
SZTAKI Desktop Grid: a Modular and Scalable Way
of Building Large Computing Grids

Zoltán Balaton1, Gábor Gombás1, Péter Kacsuk1, Ádám Kornafeld1, József Kovács1,
Attila Csaba Marosi1,Gábor Vida1, Norbert Podhorszki2, Tamás Kiss3

1MTA SZTAKI Computer and 2University of California, Davis
Automation Research Institute of the Computer Science Department

Hungarian Academy of Sciences 2063 Kemper Hall, 1 Shields Avenue,
H-1528 Budapest, P.O.Box 63, Hungary Davis CA 95616, USA

{balaton,gombasg,kacsuk,kadam, pnorbert@cs.ucdavis.edu
smith,atisu,vida}@sztaki.hu

3University of Westminster
Cavendish School of Computer Science

115 New Cavendish Street, London W1W 6UW, UK
T.Kiss@westminster.ac.uk

Abstract

So far BOINC based desktop Grid systems have been ap-
plied at the global computing level. This paper describes an
extended version of BOINC called SZTAKI Desktop Grid
(SZDG) that aims at using Desktop Grids (DGs) at local
(enterprise/institution) level. The novelty of SZDG is that
it enables the hierarchical organisation of local DGs, i.e.,
clients of a DG can be DGs at a lower level that can take
work units from their higher level DG server. More than
that, even clusters can be connected at the client level and
hence work units can contain complete MPI programs to be
run on the client clusters. In order to easily create Mas-
ter/Worker type DG applications a new API, called as the
DC-API has been developed. SZDG and DC-API has been
successfully applied both at the global and local level, both
in academic institutions and in companies to solve problems
requiring large computing power.

This research work is partially supported by the Network of Excellence
CoreGRID (Contract IST-2002-004265) and CancerGrid (Contract LSHC-
CT-2006-037559) funded by the European Commission under FP6 and
by the Hungarian Jedlik Ányos HAGrid project (Grant No.: NKFP2-
00007/2005).

1-4244-0910-1/07/$20.00 c©2007 IEEE.

1. Introduction

Desktop grids are an emerging trend in grid computing.
Contrary to traditional grid [11] systems where the main-
tainers of the grid infrastructure provide resources as a ser-
vice on which users can run their applications, maintainers
of desktop grids provide the applications as a service and
the participants of the desktop grid infrastructure provide
the resources to run them. More specifically, in desktop
grids we can distinguish participants who donate resources
to the Grid (donors) and participants who utilise the re-
sources to execute their computations (users).

Originally, the aim of Grid research was to realise the
vision that anyone could donate resources for the Grid,
and anyone could claim resources dynamically according
to their needs, e.g. in order to solve computationally inten-
sive tasks. This twofold aim has been, however, not fully
achieved yet. Currently, we can observe two different trends
in the development of grid systems, according to these aims.

Researchers and developers following the first trend are
creating a service oriented Grid, which can be accessed by
lots of users. To offer a resource for the Grid installing a
predefined set of software (middleware) is required. This
middleware is, however, so complex that it needs a lot of
effort to install and maintain it. Therefore, individuals usu-
ally do not offer their resources this way but all resources
are typically maintained by institutions, where professional

system administrators take care of the complex environment
and ensure the high-availability of the Grid. Examples of
grid infrastructures following this trend are the largest Eu-
ropean Grid, the EGEE Grid [9] (comprising Virtual Organ-
isations such as its Hungarian affiliate Virtual Organisation:
HunGrid), or the NGS (National Grid Service [16]) in the
UK. The original aim of enabling anyone to join the Grid
with one’s resources has not been fulfilled by this trend.
Nevertheless, anyone who is holding a certificate from a
trusted Certificate Authority of such a grid system can ac-
cess the resources offered by the Grid.

