
Direct Execution of Linux Binary on Windows for

Grid RPC Workers

Yoshifumi Uemura, Yoshihiro Nakajima and Mitsuhisa Sato

Graduate School of Systems and Information Engineering

University of Tsukuba

{uemura, ynaka, msato}@hpcs.cs.tsukuba.ac.jp

Abstract— Local area or campus-type networks consist of PCs
using different operating systems such as Windows and Linux.
These PCs are expected to have enormous potential computing
power for grid computing. The majority of PCs in this type of
environment run on Windows, while grid applications and mid-
dleware are often developed on Linux. The challenge is to absorb
the heterogeneity of operating systems. Grid RPC is a promising
programming model for the development of grid applications.
We have designed and implemented an agent called BEE, which
enables direct execution of Linux binary programs on Windows
for a Grid RPC worker. We have integrated the BEE agent into
an OmniRPC system in order to make use of Windows PCs as
computing resources in a hybrid grid environment combining
Windows PCs into grid computing resources. The BEE agent
allows Linux binaries of the program of the OmniRPC worker
to be exported and run under Windows without any modification
of its Linux binaries. The results of our experiments show that
the performance of a worker program using BEE is almost the
same as that of Windows native binary and Cygwin and is better
that that of using VMware. We have demonstrated a hybrid grid
environment combining Window PCs in a conventional grid of
Linux nodes.

I. INTRODUCTION

Nowadays, local area or campus-type networks consist of

PCs using different operating systems, including Windows and

Linux. With 100 to 300 PCs in an average LAN, this presents

enormous potential computing power. On the other hand,

advances in wide-area networking technology and infrastruc-

ture have made it possible to construct large-scale, high-

performance distributed computing environments, or computa-

tional grids, that provide dependable, consistent and pervasive

access to enormous computational resources. To build a large-

scale grid environment, PCs in offices and laboratories are

expected to be used as computational resources in addition to

dedicated conventional PC clusters.

In this type of environment, the challenge is to absorb the

heterogeneity of operating systems. PCs run under various

OSs, including Windows and Linux. The majority of PCs

in offices and laboratories are run on Windows, while grid

applications and middleware are often developed on Linux.

Furthermore, in most cases, individual PCs cannot be com-

pletely dedicated to computation. One of the simplest solutions

is the use of dual-boot installation or Linux LiveCD. The

concept here is to temporarily convert the PC into a Linux

system in order to join the grid when the PC is idle for a long

time, for example, overnight. This full migration to Linux may

not be allowed because Windows users do not want to change

the system configuration by dual boot and want to continue

working in a familiar environment, using office software or

performing other tasks. Another solution is to install an agent

or a small application on a Windows PC, which sits in the

system tray or as a Windows service working for the grid.

In the present paper, we introduce an agent called BEE

that enables direct execution of Linux binary programs on

Windows for Grid RPC workers. The Grid enabled Remote

Procedure Call (Grid RPC) has been proposed as a program-

ming model for grid computing. The RPC-style system is

particularly useful in that it provides an easy-to-use, intuitive

programming interface, allowing users of a grid system to

easily make grid-enabled applications. This model supports a

typical master-worker type of parallelism, dispatching jobs to

each worker by asynchronous RPC calls. We have integrated

BEE into the OmniRPC system [1] in order to make use

of Windows PCs as computing resources in a hybrid grid

environment combining Windows PCs into conventional grid

resources. The BEE agent allows Linux binaries of the Om-

niRPC worker program to be exported and run under Windows

without any modification of its Linux binaries. The BEE agent

is controlled by the master running on Linux (the master node).

BEE loads a Linux binary program in Windows and exe-

cutes it directly, emulating a few system calls required for a

Grid RPC worker such as network I/O operations. This differs

from the virtual machine technology in that it does not emulate

an entire Linux kernel. BEE provides lightweight and efficient

I/O operations because the I/O operations are performed by

Windows native I/O. Although a software driver is required to

emulate Linux system calls, BEE is easy to install and remove,

which can be accomplished in minutes.

The remainder of the present paper is organized as follows:

Section 2 describes the design choices used to construct a hy-

brid grid environment combining Windows PCs as computing

resources. Section 3 describes the design and implementation

of BEE. Section 4 describes an overview of the OmniRPC

system that we have used as a Grid RPC system and the inte-

gration of BEE into the OmniRPC system. The performance

evaluation is presented in Section 5. Finally, conclusions and

future areas for consideration are presented in Section 6.

