
A combinatorial model for self-organizing networks

Yuri Dimitrov1, Carlo Giovine2∗, Gennaro Mango2∗, Mario Lauria3

1 Dept. of Mathematics 2Dip. di Informatica e Sistemistica
The Ohio State University, Columbus, OH Università di Napoli “Federico II”, Naples, Italy

yuri@math.ohio-state.edu {gennaro.mango, carlo.giovine}@unina.it

3 Dept. of Computer Science and Engineering 3 Telethon Institute of Genetics and Medicine
The Ohio State University, Columbus, OH (TIGEM), Naples, Italy

lauria@cse.ohio-state.edu lauria@tigem.it

Abstract

In previous works we have proposed to use of self-
organization based on emergent design as a model for the
programming of very large aggregates of heterogeneous
computing resources. In our approach, a large scale com-
putation is divided into small independent units of compu-
tation, each provided with its own uniform, autonomous be-
havior; only local information is used by each unit of com-
putation to take all the decisions needed to carry out the
computation. One of the challenges of this novel approach
is to provide some theoretical foundation that can assist in
the rational design of new systems.

In this paper is to demonstrate the use of combinato-
rial techniques for obtaining quantitative analytical models
of the organization pattern emerging from a specific type
of self-organizing computation. Specifically, in a previous
experiment we have demonstrated a computation in which
mobile agents organize themselves around an overlay tree,
that constantly restructures itself in response to changing
node availability and performance levels. In this paper we
derive an analytical expression describing how nodes dis-
tribute themselves over the tree based on their performance,
in a simplified version of the above problem. This result
represents an instance of a theoretical tool that can be used
to predict global patterns emerging as a result of a self-
organizing design, and to establish a direct connection be-
tween global features and local behavior parameters.

1This work was performed while C. G. and G. M. were visiting Mario
Lauria’s group at the Ohio State University

1-4244-0910-1/07/$20.00 c©2007 IEEE.

1 Introduction

A growing number of computer science fields relies on
systems composed of large numbers of independent com-
puting elements. Desktop grids composed of thousands to
millions of PCs have been used to perform some of the
largest computations in the world [30, 37, 16]. The current
trend in Massively Parallel Processor (MPP) systems is ex-
emplified by machines like IBM’s Blue Gene/L which will
have more than 100K processors at full configuration [14].
High-end PC/workstation clusters of increasing size have
been built over the years and the ones currently appear-
ing near the top of the Top500 supercomputer ranking have
around 8K nodes [33]. Sensor networks of 10K nodes are
being prototyped [15], and much larger numbers of ele-
ments are expected for MEMS-based projects like Smart
Dust [23].

We have proposed to use self-organization as a model for
the programming of very large aggregates of heterogeneous
computing resources, for the purpose of running high per-
formance computing (HPC) applications that are too large
for even the largest current supercomputers [10, 9, 11].
Self-organizing computation based on emergent design, in
the literature also referred to with other names such as emer-
gent computation [17] or amorphous computing [1], is a
type of computation in which the desired global organiza-
tion of the system emerges from local and long range inter-
actions among component parts. This concept is very gen-
eral and has been applied to areas such as, among others,
artificial neural networks, adaptive systems, connectionist
learning, cellular computing, organization of social insects,
and biological networks [35, 6].

In our approach, a large scale computation is divided into
small independent units of computation, each provided with

its own uniform, autonomous behavior; only local informa-
tion or very limited amount of non-local information is used
by each unit of computation to take all the decisions needed
to carry out the computation. Allowing global coordination
to emerge from a distributed collection of simple compo-
nents has important advantages over explicit central control
in both natural and artificial systems information processing
systems. There are well known costs in associated to cen-
tralized coordination, such as i) speed (a central coordina-
tor can become the performance bottleneck), ii) robustness
(if the coordinator fails, the whole systems halts), and iii)
control overhead (the overhead incurred in gathering and
updating the state information about the system).