A complementary trend can also be observed for real-
ising the other part of the original aim. According to this
direction anyone can bring resources into the Grid, offering
them for the common goal of that Grid. The most well-
know example of such systems, or better to say, the orig-
inal Internet-based distributed computing facility example
is SETI@home [1]. In Grids following the concepts of
SETI@home, a large number of PCs (typically owned by
individuals) are connected to one or more central servers to
form a large computing infrastructure with the aim of solv-
ing problems with high computing needs. Such systems are
commonly referred to by terms such as Internet-based Dis-
tributed Computing, Public-Resource Computing or Desk-
top Grids; we will use the term Desktop Grid (DG).

Offering resources to a DG is very easy: the owner just
installs a simple client program package on her PC, regis-
ters herself on the web page of the DG and configures the
client to offer resources to one or more projects supported
by the Grid system. After this, the local software runs in
the background or as a screen-saver to exploit otherwise
idle cycles. After joining the Grid the owner does not need
to take care of the Grid activity of her computer. Conse-
quently, this makes DGs able to utilise a huge amount of
resources that were not available for traditional grid com-
puting previously. Applications can utilise resources in a
DG by the well-known Master/Worker paradigm. I.e. the
application is split up into many sub-tasks that can be pro-
cessed independently (e.g. splitting input data into smaller,
independent data units). Sub-tasks are then processed by
the individual PCs, running the same worker executable but
processing different input data. The central server of the
Grid runs the master program, which creates the sub-tasks
and processes the incoming sub-results.

The main advantage of DG systems is their simplicity
for donors thus, realising the other part of the original Grid
vision. However, as the complexity required to build a Grid
must be handled somewhere, they also have disadvantages:

1. it is not so easy to setup and operate the servers re-
quired to run a DG system;

2. the application must be modified to run on the DG
which might require fundamental modifications and

redesign making the application specific to a particular
DG infrastructure;

3. and the problems that can utilise a DG are also cur-
rently restricted to problems computable by the Mas-
ter/Worker paradigm and have to be highly parallel
since the clients computing the sub-tasks do not know
about the other clients and cannot directly communi-
cate with them.

Consequently, the enormous number of resources provided
by donors is only accessible by a few users. This is shown
by the limited number of projects utilising DGs currently on
a world-wide scale to solve very large computational tasks
such as search for extraterrestrial intelligence, high energy
physics, cancer research, climate predictions, etc.

The next section discusses different DG-like systems
that are in use today, the most widespread of them being
BOINC. After that, SZTAKI Desktop Grid is introduced
which aims to address the problems mentioned above and
its most important features are described in detail, which
help converge the two trends discussed earlier as an effort
to bring the original aim and the Grid vision closer. The
conclusion section presents some projects using SZTAKI
Desktop Grid and summarises the paper.

2. Related work

2.1. BOINC

BOINC [2] (Berkeley Open Infrastructure for Network
Computing), originated from the SETI@home project, is an
effort to create an open infrastructure to serve as a base for
all large-scale scientific projects that are attractive for pub-
lic interest and having computational needs so that they can
use millions of personal computers for processing their data.
BOINC, in contrast to the original SETI@home distributed
computing facility, can run several different distributed ap-
plications and yet, enables PC owners to join easily by in-
stalling a single software package (the BOINC Core Client)
and then decide what projects they want to support with the
empty cycles of their computers, without the need to delete,
reinstall and maintain software packages to change between
projects. BOINC is the most popular DG system today
with the aggregated computational power of the more than
250.000 participants is about 475 TeraFLOPS thus, provid-
ing the most powerful “supercomputer” of the world.

2.2. Condor

While aiming for similar goals, Condor’s approach is
radically different from the DG concept. Condor [8] em-
ploys a push model by which jobs can be submitted into a

local resource pool or a global Grid (friendly Condor pools
or a pool overlaid on Grids using different middleware).
The DG concept on the other hand applies the pull model
whereby free resources can call for task units. The scala-
bility of Condor is limited by the centralised management
implied by the push model (largest experiments are at the
level of 10000 jobs in EGEE but it requires a very com-
plicated Grid middleware infrastructure that is difficult to
install and maintain at the desktop level). Condor provides
a complex matchmaking feature to pair jobs and resources.