1-4244-0910-1/07/$20.00 ©2007 IEEE

II. HYBRID GRID ENVIRONMENT: EXECUTING LINUX

PROGRAMS ON WINDOWS

Figure 1 shows an overview of a hybrid grid environment.

Our objective is to utilize PCs running Windows in offices and

laboratories as potential grid computational resources (work-

ers) in addition to Linux clusters and PCs. The master uses

Linux only because several grid applications are developed on

Linux. The proposed Grid RPC system, OmniRPC, has also

been developed in a Linux environment. Therefore, in order

to make use of Windows PCs as computational resources in a

Grid RPC system, we need to run Grid RPC worker programs,

which are usually generated in a Linux node, on Windows PCs.

In this section, we discuss how to run the worker programs in

Windows.

For the present purpose, the following are important:

• Flexibility: Windows users (PC owners) can work as

usual while the worker program runs. If possible, the

program should run with low priority, or only when the

PC is idle.

• Efficiency and Performance: When running the worker

program, the execution should be nearly as fast as native

ported binary.

• Manageability: The user can setup the environment and

prepare the program running in Windows with minimal

cost.

The following are existing solutions for running programs

imported from Linux in Windows:

• Using cross-platform compilers such as Cygwin[2].

• Using virtual machine software such as VMware[3].

Cygwin is a collection of free software that consists of

a library-implemented Linux system call APIs and a large

number of application programs, including compilers, which

provide a Linux-like environment equivalent to common pro-

grams on Linux. Since Cygwin provides an environment that

is compatible with Linux, the source code of the Linux

program can be executed by recompiling the code. When

using Cygwin for a hybrid grid environment, the user has

to prepare binaries of a worker program for both Linux and

Windows. The program should be recompiled by Cygwin to

make its Windows binary separately. In addition, in order to

deploy remote worker programs for several Windows PCs,

some deployment mechanism of Grid RPC workers is required

for Windows as well as the Cygwin runtime system.

A virtual machine is software that provides a virtualized en-

vironment on one computer platform. In the present paper, we

use the term “virtual machine” as a hardware virtual machine.

This virtualization environment enables an OS environment

to be run under different OSs. When running Linux on the

Windows virtual machine, this software can act as a bridge on

the Linux kernel and can run on top of Windows. Therefore,

by installing the Linux OS on the virtual machine, the machine

can execute the worker programs imported from Linux directly

in Windows.

There are several kinds of virtual machine software such

as VMware [3] [4], QEMU [5] [6] and Xen [7] [8]. Consider

��� ��������

����	
�����

�� ����

������� ��

������� ��

����	 �������

�� ����

����	 ��

�������
�������

����	
�������

Fig. 1. Overview of a hybrid grid environment

VMware as an example. VMware is a full system emulator,

so that it can emulate a complete system with full compati-

bility. Most systems designed for Linux can be executed in

a virtual machine on the binary level. Since the emulator

runs in a memory address space separate from the other host

applications, any crash of the guest system will not affect

the host. On the other hand, the VMware drains much of

system resources and requires a huge amount of memory

and intercepts several cycles. In addition, VMware requires

full installation and configuration of a Linux kernel, which

required significant management and installation costs. To run

a PC as a Grid RPC worker requires a few system calls such as

network I/O operations. In addition, VMware is a commercial

product, and all Windows PCs will need licenses, which will

require additional cost.

In the present paper, we propose an agent, called BEE,

which enables direct execution of a Linux binary program

exported from Linux on Windows. This does not require any

recompilation for Windows, as in Cygwin, because the Linux

binary is executed directly on Windows. In addition, a full

installation of the Linux kernel, as in VMware, is not required.

Only a few system calls required to execute a Grid RPC worker

are emulated in BEE with a small Windows kernel driver.

III. DESIGN AND IMPLEMENTATION OF THE BEE AGENT

For a hybrid grid environment with Windows and Linux, we

have implemented an agent called BEE for the Linux binary

program execution environment to utilize Windows PCs as

workers of the Grid RPC system. In this section, we describe

the design and implementation of the BEE agent.

