
CRAC: a Grid Environment to Solve Scientific Applications with Asynchronous
Iterative Algorithms

Raphaël Couturier, Stéphane Domas

Laboratoire d’Informatique de l’Université de Franche-Comté (LIFC)
IUT de Belfort-Montbéliard

Rue Engel Gros BP 527 90016 Belfort CEDEX France
raphael.couturier,stephane.domas@iut-bm.univ-fcomte.fr

Abstract

This paper presents CRAC, an environment dedicated to
design efficient asynchronous iterative algorithms for a grid
architecture. Those algorithms are particularly suited for
grid architecture since they naturally allow to overlap com-
munications by computations. Each processor computes its
iterations freely without any synchronization with its neigh-
bors. All the characteristics of CRAC are described. A real
application using four distant clusters, with a total of 120
processors, shows the interest of this environment and of
asynchronous algorithms.

1. Introduction

MPI is often used to develop scientific applications, run-
ning on a local virtual parallel machine. But on a larger
scale with distant machines or clusters, MPI may be a bad
choice. Indeed, grid computing implies heterogeneity at
hardware and software levels. For example, using concur-
rently two distant clusters implies that the same version of
each library, including MPI, is installed. This constraint
gets more and more demanding as a large number of com-
puting resources is used, scattered on a large geographical
scale. Environments like Globus [12] or ProActive [10] pro-
vide a framework in which the application deployment is
really easy, as long as these environments are installed on
the target machines, which may be difficult. ProActive is
written in Java and is based on active objects. Thus, it does
not use the classical message passing paradigm. However,
it is possible to use message passing and to benefit from the
total portability of Java with environments like MPJ [8] or

1-4244-0910-1/07/$20.00 c©2007 IEEE.

JMPI [14]. Obviously, the performance of Java implemen-
tations is lower than codes compiled from C. A factor of ten
on scientific applications is quite common. This balance be-
tween portability and efficiency seems to be the main point
of interest. This can be summarized by the eternal question:
how to obtain the best performance at the lowest coding and
installation efforts ? As usual, the answer greatly depends
on the context. In homogeneous clusters, classical compu-
tation libraries often obtain the best possible performance
but they are inefficient in a really distributed context. The
word "really" is important since this efficiency problem is
often skewed by using distant clusters linked by high speed
dedicated networks. Obtaining good performance using a
collection of distant workstations and clusters, linked by In-
ternet, is far more challenging. To address this problem, we
think that the common way of programming scientific ap-
plications is a dead-end: we have to adapt the algorithms to
the grid context and not the opposite.

Since synchronizing communications (i.e. all-to-all,
gather-scatter, . . .) are bottlenecks on a widely distributed
architecture, they must be avoided. This is possible using
AIACs (Asynchronous Iterations-Asynchronous Communi-
cations) algorithms. These algorithms are tolerant to com-
munication deadlines and even message loss. However, the
communication semantic is quite special and it cannot be
efficiently implemented in MPI.

This is why we have first developed a program-
ming/execution environment called JACE (Java Asyn-
chronous Computing Environment), dedicated to AIACs al-
gorithms. It is written in Java to achieve a total portabil-
ity and to insure a simple application deployment. Several
experiments based on real scientific problems have been
conducted, on different types of architectures. Results pre-
sented in [5] [4] [6] clearly show the advantages of AIACs
algorithms out of their synchronous version, even some-
times in an homogeneous context. However, as shown in

[6], an MPI/C code is still faster than a JACE/java byte-
code. This is the reason for which we have developed a new
environment, inspired by JACE, but written in C++. It is
called CRAC (Communication Routines for Asynchronous
Computations). As JACE, it provides not only a set of com-
munication primitives but also a programming/execution
framework.

In section 2, we give a comparison between a syn-
chronous and an asynchronous execution. In section 3, we
give an overview of CRAC, the motivations to create it and
its internals. Finally, section 4 presents a scientific applica-
tion implemented with CRAC, and the results of our exper-
iments on a grid architecture.