2.3. XtremWeb

XtremWeb [10] is a research project, which, similarly to
BOINC, aims to serve as a substrate for Global Computing
experiments. Basically, it supports the centralised set-up
of servers and PCs as workers. In addition, it can also be
used to build a peer-to-peer system with centralised control,
where any worker node can become a client that submits
jobs. It does not allow storing data, only job submission.

2.4. Commercial Desktop Grids

There are several companies providing a Desktop Grid
solution for enterprises [12], [7], [5], [13]. The most well-
known examples being Entropia Inc, and United Devices.
Those systems support the desktops, clusters and database
servers available at an enterprise. However, what they all
have in common is that they run in isolation. There is no ad-
herence to Grid standards and no interoperability amongst
them or with other Grid middleware. They do not have the
possibility to communicate with existing Grid installations
other than on an ad-hoc basis. It is very likely they are also
based on the push model.

3. SZTAKI Desktop Grid

Today, most of the DG projects (including SZTAKI
Desktop Grid) utilise BOINC because it is a well-estab-
lished free and open source platform that has already proven
its feasibility and scalability and it provides a stable base
for experiments and extensions. BOINC provides the ba-
sic facilities for a DG in which a central server provides the
applications and their input data, where clients join volun-
tarily, offering to download and run an application with a
set of input data. When the application has finished, the
client uploads the results to the server. BOINC manages
the application executables (doing the actual work) taking
into account multiple platforms as well as, keeping a record
of and scheduling the processing of workunits, optionally
with redundancy (to detect erroneous computation either,
due to software or hardware failures or clients being con-
trolled by a malicious entity). Additionally, BOINC has

support for user credits, teams and the web-based discus-
sion forums, relevant in large scale public projects that are
based on individuals donating their CPU time. These indi-
viduals must have a motivation for doing this. Apart from
the project having a clearly stated, supportable and vision-
ary goal, credits provide a kind of “reward” for the received
CPU time, which leads to a competition between the users
thus, generating more performance.

3.1. Local Desktop Grid

The advantages provided by the DG concept are not
only useful on a world-wide scale but can also be used for
smaller scale computations, combining the power of idle
computers at an institutional level, or even at a departmen-
tal level. The basic building block of SZTAKI Desktop Grid
is such a Local Desktop Grid (LDG) connecting PCs at the
given organisational level. SZTAKI LDG is built on BOINC
technology but is oriented for businesses and institutes. In
this context it is often not acceptable to send out application
code and data to untrusted third parties (sometimes this is
even forbidden by law, as in the case of medical applica-
tions) thus, these DGs are normally not open for the public,
mostly isolated from the outside by firewalls and managed
centrally. SZTAKI LDG focuses on making the installation
and central administration of the LDG infrastructure easier
by providing tools to help the creation and administration
of projects and the management of applications. LDG also
aims to address the security concerns and special needs aris-
ing in a corporate environment by providing a default con-
figuration that is tailored for corporate use and configuration
options to allow faster turn around times for computations
instead of the long term projects BOINC is intended for.

SZTAKI LDG is distributed prepackaged, so it can be
easily installed using the apt tool on Debian GNU/Linux
systems. After installation the boinc create project
command can be used to create a new project. This cre-
ates everything needed for the project: a working direc-
tory, a database, an administrative user account and default
configuration files for the web server and BOINC to make
the project accessible. Administering is done using the ad-
ministrative user of the project but for security reasons not
by directly logging into it rather, acquiring the rights of
this user when needed authenticating with their own pass-
word. The system administrator can grant or revoke project
administrative rights to/from users via the boinc admin
tool. Project administrators are allowed to install appli-
cation executables (master, client, validator), start/stop the
project and access the database and administrative pages of
the project. The boinc appmgr tool can be used for au-
tomatic installation and configuration of packaged applica-
tion binaries that come in an archive containing an XML
description (provided by the application developer).

