamic load balancing. The current state of
the environment (including its current load) determines the
course of action of each ant in the environment: whether it
is replicated or deleted.

Separating Dissimilar Cells. There may be unfed Pogo
ants that were not able to send replicas. If any of these holds
more than one cell, it can divide into up to three ants. In this
manner, dissimilar cells can be separated.

5 The Replicated Database System

5.1 Database Decomposition

To maintain flexibility, a database, such as the one illus-
trated in Fig. 2, is decomposed to the cellular level. Each
cell is an object which contains the piece of datum along
with its relational database information. This relational in-
formation includes table name, column heading, and row
number. Thus, the two tables from Fig. 2 decompose to a
total of 16+8 cells. The cells of the database are distributed
over all nodes currently on the network.

With this decomposition scheme, a query is accom-
plished by a two-step process. In the first step, the row
number associated with a particular table’s column head-
ing is identified; in the second step, the datum value in this
row with the appropriate second column heading is located.
These steps are accomplished using query cells, which are
a type of cell with one of the fields serving as a wildcard. A
query which returns the id number of students who are CS
majors could be written as follows:

SELECT StudentId FROM CLASS WHERE
ClassName EQUAL CS481.

Figure 3. Two-step Query Process.

The first step of the query is to identify the row numbers
where the ClassName column datum value is CS481. After
this is known, the datum value of the StudentId column in
these rows can be ascertained. This process is depicted in
Fig. 3. SQL style formatting of the query is used. Joins of
tables can be accomplished with this method. There is no
limit to the number of tables which can be joined.

5.2 Database Generation

We generate a hypothetical database with the following
tables:

• Persons Table: ID, FirstName, MiddleName, Last-
Name, Gender, Dependents, Age.

• Dependents Table: ID, CareTakerID, DependentID.

• Companies Table: ID, Name, CompanyType.

• Employees Table: ID, PersonID, CompanyID, Em-
ployeeType, Salary.

• Customers Table: ID, PersonID, CompanyID, Cus-
tomerType.

• Addresses Table: ID, PersonID, City, Street, Nation,
Zipcode, IsPrimaryAddress.

• Phones Table: ID, PersonID, PhoneNumber, IsPrima-
ryPhone.

After the database is generated, a cell is created for each
datum and inserted into a single ant. Using an interleaved
allocation scheme, these ants are distributed across all nodes
currently connected to the program’s network.

Simple and complex queries are generated to access in-
formation in these tables. Complex queries join multiple
tables. For instance, the query asking the question “What

First Iteration Fifth Iteration
871.8 ms 371.8 ms

Table 1. Average query completion time. An
iteration is the execution of a single query.

types of companies hire people less than 18?” joins the Per-
sons, Companies and Employees tables, and is written as
follows:

SELECT CompanyType FROM Companies
WHERE ID EQUAL SELECT CompanyID
FROM Employees WHERE PersonID EQUAL
SELECT ID FROM Persons WHERE Age LESS
’18’.

6 Experiments and Results

A complete set of experiments should investigate the per-
formance of the load-balancing algorithm in the following
areas: i) dynamic clustering of similar data; ii) monitor-
ing system changes with addition and deletion of nodes; iii)
replicating data as the needs of the system vary; and iv) re-
ducing the time required to access data as the learning pro-
cess adapts to changing requirement.

We present here only the preliminary experiments, de-
signed to investigate the algorithm’s ability to:

1. Reduce the time required to complete a set of queries.

2. Group, within a single ant, cells accessed with similar
frequency by a single node.

We created a database of seven tables. The seven ta-
bles decomposed to 226 cells of data; the program created
an ant for each cell. The ants, each containing a single
cell, were distributed to five nodes (workstations) using the
interleaved allocation method of dispersal. We composed
ten queries for this database; two different queries were as-
signed to each of the five nodes. Each query was repeated
five times so that a total of 50 queries were performed, with
ten from each node. The queries were submitted, in ran-
domized order, every 30 seconds.