By using a decentralized, adaptive scheduling approach,
we attempt to enable a number of tasks to be run on large
numbers of machines connected by an unreliable network.
Our approach can be used to broaden the class of applica-
tions that can be run on a large desktop grid, or to extend
a traditional Grid computing approach to platforms with
highly unreliable connections or highly unpredictable lev-
els of availability.

In the course of this project we are investigating the the-
oretical foundations of self-organization applied to HPC.
The challenges of developing a theoretical framework for
the self-organizing approach can be summarized by the two
following fundamental questions:

• Given a description of the local behavior, is it possi-
ble to make predictions on the resulting global organi-
zation of computation, that emerges as a result of the
assigned behavior?

• Once identified a desirable feature of the global sys-
tem, is it possible to provide design guidelines for the
local behavior needed to achieve the emergence of the
assigned behavior?

The objective of this paper is to report on one of our first
attempts toward the development of the theoretical founda-
tions that will ultimately enable the rational design of large
scale system. Based on our experiments with a proof of con-
cept prototype called the Organic Grid, we have identified
key aspects of the design process that would benefit from
methods of rational design and analysis. Our approach to
the development of these methods has been to study and
adapt techniques developed in other fields of science for the
treatment of large collections of simple elements. In this
paper we will present the preliminary results for the case of
combinatorial analysis reminiscent of the study of thermo-
dynamic ensembles.

1.1 Related Work

Despite an obvious interest and the numerous practical
applications, the engineering of general purpose large scale

computing systems is still largely matter of research. In
the following we briefly review current approaches and how
they relate to ours.

Internet computing and Desktop grids. These large
scale systems are based on variants of the master/workers
model [4, 30, 37, 18, 16, 12, 26, 27, 21, 25, 7, 24]. The level
of technical maturity reached by some of these projects is
demonstrated by the fact that they have spawned commer-
cial enterprises. However they have two fundamental prob-
lems. The achievable computing power of this approach
is constrained by the performance of the master (especially
for data-intensive applications) and by the difficulty of de-
ploying the supporting software on a large number of work-
ers. Second, despite the spectacular success of some In-
ternet computing projects, these systems are also severely
restricted in the choice of suitable applications; the underly-
ing master/worker model combined with the extreme band-
width requirements for the master makes these large scale
deployment suitable only for independent task applications
with high granularity individual tasks.

Grid scheduling. Research on grid scheduling has fo-
cused on algorithms to determine an optimal computation
schedule based on the assumption that sufficiently detailed
and up-to-date knowledge of the systems state is available
to a single entity (the metascheduler) [20, 5, 2, 31]. While
this approach results in a very efficient utilization of the
resources, it does not scale well to large systems. Main-
taining a global view of the system becomes prohibitively
expensive and on unreliable networks might even make it
impossible.

2 Self-organization of Complex Systems

This section contains a brief introduction to the cru-
cial concepts and technologies used in our work on auto-
nomic scheduling, as well as the related work in these ar-
eas. These include: Peer-to-Peer and Internet computing,
self-organizing systems and the concept of emergence.

Peer-to-Peer and Internet Computing The idea of uti-
lizing the CPU cycles of idle machines was first put to work
in the Worm project [22] at Xerox PARC. Further progress
was achieved by academic projects such as Condor [26].
The growth of the Internet and the wide availability of inex-
pensive broadband connections to home and the office made
large-scale efforts like GIMPS [37], SETI@home [30] and
folding@home [16] feasible. Recently, commercial solu-
tions such as Entropia [12] and United Devices [36] have
also been developed.

Still, all these approaches suffer from a fundamental lim-
itation: computation must be divisible into a large number
of independent tasks to be organized according to a mas-
ter/worker model. Instead, the idea of combining Internet
resources for general purpose large scale computations us-
ing a peer-to-peer approach is attractive because of the po-
tential for almost unlimited computational power, low cost,
ease and universality of access — a true Computational
Grid. Among the technical challenges posed by such an
architecture, scheduling is one of the most formidable —
how to organize computation on a highly dynamic system
at a planetary scale while relying only on local knowledge
of its state.