3.2. Hierarchical Desktop Grid

SZTAKI LDG can satisfy the needs of university depart-
ments and small businesses but what if there are several de-
partments using their own resources independently but there
is a project at a higher organisational level (e.g. at a cam-
pus or enterprise level). Ideally, this project would be able
to use free resources from all departments. However, using
BOINC this would require individuals providing resources
to manually register to the higher level project which is a
high administrative overhead and it is against the centrally
managed nature of IT infrastructure within an enterprise.

A feature of SZTAKI Desktop Grid provides a solution
to this: the possibility to build a hierarchy of LDGs. In a
hierarchy, DGs on the lower level (child) can ask for work
from higher level (parent). If a basic LDG is configured to
participate in a hierarchy, the server can enter a hierarchical
mode, when its clients require more work than it has for
disposal. When the child node has less work than resources
available, it will contact a parent node in the hierarchical
tree and request work from it. The BOINC framework was
not prepared for this functionality, so it had to be enhanced.

Figure 1. Hierarchy client

Hierarchical mode is implemented by a hierarchy client,
which is run on the child LDG server. This way, the parent
does not have to be aware of the hierarchy, it sees the child
as one powerful client. The hierarchy client has two sides
(see Figure 1): a master side which puts retrieved workunits
in the database of the LDG and gets the computed results,
and a client side which retrieves workunits from the parent
and uploads results. The client side is a modified version of
the standard BOINC Core Client. Modifications include:

• reporting a preconfigured number of processors to the
parent independent of the actual number of processors
on the local host, to allow it to request work for all its
clients;

• reporting a preconfigured operating system and hard-
ware architecture (Platform in BOINC terminology)
allowing it to identify itself each time with a different
Platform, so that Client Application executables for all
clients could be obtained.

More detailed description of the hierarchical SZTAKI Des-
ktop Grid can be found in [14].

3.3. DC-API

The SZTAKI Desktop Grid is based on BOINC thus, ap-
plications using the BOINC API can run on it. However,
a simpler and easier-to-use API, the Distributed Computing
Application Programming Interface (DC-API), is provided.
The DC-API is the preferred way for creating applications
for SZTAKI Desktop Grid. It aims to be simple and easy to
use. Just a few functions are enough to implement a work-
ing application, but there are additional interfaces in case
the application wants greater control or wants to use more
sophisticated features of the grid infrastructure. Another
purpose of the DC-API is to provide a uniform interface
for different grid systems. It allows easy implementation
and deployment of distributed applications on multiple grid
environments. To move an application using the DC-API
from one grid infrastructure to the other, it only needs to
be recompiled with a different DC-API backend; the source
code does not have to be modified. This enables scientists to
concentrate on the application logic without having to know
the details of the grid infrastructure or even know what grid
infrastructure is serving their processing needs.

DC-API backends exist to use the Condor job man-
ager and BOINC as well as a backend for the Grid Under-
ground middleware used by the Hungarian ClusterGrid Ini-
tiative [6]. A simple fork-based implementation that runs all
workunits on the local host is also available. The ability of
running the workunits locally makes application debugging
easier. Since switching the application from using such a
local implementation to e.g. BOINC needs only a recompi-
lation without any changes to the source code, the complete
application can be tested on the developer’s machine before
deploying it to a complex grid infrastructure.

To accommodate the restrictions of different grid en-
vironments and to facilitate converting existing sequential
code written by scientists not comfortable with parallel pro-
gramming, the DC-API supports a limited parallel program-
ming model only. This implies the following restrictions
compared to general parallel programming:

• Master/Worker concept: there is a designated master
process running somewhere on the grid infrastructure.
The master process can submit worker processes called
workunits.

• Every workunit is a sequential application.

• There is support for limited messaging between the
master and the running workunits. However, this it is
not suitable for parallel programming, it is meant to be
used for sending status and control messages only.

• No direct communication between workunits.