2. Asynchronism and synchronism

Readers can refer to [2] for a study of asynchronous algo-
rithms on the grid. Figures 1 and 2 present a simple example
with three tasks, equally loaded in terms of data to com-
pute. Each iteration (hatched boxes) takes the same time
for a given task and the difference between tasks is due to
the machines power. At the end of each iteration, each task
must send dependencies data (plain/dashed arrows), only to
its neighbors in this example. We suppose that for a given
peer {i, j} of tasks, the dependencies data sent by i always
imply the update of the same data set of j. The arrows rep-
resent the physical communication time over the network
and not the time between the explicit emission and recep-
tion of the message by the tasks, which could be longer but
not shorter.

In a synchronous execution scheme (Figure 1), the re-
ception of the dependencies is always blocking. After that,
the global convergence state must be computed and broad-
cast to all, generally with a gather-scatter (dotted arrows).
This example supposes that task B collects the local states
and broadcast the global state.

As we can see, this scheme implies lots of idle times
(white boxes) because the fastest machines always wait for
the slowest ones to receive all their dependencies. The con-
vergence detection also generates idle times because of the
gather-scatter communication. Obviously, the more hetero-
geneous the machines and the network are, the more idle
times there are.

In an asynchronous execution scheme (Figure 2), idle
times are completely removed by using non-blocking prim-
itives for all communications (dependencies and conver-
gence detection). Each task begins a new iteration with "old
data" if no dependences have been received. For example,
A and C immediately begin their second iteration despite
the fact that they have received nothing from B. Obviously,
this may lead these tasks to momentarily diverge and even
the whole computation to loop endlessly, with no conver-
gence. Thus, asynchronism cannot be applied on every iter-

A

B

...
...
...

time0

C

Figure 1. Synchronous iterations

A

B

time0

C

...
...

...

Figure 2. Asynchronous iterations

ative algorithm. However, the convergence may be ensured
by checking some mathematical properties on the iteration
functions. Fortunately these properties are satisfied for a
large class of scientific problems such as those described
by linear systems involving M-matrices or those modeled
by partial differential equations and discretized by the finite
difference method (e.g. [9]).

Since an asynchronous execution very frequently in-
creases the number of iterations to reach convergence com-
pared to a synchronous execution, a convergence acceler-
ation technique is particularly useful. There exists a tech-
nique applicable to any asynchronous execution, which can
be summarized by: "always update the data with the newest
dependencies received". On Figure 2, B receives two de-
pendencies messages from A and C during its second itera-
tion. Convergence may be accelerated if the second mes-
sage (plain arrow) is consumed by B to update its data,
and the first one (dashed arrow) simply discarded. Practi-
cally, during a single iteration, if a task receives several de-
pendency messages concerning the same data set to update,
the already received message is replaced in memory by the
newest. Thus, there is a single occurrence of the same de-
pendency message in memory and it is always the last one
received.

After having briefly presented the principles of AIAC al-
gorithm, we are now going to describe CRAC.

3. CRAC

3.1. Genesis

At first glance, it seemed possible to implement asyn-
chronous algorithms with MPI since it provides non-
blocking communications. Considering the last section ex-
ample, it is quite simple for task A to post a reception from
B at the beginning of an iteration, and to check if the mes-
sage arrived at the end. No other receptions are posted until
the message is really received. This mechanism is not suf-
ficient for B which may receive several messages from A
during the same iteration. More generally, each task must
test the existence of an unknown number of messages from
the same source, which is quite complicated in MPI. Fur-
thermore, getting the newest of these messages is only pos-
sible by explicitly receiving all the messages. This is time
consuming and particularly useless. Finally, all these com-
plicated mechanisms must be implemented directly in the
application and are hardly reusable for another application.

For all these reasons, MPI was quickly abandoned and
we decided to develop a new environment providing the
framework to implement iterative algorithms and to exe-
cute them synchronously or asynchronously on a widely
distributed architecture.