Although there are several types of system call in Linux,

a sufficient number of system calls are supported to run a

Grid RPC worker. Therefore, the target architecture of BEE

is limited to Intel IA-32 architecture because most versions

of Windows run on this architecture. Since both operating

systems are run on the same instruction architecture, the binary

program should run natively on the machine, except for the

system calls of each operating system. We have implemented

����������

����������

����������

����������

����� 	��
��

����
� ��
���

��

��
��� �����
����
�

����� 	��
��
����
�

������� ������
��

�

���
������

����� ������ �
��
����
���

�����
���������

Fig. 2. BEE memory map on Windows

 !!

"#$%&' ()**
&'+*)%,-

.-,/-)'
*,)0&-

1
234 5675
1

89:;<
=>?@>AB

CDEFGHI23J
KHLJ

MNO9PN Q>9ON>
R:SN>>;=S MNTP>9=S?> UAVWN

5655 5675 56XX

YZ DJ[2\4DE42H3

]Z \^\4JF KEII 2_J

`Z aHELb
J6JK_4J

cZ d_FG

eZ DJ4_D3

Fig. 3. Execution mechanism with BEE agent

a system call emulator to absorb the difference in operating

systems.

The BEE has two functions: the binary program loader and

the system call emulator.

A. Binary Program Loader

The binary program loader is a function by which to load

a Linux binary program into the Windows memory address

space. While Linux uses various program formats, such as

the Executable and Linking Format (ELF) [9], Windows uses

program formats, such as the Portable Executable (PE) format.

By this function, the Linux program is executed as a process

of Windows.

This function analyzes the Linux program format to load

on Windows. The BEE supports the ELF binary, which is

a standard program format in Linux. We assume that the

Linux binary is statically linked because we do not support the

shared libraries in the current implementation. Since Grid RPC

workers are executed across the network, the shared libraries

would be required to be transferred over the network. The

version of libraries is occasionally different when binaries are

compiled in different Linux nodes. This may be troublesome

in several cases.

To run a Linux program under Windows, the binary program

loader loads a Linux binary program into its own memory

space. Figure 2 shows the memory map of BEE. The program

loader maps the ELF executable at the address starting from

the standard address 0x8048000. To avoid address conflicts

between the program loader and the ELF binary program, the

program loader is mapped at a lower address than that in which

the binary is loaded.

Once the binary is loaded, control is transferred into the

Linux program entry point to start the execution. During

execution, the Linux heap area is allocated by the brk() system

call. The Linux system calls are emulated by BEE, so that its

heap area is allocated just after the address to which the ELF

executable code is loaded.

B. System Call Emulator

As long as we use the same IA-32 architecture, with the

exception of the system calls, the Linux program should run

natively even on Windows. The system call emulator is a

function by which to emulate Linux system calls. The BEE

supports only I/O system calls required for Grid RPC workers.

The system call emulator function is implemented using a

software interrupt, which transfers control of the kernel code

corresponding to the issued system call. The implementation

of system calls is different in Windows and Linux. While

Windows uses the software interrupt of int 0x2E at NT/2000

and sysenter at XP to implement the system call, Linux uses

the software interrupt of int 0x80.

Each software interrupt is associated with interrupt handlers,

which are routines that take control when an interrupt occurs.

These interrupt handlers are registered in the table supported

by the IA-32 architecture, called the Interrupt Descriptor Table

(IDT) [10]. Fortunately, Windows does not use the software

interrupt associated int 0x80 used for Linux. Therefore, BEE

registers an interrupt handler associated int 0x80 to emulate

Linux system calls in Windows. The BEE uses a simple

device driver to add the interrupt handler for the software

interrupt because the handler code is executed in kernel space.

The device driver is installed in advance before the BEE is

executed.

The device driver for the software interrupt of the Linux

system calls executes a simple trampoline code, which catches

a software interrupt from the Linux system calls and jumps

back to the system call emulation code in the user address

space in BEE. The emulation of the Linux system calls is

implemented using Windows APIs. Although there are several

types of system calls in Linux, a sufficient number of system

calls are supported in order to run a Grid RPC worker.