Following the Master/Worker model, DC-API applica-
tions consist of two major components (see Figure 2): a

master and one or more client applications. The master is
responsible for dividing the global input data into smaller
chunks and distributing them in the form of workunits. In-
terpreting the output generated by the workunits and com-
bining them to a global output is also the job of the master.
The master usually runs as a daemon, but it is also possible
to write it so it runs periodically (e.g. from cron), processes
the outstanding events, and exits. Client applications are
simple sequential programs that take their input, perform
some computation on it and produce some output.

Figure 2. DC-API application components

A typical master application written using DC-API does
the following steps:

1. Initialises the DC-API master library by calling the
DC initMaster function.

2. Calls the DC setResultCB function and option-
ally some of the DC setSubresultCb, DC set-
MessageCb, DC setSuspendCb and DC setVa-
lidateCb functions, depending on the advanced fea-
tures (messaging, subresults, etc.) it wants to use.

3. In its main loop, calls the DC createWU functi-
on to create new workunits when needed and af-
ter specifying the necessary input and output files
(DC addWUInput, DC addWUOutput) it can hand
them over to the grid infrastructure for processing by
calling the DC submitWU function. If the total num-
ber of workunits is small (depending on the grid in-
frastructure), then the master may also create all the
workunits in advance. If the number of workunits
is large, the master may use the DC getWUNumber
function to determine the current number of workunits
processed by the grid infrastructure, and create new
workunits only if it falls below a certain threshold.

4. Also in its main loop the master calls the DC p-
rocessMasterEvents function that checks for

outstanding events and invokes the appropriate call-
backs. Alternatively, the master may use the DC wa-
itMasterEvent and DC waitWUEvent functions
instead of DC processMasterEvents if it prefers
to receive event structures instead of using callbacks.

A typical client application performs the following steps:

1. Initialises the DC-API client library by calling DC -
initClient function.

2. Identifies the location of its input/output files by call-
ing the DC resolveFileName function. Note that
the client application may not assume that it can
read/create/write any files other than the names re-
turned by DC resolveFileName.

3. During the computation, the client should periodically
call the DC checkClientEvent function and pro-
cess the received events.

4. If possible, the client should call the DC fracti-
onDone function with the fraction of the work com-
pleted. On some grid infrastructures (e.g. BOINC)
this will allow the client’s supervisor process to show
the progress of the application to the user. Ideally the
value passed to this function should be proportional to
the time elapsed so far compared to the total time that
will be needed to complete the computation.

5. The client should call the DC finishClient func-
tion at the end of the computation. As a result, all out-
put files will be sent to the master and the master will
be notified about the completion of the work unit.

3.4. Clusters and Parallel Applications

As mentioned above, DGs are currently restricted to
be used by applications following the Master/Worker pa-
radigm. One of the applications of SZTAKI Desktop Grid
however, required to overcome this limitation to provide a
Grid execution environment for numerical weather predic-
tion and climate models.

ALADIN is a modern finite domain numerical weather
prediction model and complex meteorological model fam-
ily. As such, the program code of ALADIN is quite large
and complex. Moreover, as many scientific applications of
this scale, it is using MPI for message-passing parallelism
and consists of tens of thousands lines of FORTRAN. The
first step in porting this application to desktop grids was the
analysis of the communication patterns of the application.
This has shown that ALADIN requires intense communi-
cation between its processes as their computation is tightly
coupled and need each other’s intermediate results to con-
tinue their own computation. Considering all of this, ex-
tending the DG infrastructure to allow running applications

without requiring them to directly employ DC-API and sup-
porting cluster resources instead of single PCs seemed to be
a much easier solution than re-engineering ALADIN itself.

For this, another modified BOINC client and a wrap-
per application was developed. The wrapper is wedged be-
tween the client and the real application, doing the required
steps on behalf of the application and executing the parallel
program on the client cluster (see Figure 3). This way, it
became possible to run applications (such as ALADIN) on
LDG without modifying their source code, where this is not
feasible because of its complexity and size.