JACE was born from this decision and has largely proved
its interest through a lot of experiments, particularly in
terms of coding facilities and performances. In our last
experiments, we compared the JACE/Java and the MPI/C
(MPICH/MADELEINE [13] with PM2) implementation of
the same application. The amount of Java code is one third
smaller than the C code since there is no need to implement
the asynchronism mechanisms. Furthermore, we have ob-
tained an average ratio of 6 between the Java and C execu-
tion time, even though it is common to have 10 for scientific
applications. However, this ratio is often considered too big
in respect of the higher coding effort needed in C. This is
why we chose to develop a C++ environment, based on the
same principles as JACE, and adding some optimized primi-
tives and mechanisms that take into account the architecture
of the grid.

3.2. Architecture

CRAC is based on the classical MPI triplet: daemon, ap-
plication, spawner. The daemon is launched on each ma-
chine constituting the Virtual Distributed Machine (VDM).
The user develops its application and launches it with the
spawner on the desired machines. However, the similarity
with MPI nearly stops here. Even if the CRAC program-
ming interface uses the message passing paradigm, the se-
mantic of communications is completely different and sev-
eral primitives do not exist in MPI. Furthermore, the inter-

nals of CRAC are based on multithreading and even the ap-
plication is a thread. Finally, the virtual distributed machine
relies on a hierarchical view of the network in order to reach
machines with private IPs and to limit the bandwidth use on
slow links.

The following items present the different components of
CRAC, from the VDM to the programming interface.

- Virtual Distributed Machine (VDM): the efficiency
problem of distributed executions partly comes from "low"
bandwidth on links between distant geographical sites. In
this case, a primitive like a gather-scatter that does not take
care of the network architecture may be totally inefficient
if all messages must take the slowest link of the architec-
ture. Assuming that machines can be gathered in "sites",
which have good bandwidth, and that sites are linked by
"low" bandwidth, all global communications may be opti-
mized to take account of this organization. This is the case
when the architecture is composed of clusters linked by the
Internet. Unfortunately, cluster machines often have private
IPs and can be reached only through a frontal machine. To
get round this problem, the frontal may relay messages.

MPI does not take into account the network architecture
but CRAC does. Thus we can give the following definition
of "site" as a pool of machines that can directly connect
to one another. This notion is not necessarily geographical
but this may sometimes be the case. For example, if the
machines of two distant clusters can freely interconnect, it is
better to separate them in two sites if the bandwidth between
the clusters is low. If it is similar to the bandwidth inside
clusters, they can be gathered in the same site.

Within a site, four types of machines are possible: mas-
ter, supermaster, slave, frontal. The last type may be applied
to any of the three first. For example, a machine may be a
slave frontal. This characterization allows to optimize the
management of the VDM (starting/stopping the daemons,
spawning, ...), and to reach machines with private IPs. Here
is the definition of the types.

• frontal: a machine that can relay messages from out-
side the site to the private IP machines of the site. It
can also relay messages to another site if a machine
cannot send outside the site.

• slave: a machine with no particular role.

• master: a machine that collects informations from the
slaves of the site and relays them to the supermaster,
or that relays informations from the supermaster to the
slaves.

• supermaster: a machine that collects/sends informa-
tions from/to the masters. Obviously, the supermaster
is a master but is unique.

Site 2

slave

master

supermaster

color

Site 1

shape
Site 3

not frontal

frontal

private IP

Figure 3. An example of VDM

The VDM is defined via an XML file, which is a per-
fect language to describe its hierarchical organization. This
file is passed as an argument to a booter (like lamboot) that
launches the daemons on each machine of the VDM. Then,
a TCP connection is created between each master and the
supermaster, and between each slave and its own master.
This hierarchy allows to limit the bandwidth use between
the sites. For example, when tasks are spawned for an exe-
cution, the supermaster sends the configuration of the exe-
cution (the machines used and their number) to all masters,
which relay the information to their own slaves.

In order to limit the number of connections between
tasks, the convergence detection mechanism also uses this
hierarchy. Thus, even if a master runs no task, its daemon is
in charge of collecting the local convergence state of each
task running in the site.