������

���	
 ��
��� ����

������
����������
�������

����� �!
�����

"�����

���	
 ����

������ �����#��� "���

�������������

���$���

Fig. 4. Original OmniRPC in Linux

%&'()*+ ,-.)/- 0)+/

123456

7&'89 0)+/

:4;<64 =><?4@A>4 1B22

?<;;A53?B63<5

C5D<E4

FGG

:4;<64
GH4?A6BI24
=><J>B;

K<B@
L

GH4?

<;53>M?N
I44NBJ456

546O<>E

Fig. 5. RPC system of integration of BEE into OmniRPC

Currently, we have implemented file I/O, such as write() and

read(), and network I/O, such as send() and recv(). After

executing the called system call, control transfers back directly

to the point at which the software interrupt occurred.

C. Executing the Linux Binary Program

Figure 3 shows the flow of execution of the binary program

loader and the system call emulator in BEE. BEE executes the

Linux binary program in following steps:

1) Before executing the Linux binary program, the interrupt

handler for the software interrupt 0x80 of the Linux

system is called by using the device driver in the IDT.

2) The binary program loader loads the specified binary

into its own address space and runs as a Windows

process.

3) When a system call occurs during execution, the regis-

tered interrupt handler is invoked.

4) The interrupt handler returns the control to the system

call emulator in BEE.

5) BEE emulates the system call and returns control to the

caller of the system call to continue the execution.

6) When the exit() system call is called, BEE terminates.

IV. INTEGRATION OF BEE INTO THE OMNIRPC SYSTEM

We have integrated BEE into the proposed Grid RPC

system, OmniRPC, to execute OmniRPC workers in Windows

PCs. The BEE agent enables the OmniRPC application to use

Windows PCs as computational resources in a hybrid grid

environment.

The OmniRPC system [1] [11] [12] provides seamless

parallel programming for a local cluster to multi-cluster in

a grid environment and supports typical master/worker grid

applications such as parametric execution.

Figure 4 shows an overview of the RPC mechanism of

OmniRPC in conventional Linux nodes. The OmniRPC system

consists of three types of components: the client, the remote

executable program, and the OmniRPC agent (omnirpc-agent).

The client is a master program and dispatches calculations to

worker. The remote executable program is a worker program

and executes calculation on a remote host when the master

program dispatches the calculations to it. The agent bridges be-

tween master and workers and invokes the remote executable

programs as a worker. The agent may also work as a proxy

of the communication between client and remote executable

programs.

In the OmniRPC system, the master does not execute

a remote executable program on remote host directly. The

master invokes the agent with appropriate authentication, such

as “ssh” or globus GRAM, at the beginning of Grid RPC

applications and asks the agent to invoke a remote executable

program as a worker in a remote host.

Figure 5 shows the configuration of the OmniRPC system

with BEE on Windows. We make use of a Windows PC as a

worker controlled by a master running on Linux. In the case of

the Windows PC, the agent of Windows is invoked manually

in advance as a daemon. We have extended the OmniRPC to

support such a configuration.

The target resources of the original OmniRPC system are

PC clusters in a grid environment. Within each cluster, files

such as remote executable programs are generally shared, so

that deployment is needed for the master node of each cluster.

In a large hybrid grid environment, however, it is assumed that

files are not shared between PCs in offices and laboratories.

Therefore, the Grid RPC system is required to provide a

deployment mechanism of remote executable programs for

each worker. For OmniRPC worker integrated with BEE, we

have extended the agent to receive executable files from the

master at run-time. The master (client) automatically sends the

executable files generated in Linux to the agent in Windows

at the beginning of execution of grid applications.

TABLE I

RPC MASTER NODE

Linux OS Linux kernel 2.6.9
CPU Xeon 2.4 GHz
Memory 1 GByte
Network Gigabit Ethernet
Node 1

TABLE II

RPC WORKER NODE

Windows OS WindowsServer2003
Enterprise Edition SP1

CPU Xeon 3.2 GHz
Memory 2 GByte
Network Gigabit Ethernet
Node 4

Linux OS Linux kernel 2.6.9
CPU Xeon 2.4 GHz
Memory 1 GByte
Network Gigabit Ethernet
Node 4

VMware Version 5.0.0
OS Linux kernel 2.6.11
Memory 1 GByte
Network Bridge
Node 4

V. PERFORMANCE OF HYBRID GRID ENVIRONMENT USING

BEE

In this section, we report the basic performance of BEE

and Grid RPC applications of a hybrid grid environment

using BEE. To demonstrate its efficiency, we have compared

the present approach with VMware as the virtual machine

software and Cygwin as a cross-compiler environment. As a

measure of basic performance, we have examined the perfor-

mances of system calls and communication, and a synthetic

program, which models a typical Grid RPC application. We

have also examined the performance of a realistic application

in a hybrid grid environment.