Figure 3. Components of Cluster and Parallel
Application Support

For proper operation it is required that the parallel appli-
cation (ALADIN) is registered in the database of the server,
and that the runtime environment required by the applica-
tion (such as MPI) is available on the clients. In a centrally
managed LDG this can be assured. The input of the applica-
tion must be divided into independent chunks which are to
be processed by the parallel application running on the DG
system. As this is dependent on the application this step
should be done by scientists familiar with the application.

Another component which had to be implemented is the
Scenario Manager. This component can be implemented
using DC-API and has to perform the following tasks:

1. Having the independent chunks of input, it should cre-
ate the appropriate workunits (DC createWU) and
submit them to the grid infrastructure for processing
(DC submitWU). In Figure 4 arrows 1 and 2 corre-
spond to this task.

2. Handle the processed results (DC getResultWU)
and create the appropriate output files (DC getRe-
sultOutput). In Figure 4 arrows 3 and 4 corre-
spond to this task.

Creating the chunks of input and assembling the final
output from the parts computed on the DG infrastructure

can either be done by pre- and post-processing steps or be
incorporated into the Scenario Manager.

Figure 4. Flow of Wrapped Parallel Applica-
tion Execution

During operation the following steps are performed:

(5.1) The client connects to the server (more precisely to
the appropriate project on it).

(5.2) It downloads the application executable if it was not
done yet. (The executable is only downloaded once by
each client thus, network traffic is only dependent on
the size of the input and output files.)

(5.3) It downloads a workunit (with all its input files) cor-
responding to the parameters of the cluster.

(5.4) After that, the client starts the wrapper which is part
of the modified core client. The wrapper resolves all
file names using the appropriate DC-API calls.

(5.5) The wrapper starts the real application executable
(ALADIN) and waits for it to finish its execution.

(5.6) After the application has executed the wrapper re-
stores the output files as it is required by the DG in-
frastructure and then finishes its execution.

(5.7) The Core client uploads the output files and reports
the result to the server

After the above, the Scenario Manager can get the result
from the infrastructure and extract the necessary output files
using the appropriate DC-API functions, and can save them
for later processing. When all submitted workunits have

been processed it can assemble the final output from the
results if needed.

The wrapper works as a DC-API client application, i.e.,
at start up it calls the DC initClient function, then
reads the contents of the native wrapper.config
configuration file. This configuration file is created by the
modified Core client from data found in the result descriptor
of BOINC and describes the files needed by the real appli-
cation executable. Then after resolving their real names, the
wrapper copies the application binaries and the required in-
put files into the working directory and starts the executable
designated in the configuration file. After the application
has finished its execution, the wrapper copies the output
files declared in the configuration file to the paths required
by BOINC and calls DC finishClient.

Note that BOINC requires the application to create all its
declared output files. Since the aim of this modified client
and the wrapper is to allow any non gridified application to
be run on LDG, this has to be solved. Because of this, the
wrapper creates an empty file for each declared output file
that cannot be found in the working directory after success-
ful execution of the application (i.e. if some output files are
optional for the application). However, as an exception this
does not concern files with a name starting with dc . These
files are private to DC-API and should not be touched by
the wrapper.

4. Conclusion

Several projects are actively using SZTAKI Desktop
Grid and its features discussed in this paper. SZTAKI
also runs a public BOINC project also known by the name
SZTAKI Desktop Grid (SZDG) which is using DC-API and
features of LDG at a global level.

The original intention of SZDG was to serve demonstra-
tional purposes among scientists mainly in Hungary and
also worldwide to prove that it’s not necessary to have
expensive hardware and truly monumental aims to catch
the attention of the voluntary public. Soon after starting
SZDG in early summer of 2005, the Computer Algebra De-
partment of the Eötvös Loránd University applied for the
project with their already developed and running single-
threaded program: project BinSYS [4] which was modified
to run on SZDG using DC-API. The goal of BinSYS was
to determine all of the binary number systems up to the di-
mension of 11. The difficulty in this is that the number of
possible number-system bases explodes with the rising of
the dimension. The input of the program is a huge, but fi-
nite part of the number space and the output is a bunch of
matrices, or more precisely their characteristic polynomi-
als fulfilling certain criteria. Further narrowing the criteria
on these selected matrices, the resulting ones make up the
generalised binary number systems of the given dimension.