The results indicate the algorithm’s potential to dynami-
cally re-distribute, and, if necessary, partially replicate, the
load of information on each node, thus reducing query com-
pletion times. The relatively long completion time for the
first iteration (Table 1) is due to the fact that some of the
required cells were located on remote nodes; numerous
lengthy communications were required to complete even a
simple query. After five iterations of each query and about
35 iterations of the load balancing algorithm on each node,

Start Finish
Total number of ants 226 171
Total number of cells 226 266

Number of single-celled ants 226 160
Number of multi-celled ants 0 11

Average number of cells
per multi-celled ant 0 9.6

Table 2. Grouping information at the begin-
ning and the end of the experiment. A single-
celled ant contains only one cell; multi-celled
ants contain more than one cell.

ants containing these cells had joined and split appropri-
ately. They then sent replicas to nodes needing the informa-
tion, thus reducing completion times by about one third.

As the experiment progressed, cells accessed at a similar
frequency by a particular node were grouped together in a
single ant. One indicator of this grouping behavior is the
number of cells contained within an ant (Table 2). At the
beginning of the experiment, all ants are single-celled. Dur-
ing the experiment, the total number of ants decreased from
226 to 171, whereas the total number of cells increased from
226 to 266. At the conclusion of the experiment, all cells of
data needed to complete the ten different queries were lo-
cated in a total of 11 ants spread across all five nodes, with
an average of 9.6 cells per multi-celled ant. All 160 single-
celled ants contained a cell never required by any of the
queries. The increase in the number of cells indicates that
partial replication of data occurred.

The algorithm groups similar cells into a few ants. Simi-
larity is defined as a similar rate of access by a single node,
rather than a relationship within a database table, or be-
tween database tables. Notably, all 106 cells needed to com-
plete the ten queries were grouped in only 11 out of a total
of 171 ants. As grouping progressed, the number of ants
decreased despite replication of cells required by more than
one node. One of the nodes completed two simple queries
which accessed cells in two different tables. At the exper-
iment’s conclusion, all ten cells required to complete these
two diverse queries resided in only one ant on this node.
This grouping capacity facilitates migration of similar cells.

7 Conclusions and Future Work

We have designed an adaptive swarm-type system of
mobile agents, called Pogo ants, to manage a partially
replicated database. The system performs dynamic, event-
driven, completely distributed load balancing with partial
replication. Every node of the network is capable of produc-
ing transactions which trigger events in the network. Load
balancing runs with lower priority, in the background, and

the learning process is not synchronized with the events.
The methodology was illustrated by an example in which
only query transactions were performed.

Due to the short-term memory of the connection between
cells and the nodes requesting their information, the algo-
rithm has the ability to dynamically adjust to changing re-
quirements. Further experiments to demonstrate this dy-
namic load balancing capacity are currently in progress.

Distributed data replication has applications not only in
distributed databases [26], but also in fault-tolerant shared
memory clusters [28], P2P file sharing services [27], data
migration in dynamic content Web servers [33], replication
for Web hosting systems [32], mobile environments [7] and
Web distribution of XML documents [2]. There is recent
interest in adaptive replication procedures for Web services.

The system ensures a minimum number of replicas; the
maximum number of replicas is the number of nodes in the
network. The replicas have a short lifespan. They continue
to exist only to the extent that they are periodically fed by
local events. In this manner, unneeded replicas are elimi-
nated from the system and the number of replicas converges
to an optimum, determined by the event patterns.

In our model, replicas of data objects are created dynam-
ically on nodes which frequently access these objects. This
replication scheme is more complex than simple caching,
since copies can also be deleted. Access frequency is a sim-
ple criterion and we may consider replicating data objects
based on their relevance for information retrieval, as in [21].

Replicated databases must synchronize data replicas af-
ter each update [26]. An appropriate technique would be to
let data be accessed without a priori synchronization, based
on the optimistic assumption that problems will occur only
rarely, if at all [30]. As in the replication mechanism, up-
dates could be propagated in the background, by swarms
of specialized Pogo ants. In our system, data updates and
queries trigger events in the system. Each event results in
a dynamic load-balancing process which runs in the back-
ground. This approach faces the challenge of diverging
replicas and conflicts between concurrent operations. It is
thus applicable only for applications that can tolerate occa-
sional conflicts and inconsistent data.

An interesting result reported in [22] is that a swarm of
heterogeneous ants (ants with diverse parameters) can per-
form better than a homogeneous swarm. Moreover, dynam-
ically switching the behavioral pattern of the agents may
also improve the performance of the clustering algorithm.
For instance, in [31], agents have the autonomy to define
their own migration policy as well as the migration of other
agents. We intend to investigate these aspects in the future.
We also intend to track the load-balancing process using
measures, like the ones reported in [22].