Self-Organization of Complex Systems The organiza-
tion of many complex biological and social systems has
been explained in terms of the aggregations of a large num-
ber of autonomous entities that behave according to simple
rules. According to this theory, complicated patterns can
emerge from the interplay of many agents — despite the
simplicity of the rules [34, 19]. The existence of this mech-
anism, often referred to as emergence, has been proposed
to explain patterns such as shell motifs, animal coats, neu-
ral structures, and social behavior. In particular, complex
behaviors of colonial organisms such as social insects (i.e.
ants, bees) have been studied in detail, and their applica-
tions to the solution of classic computer science problems
such as task scheduling and TSP has been proposed [29, 6].

In a departure from the methodological approach fol-
lowed in previous projects, we did not try to accurately re-
produce a naturally occurring behavior. Rather, we started
with a problem and then designed a completely artificial be-
havior that would result in a satisfactory solution to it. Our
work is somewhat closer to the self-organizing computation
concept explored in the Co-Fields project [28]. The idea be-
hind Co-Fields is to drive the organization of autonomous
agents through artificial potential fields.

Our work was inspired by a particular version of the
emergence principle called Local Activation, Long-range
Inhibition (LALI) [32]. The LALI rule is based on two
types of interactions: a positive, reinforcing one that works
over a short range, and a negative, destructive one that
works over longer distances. We retain the LALI princi-
ple but in a different form: we use a definition of distance
which is based on a performance-based metric. Nodes are
initially recruited using a friends list (a list of some other
peers on the network) in a way that is completely oblivi-
ous of distance, therefore propagating computation on dis-
tant nodes with same probability as close ones. During the
course of the computation agents behavior encourages the
propagation of computation among well-connected nodes
while discouraging the inclusion of distant (i.e. less respon-
sive) agents.

2.1 The Organic Grid

We have developed a framework called the Organic
Grid [10, 9, 11] for deploying and scheduling computa-
tion on desktop grids in a decentralized and self-organizing
manner.

Our design is based on the following design assump-
tions. First, very few assumptions (if any) can be made
about the systems, in particular about the amount of knowl-
edge available about the system. Second, since the system
is constantly changing (in terms of operating parameters,
resource availability), self-adaption is the normal mode of
operation and must be built in from the start. Third, the
deployment of the components of an infrastructure is a non-
trivial issue, and should be one of the fundamental aspects
of the design. Fourth, any dependence on specialized en-
tities such as schedulers, masters nodes, etc., needs to be
avoided unless such entities can be easily replicated in a
way that scales with the size of the system.

Our approach was to encapsulate computation and be-
havior into Java mobile agents, which deliver the computa-
tion to available machines. Java mobile agents provided a
convenient implementation platform that allowed us to con-
centrate on the design issues of a self-organizing compu-
tation. However self-organization is a very general princi-
ple and other type of implementations are possible; for ex-
ample the use of virtual machines and virtual network con-
nections, possibly augmented with a mechanism for check-
pointing/recovery, would provide comparable functionality
in terms of computation isolation, code distribution, process
migration.

These mobile agents then communicate with one another
and organize themselves in order to use the resources ef-
fectively. Once an application is started at a node, e.g.,
the user’s laptop, other nodes are called in to contribute re-
sources. New mobile agents are created that, under their au-
tonomous control, readily colonizes the available resources
and start computing. Only minimal support software is re-
quired on each node, since most of the scheduling infras-
tructure is encapsulated along with the application code in-
side an agent. In our experiments we only deployed a JVM
and a mobile agent environment on each node.