Figure 3 shows an example of VDM with 3 sites. The
lines represent the TCP connections that constitute the hi-
erarchical network used for convergence detection and for
management (essentially launching and stopping tasks). In
sites 2 and 3, two slaves have private IPs. Thus, it is manda-
tory for a machine of this site to be a frontal. It may be the
master itself as in site 3 or simply another slave, as in site
2. It can be noticed that there are no connections between
masters and that the supermaster may also have slaves, as in
site 1.

During the execution of an application, a task may
communicate data to a task on another machine. The
hierarchical network is never used for that. Instead, a new
TCP connection is created between the machines running
the two tasks the first time they want to communicate (see
just below).

- Daemon: a CRAC daemon is launched on each machine
of the VDM. During an execution, its main use is to send
and receive messages for the local tasks. If the machine is a

frontal, the daemon may also relay messages to tasks hosted
by another daemon. These operations are executed by two
threads.

• the Sender thread: each time it awakes, it checks in the
outgoing queue the presence of messages to send. If
no socket exists to the destination machine, the Sender
tries to connect and to retrieve a new socket, dedicated
to send application data to that destination. Even if the
destination machine hosts several tasks, a single socket
is used.

However the destination machine may have a private
IP. In this case, the Sender tries to connect to the frontal
machine of the destination site. Each message will be
sent to the frontal, which will relay the data to the real
destination.

In order to optimize the global communication time,
each message is composed of a header followed by
packets and is not sent in one chunk. As each packet
has a fixed destination, the Sender does a loop on the
destinations of the packets: it sends a packet to one
destination after another. Obviously, if a new mes-
sage to an existing destination is inserted in the out-
going queue, it must wait for the end of the emission
of the current one. But if the new message is for a new
destination, it can be sent immediately. This process
is a kind of pipeline, which greatly reduces the time
needed by the last message inserted in the queue to ar-
rive completely at its destination.

• the Receiver thread: it uses a polling mechanism to
passively detect connection demands and the incom-
ing of data on existing sockets. In the last case, the
Receiver uses the header to determine the destination
task. If this task is not running on the machine, it
means that the message must be relayed and it is di-
rectly put in the outgoing queue to be sent by the
Sender. If the machine hosts the destination task, the
Receiver retrieves the source task from the header and
a slot of the incoming queue, associated to that task,
is used to store the data.

The slot allocation policy is the following. The Re-
ceiver always checks if a slot with the same message
characteristics {source,destination,tag} exists. If this
is the case, existing data are overlapped by the ones to
come, else a new slot is created. This overlapping is
particularly useful to accelerate convergence in asyn-
chronous executions (see section 2). The slot is freed
when the task retrieves its data.

Taking the example of Figure 2, the Receiver of B
would create a slot for the first message coming from
A. At the end of its first iteration, B retrieves the data
of the slot. During its second iteration, the Receiver

creates a slot for the second message from A but uses
the same slot to store the data of the third message.
Thus, B is insured to always have the latest data sent
by A.

It must be noticed that this policy works perfectly
well for synchronous executions. Indeed, for a given
triplet {source,destination,tag}, a single message can
be sent/received during the same iteration. Thus, there
cannot be lost data because of overlapping messages.

The daemon also creates the Converger thread that is
in charge of collecting and updating information about the
convergence, using the hierarchical network of the VDM.
It implies that the supermaster has more information to
collect than masters, and masters more than slaves. Thus,
the working of this thread depends on the machine type
but whatever the case, its final goal is to provide the global
convergence state to the tasks.

- Task: the application task is a thread that executes within
the daemon context. Thus, the task can directly access mes-
sage queues (incoming and outgoing). This is not the case
for MPI, in which a task is a process and must communicate
(with an Unix socket or shared memory) with the daemon
to send/receive data.