A. Experimental Settings

For the performance evaluation, we have a hybrid grid

environment that consists of Windows and Linux PCs. Table I

and Table II, respectively, show the master and worker configu-

rations and the number of nodes used. For the measurement of

the Windows environment, we used BEE and the Linux binary

program. In addition, we set up both VMware and Cygwin

environments in each Windows PC for comparison.

B. Performance of system calls

The performance of system calls is examined by measuring

the time of write() and read() system calls. We changed the

buffer size, and then measured the execution time required to

execute the system calls 10,000 times. We also measured the

time of Windows native system calls.

Figure 6 and Figure 7 show the execution times of write()

and read() system calls, respectively, in each configuration.

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50

Buffer size [KByte]

E
la

ps
ed

 ti
m

e
[s

ec
]

BEE

Cygwin

Vmware

Windows

Fig. 6. Execution time of write system calls

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 10 20 30 40 50

Buffer size [KByte]

E
la

ps
ed

 ti
m

e
[s

ec
]

BEE

Cygwin

Vmware

Windows

Fig. 7. Execution time of read system call

The result shows that the execution time of system calls in

BEE is approximately the same as that of Windows native

system calls and Cygwin. The execution time of one system

call of BEE is approximately 0.6 µ sec slower than that of

the Windows native system call and approximately 0.5 µ sec

slower than that of Cygwin. This overhead is a result of

the time for the software interrupt because the BEE requires

twice the number of software interrupts in the system call

emulator to execute Linux system calls. The execution time

of Cygwin is approximately 0.1 µsec slower than that of

Windows native system calls, because Cygwin requires extra

time to emulate Linux for system calls. The performance of

system calls of VMware is approximately the same as those of

other configurations when the buffer size is small. However,

the VMware performance decreases dramatically when the

buffer size exceeds 10 KBytes for the write() system call and

20 KBytes for the read() system call.

C. Performance of communication

The communication performance between master and work-

ers is one of the most important performance measures in Grid

0

10

20

30

40

50

60

70

80

90

100

� �� �� �� ��

message size [KByte]

T
hr

ou
gh

pu
t [

M
B

yt
e/

se
c]

BEE

Cygwin

Vmware

Windows

Fig. 8. Communication performance

0

200

400

600

800

1000

1200

1400

1600

1800

1K 100K 10M 100M 200M 500M

Data size [Byte]

E
la

ps
ed

 ti
m

e
[s

ec
]

BEE

Cygwin

VMware

Fig. 9. Execution time of the synthetic program

RPC. In this experiment, the destination of communication is

the master node of Linux, because the proposed Grid RPC

applications run the master program in a Linux node, and

Windows PCs are used only for the workers. We measured

the communication performance between master and workers

in each configuration. We also measured the Windows native

communication performance for the comparison.

Figure 8 shows the TCP throughput in each configuration.

We changed the message size and then measured the execution

time of ping-pong for the message size. The throughput is

calculated by the execution time.

The result shows that the communication performance of

BEE is as good as that of Windows native program, and

the maximum communication performance is 93.9 MByte/sec.

The communication performance of Cygwin is 93.6 MByte/sec

and becomes slightly worse when the message size becomes

large because the communication of Cygwin requires memory

copy. The communication routine in this experiment uses

write() and read() system calls, as are generally used in Linux.

When the program is compiled with Cygwin, write() and

read() system calls are executed by writev() and readv() system

calls, respectively. These system calls in Cygwin perform

memory copy.

The communication performance of VMware is not so

bad when the message size is small. However, when the

message size exceeds 20 KBytes, its performance decreases

dramatically and finally freezes due to unexpected errors.