Computation organizes itself on the available nodes ac-
cording to a pattern that emerges from agent-agent inter-
action. In the simplest case, this pattern is an overlay tree
rooted at the starting node; in the case of a data intensive ap-
plication, the tree can be rooted at one or more separate, pre-
sumably well-connected machines at a supercomputer cen-
ter. More complex patterns can be developed as required
by the applications requirements, either by using different
topologies than the tree, and/or by having multiple overlay
networks each specialized for a different task.

In our system, the only knowledge each agent relies upon

is what it can derive from its interaction with its neighbor
and with the environment, plus an initial friends list needed
to bootstrap the system. The nature of the information re-
quired for successful operation is application dependent and
can be customized. E.g., for our first (data-intensive) appli-
cation, both neighbor computing rate and communication
bandwidth of the intervening link were important; this in-
formation was obtained using feedback from the ongoing
computation.

Agent behavior completely determines the way com-
putation is organized. In order to demonstrate the feasi-
bility and generality of this approach, we briefly describe
our experience in designing agent behavior for running two
representative applications on an Organic Grid: the NCBI
BLAST code for sequence alignment, and Cannon’s algo-
rithm for matrix multiplication.

In the first Organic Grid prototype we demonstrated
how to apply our decentralized approach to a class of ap-
plications representing the main staple of grid schedul-
ing research, namely an independent task application (or
ITA) [10]. The specific application we used was BLAST, a
popular sequence alignment tool. The results of our experi-
ments using the ITA are available in [10].

For an ITA, the computation spreads out from its source
in the form of a tree. The source distributes the data in the
form of computational subtasks that flow down the tree; re-
sults flow towards the root. This same tree structure was
used as the overlay network for making scheduling deci-
sions. In general, there could be separate overlay networks:
for data distribution, for scheduling, and for communication
between subtasks. In the case of an ITA, there is no commu-
nication between subtasks while the overlay trees for data
distribution and scheduling overlap.

In order to demonstrate the generality of the self-
organizing approach and the flexibility of the Organic Grid
scheduling framework, we selected a second application
characterized by a highly regular and synchronous pattern
of communication — Cannon’s matrix multiplication algo-
rithm [8]. This application employs three different overlay
networks: a star topology for data distribution, a torus for
the communication between subtasks, and the tree overlay
of the scheduling framework.

More details on these experiments are available in [9]
In both experiments we implemented an adaptive tree

mechanism in the agent behavior in order to select in a
decentralized manner the best available machines. Ma-
chine performance was constantly evalued with a mecha-
nism based on passive feedback, represented by the time
taken by each child to perform a known amount of compu-
tation.

In the Cannon’s algorithm case, we experimented with a
desktop grid of 20 agents that whose behavior was designed
to build a tree overlay network, of which the first 16 to con-

ORIGIN

FAST

SLOW

IS CHILD OF

EXTRA

ORIGIN

SEND TILES

EXTRA

FAST

SLOW

Figure 1. Original tree and torus overlays

ORIGIN

FAST

SLOW

IS CHILD OF

EXTRA

IS POTENTIAL CHILD OF

ORIGIN

SEND TILES

EXTRA

FAST

SLOW

Figure 2. Tree and torus overlays after Fourth
Swap

tact the distribution agent were included in a torus with 4
agents along each dimension; the remaining agents acted as
extras in case any faults occurred. The initial tree and torus
can be seen in Figure 1 with 4 slow nodes in the torus and 4
extra, fast nodes.

The structure of the tree continually changed and the
high-performance nodes were pushed up towards the root.
When a fast, extra node found that one of its children was
slower than itself and part of the torus, it initiated a swap of
roles. The topology of the tree and the torus before and after
the fourth swap are shown in Figure 2. With a few modifi-
cations the same mechanism was also employed to rebuild
the torus on the fly after a node failure.

3 Combinatorial Model

During our Organic Grid experiments an important per-
formance parameter turned out to be the percentage of high
performing nodes promoted to the upper levels of the tree.
We resorted to perform large number of runs to collect
statistics, and eventually we asked ourselves if it were pos-
sible to analytically forecast the distribution of node perfor-
mance at every level of the tree, given a rule for tree reor-
ganization as part of the agent behavior and given an initial
distribution of node performance.