As CRAC is an object environment, the Task class
is defined as a thread, containing all primitives of the
programming interface and the classical attributes of a task
(identifier, number of task in the daemon and in the VDM,
. . .). CRAC also declares (as an include file) the UserTask
class which inherits from Task. This class contains a
run() method that must be defined by the user in a C++
file, which is compiled as a shared library. When a task
is launched on a machine via the spawner, the daemon
dynamically loads its code and creates a new thread object
containing this code. The thread is started and its run()
method automatically called, as in Java.

- Spawner: the CRAC spawner is a classical MPI spawner,
except that it uses an XML file to specify which and how
many tasks are launched on which machine. The access
path of the code of each task must be given for each
machine. Thus, it is possible to have an MIMD execution.
It is also possible to pass arguments to each task. For now,
the spawn is only static and tasks cannot be added during
an execution.

- Programming interface: it is defined in the Task class.
It provides the classical primitives to implement message
passing codes but some have special semantic and some are
dedicated to iterative algorithms. Here are four characteris-
tic examples that greatly differ from MPI.

• CRACSend(): the emission of a message is never

blocking. This routine simply copies the data in a slot
of the outgoing queue. Thus, the buffer containing the
data can be immediately reused. The slot allocation
policy is identical to that of the incoming queue: a new
slot may be created or an existing slot chosen and its
data overlapped.

• CRACRecv(): the reception may be blocking or not,
depending on a parameter of this function. In MPI,
the non-blocking reception returns an identifier that al-
lows to test and to wait for the total reception of the
message. In CRAC, it is like a test/receive. If the
message is in the incoming queue, the buffer passed to
CRACRecv() is filled and it is left empty if no mes-
sage arrived. This semantic is dedicated to an asyn-
chronous execution for which it must be possible to be-
gin another iteration without new data being received.

• CRACConvergence(): it may be blocking or not,
depending on a parameter of this function. In both
cases, it takes a boolean as a parameter, which is the
local convergence state. It returns the global conver-
gence state as a boolean. Obviously, this routine must
be used in blocking mode for a synchronous execution.
For a description of its working in asynchronous mode,
one can refer to [4].

• tags : each message must be marked by an in-
teger value defined by the user. As mentioned
above and in the Receiver description, there is an
automatic replacement if a message with the same
triplet {source,destination,tag} is already present in the
queues. Thus, the user must assign the same tag to
the messages that are used to update the same data
set of the destination task. Obviously, the same tag
must never be used for messages updating different
data sets.

In the next section, we present an application that al-
lowed us to examine the behavior of CRAC in a grid con-
text.

4. Experimentations: Advection-Diffusion
problem

In order to analyze the behavior of CRAC, we conducted
experiments on the GRID’5000 architecture. We have cho-
sen a problem based on an advection-diffusion equation
which is modeled by a PDE (Partial Differential Equation).

4.1. The problem and the method used to
solve it

In this problem, we compute the evolutions of the con-
centrations of two chemical species in a two dimension do-

main. This problem corresponds to an advection-diffusion
system with two species. It is solved by using a discretiza-
tion of the space on a two-dimensional grid (x, z).

The evolutions of the concentration species are given by

∂ci

∂t
= Kh

∂2ci

∂x2
+V

∂ci

∂x
+

∂

∂z
Kv(z)

∂ci

∂z
+Ri(c1, c2, t) (1)

where ci (i = 1, 2) denotes the concentration of the
chemical species, Kh, V and Kv respectively denotes the
horizontal diffusion coefficient, the velocity and the verti-
cal diffusion coefficient. Ri represents the reaction of the
chemical species [11]:

R1(c1, c2, t) = −q1c
1c3 − q2c

1c2 + 2q3(t)c3 + q4(t)c2

R2(c1, c2, t) = q1c
1c3 − q2c

1c2 + q4(t)c2

(2)
with

Kh = 4.0 × 10−6 V = 10−3

Kv(z) = 10−8e
z
5 c3 = 3.7 × 1016

q1 = 1.63 × 10−16 q2 = 4.66 × 10−16

qj(t) = e−aj/sin(ωt) for sin(ωt) > 0
qj(t) = 0 otherwise

(3)
and j = 3, 4, ω = π/43200, a3 = 22.62 and a4 = 7.601.