D. Performance using a synthetic workload model

To measure the basic performance of a hybrid grid using

BEE, we use a synthetic program that models RPC appli-

cations. This program receives a certain amount of initial

data and executes several RPCs. We changed the size of the

initial data from 1 Kbytes to 500 Mbytes and used the sleep

API to simulate the RPC jobs. In the experiment, we set the

computation time of workers on remote hosts to 30 seconds

in the synthetic program. The master issues RPC calls a total

of 100 times.

Figure 9 shows the execution time of the synthetic program

when using four nodes in each configuration. The execution

time of each configuration increases when the data size be-

comes larger, for up to 500 MBytes, because data transfer

requires a certain amount of time. In the OmniRPC system,

the RPC requests are scheduled on demand. If the previous

job is finished before the next RPC is issued, the same worker

is used for the next RPC job. If the data transfer becomes a

bottleneck, then occasionally not all of the nodes are used.

We observed that when the data size is less than 200 MBytes,

all four nodes were used. When the data size is 500 MBytes,

only three nodes were used in BEE and Cygwin, and two

nodes were used in the VMware configuration because the

communication performance of VMware is much lower than

those of other configurations.

E. Performance for a realistic application

To examine the performance of a realistic application,

we measured the performance of a parallel master-worker

eigenvalue solver [13].

This program can solve a large-scale eigenvalue problem

in parallel by solving the equation corresponding to the point

on the circumference in the complex space. Small matrices

for these points are transferred to workers in order to solve a

small subprogram independently, and then these solutions of

subproblems are gathered to calculate the final solution. The

program finds all of the eigenvalues that lie inside a given

domain. In this experiment, we compare the performance of

two nodes and four nodes of Windows PCs using BEE. The

number of the eigenvalue computation jobs is 40.

Figure 10 shows the execution time in each configuration.

The result shows that the execution time of BEE is slightly

slower than that of Cygwin. In the communication of Om-

niRPC system, the data transfer is performed by dividing 1-

0

200

400

600

800

1000

1200

BEE Cygwin VMware

E
la

p
se

d
 ti

m
e

 [s
e

c]
2 nodes

4 nodes

Fig. 10. Execution time of parallel master-worker eigenvalue solver

0

100

200

300

400

500

600

700

800

E
la

ps
ed

 ti
m

e
[s

ec
]

Windows PC 4 nodes

Linux PC 4 nodes

Windows PC 2 nodes,
Linux PC 2 nodes

Windows PC 4 nodes,
Linux PC 4 nodes

Fig. 11. Execution time of parallel eigenvalue calculation in a hybrid
environment that contains Windows and Linux machines

Kbyte packets. As shown in Figure 8, the communication

performance of BEE is approximately the same as that of

Cygwin. Since BEE has the extra overhead of twice the

number of software interrupts at the system call, its overhead

is a big factor when the data size is so small. We found that

in such realistic applications, many mmap() system calls are

used to reserve memory area during the execution of worker

programs. The mmap() system call requires the overhead of

software interrupts for system calls. In BEE, loading the binary

program so that the mmap() system call is also used for loading

the program also takes some time. In this experiment, memory

allocation for loading requires approximately 0.5 msec.

The execution time of VMware is slower than those of BEE

and Cygwin due to its slow communication performance.

F. Performance of a hybrid grid environment

We examined the performance of a hybrid grid environment

when using Linux and Windows PCs at the same time. As in

the previous subsection, we used a parallel eigenvalue solver.

Figure 11 shows the execution time when workers used two

nodes and used four nodes respectively. For the comparison,

Fig. 11 also shows the execution time when using either four

Windows PCs or four Linux PCs.

Note that the performance of Windows PCs and Linux

PCs are different. The CPU of the Windows PC is Xeon 3.2

GHz, and the CPU of Linux PC is 2.4 GHz. Therefore, the

configuration using two nodes of Windows PCs and two nodes

of Linux PCs is slower that of four nodes of Linux PCs. If

these PCs have the same performance, then the performance

of these configurations will be approximately the same.

This experiment demonstrates that we can combine Win-

dows PCs and Linux PCs to realize a hybrid grid environment.