4 5 6 7

2 3

1

Figure 3. The maximal and minimal configu-
rations with three 1s in T3

We approached the problem by performing a combina-
torial analysis of the possible tree configurations; given the
complexity of this type of analysis, we started with very
simple tree topologies (complete binary trees; only two lev-
els of node performance, low (“0”) and high (“1”)) and a
simplified parent-child exchange rule. In other words, we
were able to solve the following problem:

The binary tree Td with d levels and 2d − 1 nodes has a
number 0 or 1 assigned at random to each node. An edge is
chosen at random and the numbers at the nodes for this edge
are switched if the lower node has value 1 and the higher
node has value 0. The values are switched with probability
p if the lower node has value 0 and the higher has value 1.

Find the steady state distribution of the 1s at each level
of the tree Td.

3.1 Configurations

The tree Td has d levels 0, 1, ..., d−1 where the root is on
level 0 and level i consists of 2i vertices. For convenience
let’s assign weights to the vertices of Td such that the root
has weight d and the vertices on level l have weight d − l.
We also enumerate the vertices with numbers 1, 2, ..., 2d−1.
The root has number 1 and the vertices on level i have num-
bers 2i, ..., 2i+1 − 1 from left to right. Initially we assign
randomly 0s and 1s to the nodes of the tree which represent
the computers in a hierarchically organized network. Let n
be the number of 1s in the nodes. The possible values for n
are 1, 2, ..., 2d − 1, binomially distributed with probability
of success 0.5. The states of the network are all configura-
tions with n ones. The weight of a configuration is the sum
of the weights of its nodes.

The maximal configuration with n ones is the configu-
ration where the ones are in the nodes 1, 2, ..., n. The min-
imal configuration with n ones is the configuration where
the ones are in the nodes: {2d − n, 2d − n + 1, ..., 2d − 1}.

Let Gd(n) be the graphs of the configurations with n

ones. The graphs Gd(n) have
(
2d−1

n

)
vertices and two con-

12 13

14 15 23 16 17

24 25 34 35 26 27 36 37

45 46 47 56 57 67

Figure 4. The graph G3(2).

figurations are adjacent if they are consecutive states of the
system. If C1 and C2 are two adjacent configurations then
there exists an edge e = {v1, v2} of Td where the vertex v1

has number 0 in C1 and v1 is 1 in C2. The vertex v2 has
number 1 in C1 and v2 is 0 in C2. Let l(v) be the level of
vertex v in Td. The levels of the graphs of configurations
Gd(n) are induced by the levels of Td in the following way:

If l(v2) = l(v1) + 1 then l(C1) = l(C2) + 1

In Figure 4 we show the graph G3(2) which consists of the
configurations with two ones of T3.

The first level of G3(2) has two vertices corresponding
to the configurations with two ones in T3 in vertices 1, 2 and
1, 3. The graphs Gd(n) and Gd(2d − n− 1) are dual. They
are the same graph with its levels reversed. Now we outline
the steps which lead to recursive formulas for calculating
the distribution of 1s on the levels of Td. Additional details
and proofs are available in [13].

Claim 1. The graphs Gd(n) are connected for all d ≥ 2
and n = 1, ..., 2d − 2.

Let’s denote by p(C) the probability of configuration C
in the steady state distribution of the network.

Lemma 1. Let C and C′ be two adjacent configurations in
Gn(d) such that l(C′) = l(C) + 1. Then p(C′) = pp(C).

Corollary 1. Let C and C′ be two configurations in Gd(n)
with l(C) = l(C′). Then p(C) = p(C′).