The initial conditions are the following

c1(x, z, 0) = 106α(x)β(z)
c2(x, z, 0) = 1012α(x)β(z) (4)

with

α(x) = 1 − (0.1x − 1)2 + (0.1x − 1)4/2
β(z) = 1 − (0.1z − 1)2 + (0.1z − 4)4/2 (5)

The discretization using an implicit Euleur scheme along
x and z allows us to rewrite the system of PDEs in Equa-
tion 1 in a system of ODEs (Ordinary Differential Equa-
tions) of the form

dy(t)
dt

= f(y(t), t) with y = (c1, c2) (6)

where the vector y(t) is a vector of n elements.
In a sequential execution, the Newton algorithm is used

to solve such a system of ODEs, i.e. to find an approxima-
tion of the vector which contains the unkowns of the system
at each time step t. Solving this equation in parallel is pos-
sible in at least two different ways.

The first one, and probably the best known and most
commonly used one, consists in using the Newton iteration
in parallel. At each Newton iteration a large linear system
need to be solved and a parallel linear solver is used for that.
Synchronous linear solvers often require several synchro-
nizations whereas asynchronous linear ones do not require

any synchronization at all. Nevertheless, each Newton iter-
ation requires a synchronization. So, whatever the parallel
solver used, synchronizations are unavoidable.

The second solution consists in using the multisplitting
method which can be used in an asynchronous mode. Prac-
tically speaking, it leads to an algorithm which does not
require any synchronization to solve Equation 6 for a given
t. The principle is the following: the non linear function
is not considered in its totality on each processor. For con-
venience, it is decomposed into as many parts as there are
computing tasks. Each task manages the computation of the
unknowns corresponding to its part of the function. Thus,
each task solves a part of the non linear function using
the sequential Newton Algorithm, mentioned above. Ob-
viously, several iterations are required for the algorithm to
converge to the initial problem solution. As said previously,
an asynchronous execution supposes that the computation
of the next iteration begins without waiting for data from
neighbor tasks. If data are always available, the computa-
tion quickly converges towards the solution but if some are
missing, the process converges more slowly. Obviously, the
convergence rate depends on a lot of parameters such as
the machines power, the network bandwidth, and the prob-
lem itself. For more details on the multisplitting Newton
method (implementation details and convergence results),
interested readers are invited to read [3, 7, 15] and the ref-
erences therein.

To summarize, the benefit of using the asynchronous
multisplitting Newton method is that only one synchroniza-
tion is required at each time step to compute the next time
step, whereas all other methods require much more syn-
chronizations that may be penalizing in a grid computing
context with distant clusters.

4.2. Results on GRID’5000

Experimentations have been conducted on the
GRID’5000 architecture. Currently, the GRID’5000
platform is composed of an average of 1000 bi-processors
that are located in 9 sites in France: Bordeaux, Grenoble,
Lille, Lyon, Nancy, Orsay, Rennes, Sophia-Antipolis,
Toulouse. Most of those sites have a Gigabit Ethernet
Network for local machines. Links between the different
sites ranges from 2.5 Gbps up to 10Gbps. Most processors
are AMD Opteron. For more details on the GRID’5000
architecture, interested readers are invited to visit the
website: www.grid5000.fr.

In Tables 1 and 2, we report the result of experiments
on the advection-diffusion problem discretized as described
previously, using the multisplitting method. In order to
solve sequentially the sparse linear system, we have used
the MUMPS software [1] which is a direct sparse linear
solver. In the following experiments, we have used 120 ma-

discretization step : 360 s
problem synchronous asynchronous

size exec. # of exec. # of
time (s) iter. time (s) iter.