References

[1] S. Abdul-Wahid, R. Andonie, J. Lemley, J. Schwing, and
J. Widger. Event-driven load balancing of partially repli-
cated objects through a swarm of mobile agents. In B. Ko-
valerchuk, editor, Proceedings of the IASTED International
Conference on Computational Intelligence (CI 2006), pages
110–115. ACTA Press, 2006.

[2] S. Abiteboul, A. Bonifati, G. Cobéna, I. Manolescu, and
T. Milo. Dynamic XML documents with distribution and
replication. In Proceedings of the 2003 ACM SIGMOD In-
ternational Conference on Management of Data, pages 527–
538. ACM Press, 2003.

[3] A. Abraham and V. Ramos. Web usage mining using ar-
tificial ant colony clustering and genetic programming. In
Proceedings of the IEEE Congress on Evolutionary Compu-
tation, pages 1384–1391. IEEE Press, 2003.

[4] K. P. Adams, D. Graanin, and M. G. Hinchey. Increasing
resiliency through priority scheduling of ssynchronous data
replication. In Proceedings of the 11th International Confer-
ence on Parallel and Distributed Systems, pages 356–362.
IEEE Computer Society, 2005.

[5] P. Apers. Data allocation in distributed DBMS. ACM Trans-
actions on Database Systems, 13(3):263–304, 1988.

[6] M. Bedal, J. Gaber, H. El-Sayed, and A. Almojel. Swarm
intelligence. In S. Olariu and A. Y. Zomaya, editors, Hand-
book of Bioinspired Algorithms, pages 55–84. Chapman &
Hall/CRC, 2006.

[7] A. Beloued, J.-M. Gilliot, M.-T. Segarra, and F. André. Dy-
namic data replication and consistency in mobile environ-
ments. In Proceedings of the 2nd international doctoral
symposium on Middleware, pages 1–5. ACM Press, 2005.

[8] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm intelli-
gence: from natural to artificial systems. Santa Fe Institute
in the Sciences of the Complexity, Oxford University Press,
New York, Oxford, 1999.

[9] E. Bonabeau, A. Soblowski, G. Theraulaz, and J. L.
Deneubourg. Adaptive task allocation inspired by a model of
division of labour in social insects. Technical report, Santa
Fe Institute Working Paper 98-01-004, 1998.

[10] A. R. Chaturvedi, C. A. K., and R. J. Scheduling the alloca-
tion of data fragments in a distributed database environment:
a machine learning approach. IEEE Transactions on Engi-
neering Management, 41(2):194–207, 1994.

[11] J. L. Deneubourg, S. Gross, N. R. Franks, A. Sendova-
Franks, C. Detrain, and L. Chrétien. The dynamics of collec-
tive sorting: robot-like ants and ant-like robots. In Proceed-
ings of the First International Conference on Simulation of
Adaptive Behavior: From Animals to Animats, pages 356–
363. MIT Press, 1991.

[12] D. M. Gordon. Ants at work: how an insect society is orga-
nized. Free Press, New York, 1999.

[13] D. M. Gordon. The organization of work in social insects
colonies. Complexity, 8(1):43–46, 2003.

[14] J. Handl and B. Meyer. Improved ant-based clustering and
sorting in a document retrieval interface, pages 913–923.
Springer-Verlag, 2002.

[15] V. Hartmann. Evolving agent swarms for clustering and sort-
ing. In Proceedings of the Genetic and Evolutionary Com-
putation Conference, pages 217–224. ACM, 2005.

[16] J. Holliday, D. Agrawal, and A. E. Abbadi. Partial database
replication using epidemic communication. In Proceedings
of the 22nd International Conference on Distributed Com-
puting Systems, pages 485–493. IEEE Computer Society,
2002.

[17] D. Kossmann. The state of the art in distributed query pro-
cessing. ACM Computing Survey, 32(4):422–469, 2000.

[18] T. Loukopoulo and I. Ahmad. Static and adaptive distributed
data replication using genetic algorithms. Journal of Paral-
lel and Distributed Computing, 64(11):1270–1285, 2004.