We want to determine the steady-state distribution of 0s
and 1s on each level of Td. Let probd,n,r,w(p) be the proba-
bility to have w ones on row r in Td from the configurations
with n ones . Then

probd,n,r,w(p) =
numd,n,r,w(p)

dend,n(p)

where numd,n,r,w(p) and dend,n(p) are polynomials of p.
Let D be the number of levels of the graph Gd(n). The
polynomial dend,n(p) has degree D−1 and the coefficients

the number of elements on the levels of Gd(n). The coef-
ficients of numd,n,r,w(p) are determined by the number of
configurations on the levels of Gd(n) which have w ones on
row r. The probability to have w points on row r is

probd,r,w(p) =
2d−1∑
n=0

(
2d−1

n

)
numd,n,r,w(p)

22d−1dend,n(p)

Let M(d, x) be the sum of the weights of the nodes of the
first x levels of Td.

M(d, x) =
x−1∑
k=0

2k(d − k) = 2x(d − x + 2) − d − 2

When x = d we obtain that the sum of the weights of all
nodes of Td is

M(d) = 2d+1 − d − 2

The configurations on each level of Gd(n) have equal
weight. The number of configurations on the levels of
Gd(n) is given by the solutions of the following problem.

Problem 1. Let xi = 0 or xi = 1 for i = 1, 2, ..., 2d − 1

and rt =
2t+1−1∑

i=2t

xi for t = 0, 1, ..., d − 1. Let s(d, n, k) be

the number of sequences xi such that

d−1∑
i=0

ri = n and
d−1∑
i=0

(d − i)ri = k (1)

Determine the numbers s(d, n, k).

We use the numbers s(d, n, k) to determine the denomi-
nators of the probability function.

Claim 2.

dend,n(x) =
K(d,n)∑

k=k(d,n)

s(d, n, K(d, n) + k(d, n) − k)xk−k(d,n)

The numerators of the probability function are deter-
mined in Claim 3 using the number of solutions of the fol-
lowing problem.

Problem 2. Let xi = 0 or xi = 1 for i = 1, 2, ..., 2d − 1

and rt =
2t+1−1∑

i=2t

xi for t = 0, 1, ..., d − 1. Let s(d, t, n, k)

be the number of sequences xi which satisfy (1) and rt = 0.
Determine the numbers s(d, t, n, k).

Claim 3.

numd,n,r,w(x) =
(

2r−1

w

)
xk∗
K(d,r−1,n−w)∑

k=k(d,r−1,n−w)

s∗xk−k(d,r−1,n−w)

where k∗ = K(d, n)−K(d, r − 1, n−w)−w(d − r + 1)

s∗ = s(d, r − 1, n − w, k∗∗)

and

k∗∗ = K(d, r − 1, n − w) + k(d, r − 1, n − w) − k

3.2 Recursive Algorithm

In Claim 2 and Claim 3 we found formulas for the poly-
nomials dend,n(x) and numd,n,r,w(x). Let k(d, n) and
K(d, n) be the minimal and the maximal values of k for
which s(d, n, k) is not equal to 0. Let l be the largest inte-
ger such that 2l−1 < n. The maximal value of k is attained
at the maximal configuration. Then 2l − 1 of the nodes oc-
cupy the first l levels of the tree and the remaining n−2l+1
nodes are on level l. Then

K(d, n) = M(d, l) + (d − l)(n − 2l + 1)

K(d, n) = 2(2l − 1) + dn − l(1 + n)

The minimum value of k is attained at the minimal config-
uration with n ones. The dual configuration of the minimal
configuration with n ones is the maximal configuration with
2d − n − 1 ones. Then

k(d, n) = M(d) − K(d, 2d − n − 1)

k(d, n) = 2(2d − 2l) + d(n − 2d) + l(2d − n)

Now we describe a recursive algorithm for calculating the
number of solutions of Problem 1 and Problem 2.

Claim 4.

s(d, n, k) =
n∑

r=0

(
2d−1

r

)
s(d − 1, n − r, k − n)ε(r)

where

ε(r) =
{

1 if k(d − 1, n − r) ≤ k − n ≤ k∗
0 otherwise

and k∗ = K(d − 1, n− r).