1400 × 1000 47.8 252 25.9 264-290
2100 × 1500 123.8 429 80.6 452-496
2800 × 2000 271.7 626 190.7 710-832
4200 × 3000 981.3 984 668.8 1108-1274

Table 1. Experimentations on the advection-
diffusion problem with the GRID’5000 archi-
tecture : 360 s discretization steps.

discretization step : 720 s
problem synchronous asynchronous

size exec. # of exec. # of
time (s) iter. time (s) iter.

1400 × 1000 75.5 393 39.4 401-437
2100 × 1500 242.1 696 184.8 712-846
2800 × 2000 431.9 964 299.0 1042-1169
4200 × 3000 1368.9 1523 1046.7 1691-1864

Table 2. Experimentations on the advection-
diffusion problem with the GRID’5000 archi-
tecture: 720 s discretization steps.

chines scattered in 4 sites of GRID’5000. Nodes are ap-
proximately similar, with a computing power ranging from
AMD Opteron 2Ghz to AMD Opteron 2.25Ghz.

In the following, each result is the mean of 10 execu-
tions. In order to compare the behavior of the application
we have chosen two discretization steps: 360 seconds and
720. For each value, reported execution times have been
achieved for 2 time steps. Different sizes of problems have
been examined in order to analyze the behavior of CRAC
with a variable ratio between computation and communi-
cation time. For example, a problem size of 4200 × 3000
means that, because of the two chemical species, the global
matrix has 2 × 4200 × 3000 = 25, 200, 000 rows and
columns, with 10 non-null elements on each row. It can be
noticed that the multisplitting method allows the overlap-
ping of some components, which may decrease the number
of iterations. In our experiments, we have chosen an over-
lapping size equal to 20 for each dimension.

The study of Table 1 and 2 reveals that the asynchronous
version of the algorithm is always faster than the syn-
chronous one. This phenomenon is due to the fact that in
the synchronous case, all tasks are synchronized at each
iteration of the multisplitting method. When the problem

discretization problem exec. time
step size ratio

1400 × 1000 1.85
2100 × 1500 1.53360
2800 × 2000 1.42
4200 × 3000 1.47

1400 × 1000 1.92
2100 × 1500 1.31720
2800 × 2000 1.44
4200 × 3000 1.31

Table 3. Ratio between synchronous and
asynchronous execution times.

size increases, the ratio of computation over communica-
tion time increases too, and the difference between the syn-
chronous and the asynchronous execution times decreases.
It is clearly shown in the last column of Table 3, which
gives the synchronous execution time divided by the asyn-
chronous one. This fact was commonly observed in all our
studies of asynchronous algorithms. For each version of
the algorithm, Tables 1 and 2 also report the number of
iterations required to reach the convergence. In the asyn-
chronous case, this number varies from one execution to
another, and from one processor to another. That is why
we report an interval which corresponds to the minimum
and the maximum number of iterations of the different exe-
cutions. Without considering the mode of execution of the
algorithm, the larger the size of the discretization step, the
more iteration are required to reach the convergence.

>From a programmer point of view, CRAC is easy to
use to develop an asynchronous version of a synchronous
algorithm using the multisplitting method. By extension,
any synchronous algorithm designed to be asynchronous as
well, will be easy to implement. In fact, only the initializa-
tion of the program is different by specifying the execution
mode, synchronous or not.

It should be noticed that we do not claim that any
synchronous algorithm can be transformed into an asyn-
chronous one. Only some algorithms for which the con-
vergence has been studied can be run in an asynchronous
mode.

All the previous remarks could be formulated with any
similar programming environment allowing to develop syn-
chronous and asynchronous algorithms. However, CRAC
is, to the best of our knowledge, the first environment dedi-
cated to implement efficient asynchronous algorithms in C.
In the past, we tried to implement the same problem with a
multithreaded version of MPI. As in our works with JACE,
CRAC allows the reduction of the amount of code by a
third, which represent all the lines needed to explicitly man-

age the asynchronism. Furthermore, our experiments on a
cluster of 20 machines have shown that the difference of the
execution time is less than 1% between the CRAC and the
multithreaded MPI version. Thus, the overhead of CRAC is
negligible.