Knowing the complete list of these number systems the next
step is to further analyse from the view of information the-
ory. Sketching the integer vector of the vector space in the
usual way and in the generalised number system, their form
can greatly vary in length. Also the binary form of vec-
tors close to each other can vary on a broad scale. With
this in mind the research will continue further with the use
of number systems in data compression and cryptography.
The assumption was that the program will be able to handle
the dimensions up to 11 on a few computers and by the time
the cooperation has been started it has already finished up to
dimension 9. The prediction has assumed that the process-
ing of dimension 10 will last for about a year, yet it has been
successfully finished by the end of the year 2005 with the
help of the few thousand computers of volunteers joining
the project. After this success the application has been fur-
ther developed making it able to handle dimensions higher
than 11 and also to break the barriers of the binary world
and process number systems with a base higher than 2.

One of the fundamental tasks in modern drug research is
the exclusion of chemically unstable, biologically inactive
or toxic compounds from the research process in the early
stages, thereby reducing the cost and the time period of the
drug development. The main purpose of the ADMETox-
Grid and CancerGrid projects is to develop an enterprise
Grid system that is suitable for predicting these chemical
parameters of millions of compounds in a short time and
in a secure manner, while also exploiting the free capacity
of the office computers located at the different sites of the
company. In this project SZTAKI Desktop Grid serves as
the base of the Grid framework and is being extended with
additional features such as cluster support, user interface via
a web portal and advanced interface to databases.

In cooperation with University of Szeged, research is un-
derway in the field of data mining and artificial intelligence
to develop an algorithm utilising the capabilities of desk-
top grids. The software enables the user to select the al-
gorithm and to make scheduling decisions while the algo-
rithm is running, as well as the generation of higher quality
data mining models by automating these permits. One of
the most innovative parts of the research is to optimise the
scheduling of the algorithms enabled by meta-level learn-
ing. A prototype running on the Local Desktop Gird set up
at the University of Szeged supports the documentation and
verification of data mining projects, while it remains ex-
pandable thanks to its architecture. Special attention is paid
to data privacy issues. After the termination of the project,
the prototype and its subsequent versions will be available
for non-profit research purposes. Following up on the re-
sults of the project, the members will consider the commer-
cial deployment of a data mining grid-based product.

One of the goals of the Hungarian Advanced Grid (HA-
Grid) project is to elaborate a new generation of Desktop

Grids based on the achievements of SZTAKI Desktop Grid
and to provide a Grid execution environment for numeri-
cal weather prediction and climate models in cooperation
with the Hungarian Meteorological Service. Participants
are about to create a so-called Global Desktop Grid (GDG)
environment in Hungary, which is the first attempt to ap-
ply the DG technology not only for academic/research pur-
poses, but on the intranet infrastructure of companies. In the
project, a GDG system is being built involving large amount
of computational resources from three sites: SZTAKI, Hun-
garian Meteorological Service and econet.hu. Later, this
GDG will be the prototype for a national GDG service
which aims to integrate home PC owners, whose interest
will be challenged in financial manner. This way, a service
provider based Hungarian Grid market will be born, which
can lead to a new kind of Internet service in the long-term.

After SZTAKI Desktop Grid has received international
recognition, the second international success was the West-
Focus GridAlliance between Brunel University and the Uni-
versity of Westminster which is dedicated to raising the
profile of Grid computing in the West London region and
to facilitate real Grid-solutions in the industry. One of
their application deals with designing periodic non-uniform
sampling sequences for digital alias free signal processing.
This is a computationally intensive problem, in which sin-
gle computer based solutions could easily run for days or
even weeks. To reduce computation time, the sequential al-
gorithm had to be parallelised, making it possible to execute
parts of the calculations on different nodes of computational
Grids at the same time. This in turn reduces the overall run-
time of the application. The SZTAKI Desktop Grid based
version of the DSP application has been demonstrated in
2006/Q1 with 100 PCs located at the two Universities in
London. The runtime of 1 month of the algorithm running
on a single PC has been impressively reduced to two days.