[19] T. Loukopoulos and I. Ahmad. Static and adaptive data repli-
cation algorithms for fast information access in large dis-
tributed systems. In Proceedings of the 20th International
Conference on Distributed Computing Systems, pages 385–
392. IEEE Computer Society, 2000.

[20] K. H. Low, W. K. Leow, and M. H. Ang, Jr. Task allocation
via self-organizing swarm coalitions in distributed mobile
sensor network. In Proceedings of the 19th National Con-
ference on Artificial Intelligence, pages 28–33, 2004.

[21] Z. Lu and K. McKinley. Partial replica selection based on
relevance for information retrieval. In Proceedings of the
22nd annual international ACM SIGIR conference on Re-
search and development in information retrieval, pages 97–
104. ACM Press, 1999.

[22] E. D. Lumer and B. Faieta. Diversity and adaptation in pop-
ulations of clustering ants. In Proceedings of the Third In-
ternational Conference on Simulation of Adaptive Behavior:
From Animals to Animals, pages 501–508. MIT Press, 1994.

[23] A. Montresor, H. Meling, and O. Babaoğlu. Messor: Load-
Balancing through a Swarm of Autonomous Agents, pages
125–137. Springer-Verlag, 2003.

[24] R. Mukkamala, S. C. Bruell, and R. K. Shultz. Design
of partially replicated distributed database systems: an in-
tegrated methodology. In Proceedings of the 1988 ACM
SIGMETRICS Conference on Measurement and Modeling
of Computer Systems, pages 187–196. ACM Press, 1988.

[25] T. Nakano and T. Suda. Self-organizing network services
with evolutionary adaptation. IEEE Transactions on Neural
Networks, 16(5):1269–1278, 2005.

[26] M. Nicola and M. Jarke. Performance modeling of dis-
tributed and replicated databases. IEEE Transactions on
Knowledge and Data Engineering, 12(4):645–672, 2000.

[27] A. Oram. Peer-to-peer: Harnessing the power of disruptive
technologies. O’Reilly, 2001.

[28] M. D. Peysakhov and W. C. Regli. Dynamic data replica-
tion: an approach to providing fault-tolerant shared memory
clusters. In Proceedings of the Ninth Annual Symposium on
High Performance Computer Architecture, pages 203–214,
2003.

[29] M. D. Peysakhov and W. C. Regli. Ant inspired server pop-
ulation management in a service based computing environ-
ment. In Proceedings of the IEEE Swarm Intelligence Sym-
posium, Pasadena, California, pages 357–364, 2005.

[30] Y. Saito and M. Shapiro. Optimistic replication. ACM Com-
puting Surveys, 37(1):42–81, 2005.

[31] I. Satoh. Bio-inspired deployment of distributed appli-
cations. In Proceedings of the 7th Pacific Rim Interna-
tional Workshop on Multi-Agents, pages 243–258. Springer-
Verlag, 2004.

[32] S. Sivasubramanian, M. Szymaniak, G. Pierre, and M. van
Steen. Replication for web hosting systems. ACM Com-
pututing Surveys, 36(3):291–334, 2004.

[33] G. Soundararajan and C. Amza. On-line data migration
for autonomic provisioning of databases in dynamic con-
tent web servers. In Proceedings of the 2005 Conference of
the Centre for Advanced Studies on Collaborative Research,
pages 268–282. IBM Press, 2005.

[34] J. Suzuki and T. Suda. A middleware platform for a biolog-
ically inspired network architecture supporting autonomous
and adaptive applications. IEEE Journal on Selected Areas
in Communications, 23(2):249–260, 2005.

[35] A. L. Vizine, L. N. de Castro, E. R. Hruschka, and R. R.
Gudwin. Towards improving clustering ants: an adaptive
ant clustering algorithm. Informatica, 29(2):143–154, 2005.

[36] M. Wang and T. Suda. The bio-networking architecture:
A biologically inspired approach to the design of scalable,
adaptive, and survivable/available network applications. In
Proceedings of the Symposium on Applications and the In-
ternet, pages 43–56. IEEE Computer Society, 2001.

[37] O. Wolfson, S. Jajodia, and Y. Huang. An adaptive
data replication algorithm. ACM Trans. Database Syst.,
22(2):255–314, 1997.

[38] O. Wolfson and A. Milo. The multicast policy and its rela-
tionship to replicated data placement. ACM Trans. Database
Syst., 16(1):181–205, 1991.