VI. CONCLUSION AND FUTURE WORKS

In the present paper, we proposed a mechanism that utilizes

Windows PCs as workers of a Grid RPC system in a hybrid

grid environment that contains Windows and Linux PCs. We

have designed and implemented an agent called BEE that

consists of a binary program loader and a system call emulator

to enable a worker program imported from Linux to run under

Windows. The BEE enables a Linux binary program to be

executed directly and efficiently under Windows without any

recompilation. We have integrated BEE with the proposed Grid

RPC system, OmniRPC, to realize a Grid RPC system for a

hybrid grid environment.

We evaluated the basic performance of BEE, including

system calls and communication, and the performance of

realistic applications in a hybrid gird environment. We found

that BEE provides nearly the same performance as Windows

native and Cygwin because of direct execution of binary and

the efficient implementation of system calls. The performance

of BEE is more efficient that that of solution using virtual

machine technology such as VMware. We have demonstrated

that we can utilize Windows PCs as computing resources in a

hybrid grid environment.

In the future, we intend to examine the following areas:

• BEE currently supports a program of Linux kernel 2.4.

We discovered a number of problems in executing a

binary program generated in Linux kernel 2.6. The new

Linux kernel 2.6 implements a new thread model called

Native POSIX Threading Library (NPTL) [14] and sup-

ports Thread Local Storage (TLS) [15]. Linux kernel 2.6

also introduces the TLS system calls for TLS. These

system calls allow the allocation of a Global Descriptor

Table (GDT), which is a CPU data structure entry that can

be used to access memory, and this memory is accessed

via a register such as gs. We are currently working on

supporting BEE for a binary program generated in Linux

kernel 2.6.

• The goal of the present research is the utilization of

Windows PCs in offices and laboratories as computing

resources in a hybrid grid environment. These PCs are

often volatile, so that we should investigate process

migration between Windows and Linux on BEE with

respect to such volatility.

ACKNOWLEDGMENT

The present study was supported in part by Grants-in-Aid

from MEXT of Japan (No. 172002 and No. 177324) and by

the Japan-France collaboration research program (SAKURA)

of the JSPS.

REFERENCES

[1] OmniRPC, http://www.omni.hpcc.jp/OmniRPC/.
[2] Cygwin, http://sourceware.org/cygwin/.
[3] VMware, http://www.vmware.com/.
[4] J. Sugerman, G. Venkitachalam, and B.-H. Lim, “Virtualizing I/O

Devices on VMware Workstation’s Hosted Virtual Machine Monitor,”
in Proceedings of the General Track: 2002 USENIX Annual Technical

Conference. Berkeley, CA, USA: USENIX Association, 2001, pp. 1–14.
[5] QEMU, http://www.qemu.com/.
[6] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator ,” in

Proceedings of USENIX 2005 Annual Technical Conference, 2005, pp.
41–46.

[7] Xen, http://www.xensource.com/.
[8] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt,

A. Warfield, P. Barham, and R. Neugebauer, “Xen and the Art
of Virtualization,” in Proceedings of the ACM Symposium on

Operating Systems Principles, October 2003. [Online]. Available:
citeseer.ist.psu.edu/dragovic03xen.html

[9] TIS Committee: Tool Interface Standard(TIS) Executable and Linking

Format(ELF) Specification version 1.2, 1995. [Online]. Available:
http://www.x86.org/ftp/manuals/tools/elf.pdf

[10] Intel(R), IA-32 Intel(R) Architecture Software Developer’s Manuals,
2004.

[11] M. Sato, T. Boku, and D. Takahashi, “OmniRPC: a Grid RPC ystem for
Parallel Programming in Cluster and Grid Environment,” in CCGRID,
2003, pp. 206–.

[12] Y. Nakajima, M. Sato, T. Boku, D. Takahashi, and H. Gotoh, “Per-
formance Evaluation of OmniRPC in a Grid Environment,” in SAINT

Workshops, 2004, pp. 658–665.
[13] T. Sakurai, K. Hayakawa, M. Sato, and D. Takahashi, “A parallel method

for large sparse generalized eigenvalue problems by omnirpc in a grid
environment.” in PARA, 2004, pp. 1151–1158.

[14] U. Drepper and I. Molnar, “The Native POSIX Thread Library for
Linux,” http://people.redhat.com/ drepper/nptl-design.pdf, 2005.

[15] U. Drepper, “ELF handling for Thread-Local Storage,”
http://people.redhat.com/drepper/tls.pdf, 2005.