As a summary we can state that SZTAKI Desktop Grid
(SZDG) can be applied at several levels. At the global level
it has been working for more than a year attracting more
than 13,000 participants donating more than 23,000 desk-
top machines. The typical performance of SZDG varies be-
tween 600-800 GFLOPS but it already achieved 1.5 Ter-
aFLOPs peak performance. At the local level SZDG is
also successfully used at several universities and in com-
panies. The main attraction of the local SZDG is its capa-
bility of creating hierarchical DG systems as well as includ-
ing clusters as clients. These extensions of the local SZDG
compared to BOINC makes SZDG an excellent choice to
build enterprise and institution DG systems from smaller
local SZDG systems built at the department level. Institu-
tions and enterprises often possess clusters that can be also
connected into the local SZDG significantly increasing its
performance. The hierarchical DG concept requires much
more applications to run on DG systems and hence we have

put significant effort to facilitate the adaptation of existing
applications to the DG concept. The DC-API developed
for SZDG provides and easy-to-use function set by which
master/worker applications can be easily created and run in
SZDG. More than that, the DC-API is generic enough to run
the same master/worker application on different Grid sys-
tems. Overall, SZDG and DC-API concepts together enable
- the easy and non-expensive creation and maintenance of
local enterprise/institution Grid systems - fast creation and
execution of DG applications. More information on SZDG
and DC-API can be found at the SZTAKI web site [15].

References

[1] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and
D. Werthimer. Seti@home: An experiment in public-
resource computing. Communications of the ACM,
45(11):56–61, November 2002.

[2] D. P. Anderson. Boinc: A system for public-resource com-
puting and storage. In Proc. of 5th IEEE/ACM International
Workshop on Grid Computing, Pittsburgh, USA, November
2004.

[3] F. Berman, A. Hey, and G. Fox, editors. Grid Computing -
Making the Global Infrastructure a Reality. John-Wiley &
Sons, Ltd., 2003.

[4] Project binsys. http://compalg.inf.elte.hu/
projects/binsys/.

[5] A. A. Chien. Architecture of a commercial enterprise desk-
top grid: the entropia system. In Berman et al. [3], chap-
ter 12.

[6] Hungarian ClusterGrid Infrastructure Project. http://
www.clustergrid.niif.hu/.

[7] P. Computing. Platform LSF. http://www.platform.
com.

[8] T. T. D. Thain and M. Livny. Condor and the grid. In Berman
et al. [3], chapter 11.

[9] EGEE Enabling Grids for E-SciencE. http://www.
eu-egee.org.

[10] G. Fedak, C. Germain, V. Néri, and F. Cappello. Xtremweb:
A generic global computing system. In Proc. of CC-
GRID2001 Workshop on Global Computing on Personal De-
vices. IEEE Press, May 2001.

[11] I. Foster. The Grid: Blueprint For a New Computing Infras-
tructure. Morgan Kaufmann, Los Altos, CA, 1998.

[12] Grid MP, United Devices Inc. http://www.ud.com.
[13] I. D. Inc. DeskGrid. http://www.deskgrid.com.
[14] A. Cs. Marosi, G. Gombás, and Z. Balaton. Secure appli-

cation deployment in the hierarchical local desktop grid. In
Proc. of DAPSYS 2006 6th Austrian-Hungarian Workshop
on Distributed and Parallel Systems, Innsbruck, Austria,
September 2006.

[15] SZTAKI Desktop Grid. http://www.desktopgrid.
hu/.

[16] The UK NGS. http://www.grid-support.ac.uk.