5. Conclusion and perspectives

In this paper, we have shown that CRAC is very useful
to design asynchronous algorithms. Currently, the scien-
tific community does not really know this kind of algorithm
and think that this is only adapted to experts. We sincerely
hope that CRAC would reverse this trend by providing a
programming environment dedicated to easily implement
and to efficiently run asynchronous algorithms.

We plan to use CRAC to solve large sparse linear prob-
lems with the multisplitting method. There are some sim-
ilarities with the multisplitting method for nonlinear prob-
lems. Larger experimentations with an important number
of distant clusters and processors (more than 1000) should
more than ever show the interest of using asynchronous al-
gorithms to efficiently solve scientific applications in a grid
computing context.

References

[1] P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. Mul-
tifrontal parallel distributed symmetric and unsymmetric
solvers. Comput. Methods in Appl. Mech. Eng., 184:501–
520, 2000.

[2] J. M. Bahi, S. Contassot-Vivier, and R. Couturier. Evalu-
ation of the asynchronous iterative algorithms in the con-
text of distant heterogeneous clusters. Parallel Computing,
31(5):439–461, 2005.

[3] J. M. Bahi and R. Couturier. Asynchronous multisplitting
methods for linear and nonlinear systems, chapter 6, pages
147–181. Gakkotosho, Tokyo Japan, 2006. ISBN 4-7625-
0434-3.

[4] J. M. Bahi, S. Domas, and K. Mazouzi. Combination of java
and asynchronism for the grid : a comparative study based
on a parallel power method. In 18th IEEE and ACM Int.
Conf. on Parallel and Distributed Processing Symposium,
IPDPS 2004, pages 158a, 8 pages, 2004.

[5] J. M. Bahi, S. Domas, and K. Mazouzi. Jace : a java environ-
ment for distributed asynchronous iterative computations.
In 12th Euromicro Conference on Parallel, Distributed and
Network based Processing, PDP’04, pages 350–357, 2004.

[6] J. M. Bahi, S. Domas, and K. Mazouzi. More on JACE:
New functionalities, new experiments. In IPDPS’2006, 20th
IEEE and ACM Int. Symposium on Parallel and Distributed
Processing Symposium, pages 231–239, 2006.

[7] J. M. Bahi, J.-C. Miellou, and K. Rhofir. Asynchronous mul-
tisplitting methods for nonlinear fixed point problems. Nu-
merical Algorithms, 15(3,4):315–345, 1997.

[8] M. Baker and B. Carpenter. MPJ: A proposed java message
passing api and environment for high performance comput-
ing. In IPDPS ’00: Proceedings of the 15 IPDPS 2000
Workshops on Parallel and Distributed Processing, pages
552–559, London, UK, 2000. Springer-Verlag.

[9] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed
Computation: Numerical Methods. Prentice Hall, Engle-
wood Cliffs NJ, 1989.

[10] D. Caromel and al. ProactivePDC : Java library for par-
allel, distributed, and concurrent computing. http://www-
sop.inria.fr/oasis/ProActive/.

[11] A. C. Hindmarsh and R. Serban. Example program for
cvode. http://www.llnl.gov/CASC/sundials/.

[12] S. T. I. Foster, C. Kesselman. The Anatomy of the Grid: En-
abling Scalable Virtual Organizations. International Journal
Supercomputer Applications, 15:200–222, 2001.

[13] G. Mercier. MPICH-Madeleine III : An MPI Implemen-
tation for Heterogeneous Clusters of Clusters. http://dept-
info.labri.u-bordeaux.fr/ mercier/mpi.html.

[14] S. Morin, I. Koren, and C. Krishna. Jmpi: Implementing the
message passing standard in java. In Int. Conf. on Parallel
and Distributed Processing Symposium, IPDPS 2002, 2002.

[15] D. B. Szyld and J.-J. Xu. Convergence of some asyn-
chronous nonlinear multisplitting methods. Numerical Al-
gorithms, 25:347–361, 2000.