We defined the sum of the weights of all nodes as
M(d) = 2d+1−d−2. Let Mt(d) be the sum of the weights
of the nodes of the tree except the nodes on level t. Then

Mt(d) = M(d) − 2t(d − t)

Mt(d) = 2d+1 − 2t(d − t) − d − 2

Let Kt(d, n) and kt(d, n) be the maximal and minimal val-
ues of k for which s(d, t, n, k) �= 0. The values of Kt(d, n)
and kt(d, n) are determined from K(d, n) in the following
way.

Claim 5.

Kt(d, n) =
{

K(d, n) if n < 2t

K(d, n + 2t) − 2t(d − t), if n ≥ 2t

and

kt(d, n) = Mt(d) − Kt(d, 2d − 2t − n − 1)

In Claim 6 we use the values of kt(d, n) and Kt(d, n) to
compute the values of s(d, t, n, k).

Claim 6. The numbers s(d, t, n, k) are calculated recur-
sively as follows

s(d, d − 1, n, k) = s(d − 1, n, k − n)

s(d, t, n, k) =
n∑

r=0

(
2d−1

r

)
s(d − 1, t, n − r, k − n)ε(r)

where

ε(r) =
{

1 if kt(d − 1, n − r) ≤ k − n ≤ k∗
0 otherwise

and k∗ = Kt(d − 1, n− r)&n < 2d−1 − 2t + r.

In [13] we prove the statements from section 3 an we
also show that the numerator and the denominator of the
probability function are the coefficients of yn of the follow-
ing polynomials

q(x, y) =
d∏

s=1

(y + xs)2
d−s

and

qr,w(x, y)=
(

2r−1

w

)
ywx(d−r+1)(2r−1−w)

∏
1≤s≤d

s�=d−r+1

(y + xs)2
d−s

3.3 Example

In Table 1 and Figure 4 we give the values and bar plots
of the probability function prob4,r,w(0.5) for r = 0, 1, 2
and all values of w computed with the recursive formulas
from section 3.2. The probabilities that all nodes on levels
0, 1 and 2 have number 1 are approximately 83%, 50% and
10%. These probabilities approach 100% as the number of
levels of Td increases.

p = .5 w = 0 w = 1 w = 2 w = 3 w = 4

r=0 0.171 0.829

r=1 0.086 0.41 0.504

r=2 0.043 0.201 0.362 0.299 0.095

Table 1. The values of the probability function
on the first three levels of T4 for p = 0.5.

83 % 50 % 10 %

Figure 5. Bar plot of the probability function
from Table 1

3.4 Future work

The results of our investigation into theoretical founda-
tions for the Organic Grid will be tested in a variety of
ways. An Organic Grid simulator currently under develop-
ment will be the tool of choice to test large scale configura-
tions. The simulator is under construction using Java, and it
will be validated using our Organic Grid prototype, which
is currently being ported to a higher performance mobile
agent environment called ProActive [3]. On the analytical
side, the logical steps used to obtain the probability function
are based on the connectivity of the graph of configurations
Gd(n) and do not rely on the tree structure of the network.
We therefore expect that our results can be generalized and
applied to a much wider class of hierarchical self-organizing
networks.

References

[1] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy,
J. Thomas F. Knight, R. Nagpal, E. Rauch, G. J. Sussman,
and R. Weiss. Amorphous computing. Commun. ACM,
43(5):74–82, 2000.

[2] D. Abramson, J. Giddy, and L. Kotler. High performance
parametric modeling with Nimrod/G: Killer application for
the global grid? In Proc. Intl. Parallel and Distributed Pro-
cessing Symp., pages 520–528, May 2000.

[3] F. Baude, D. Caromel, F. Huet, and J. Vayssı̀ere. Communi-
cating mobile active objects in Java. In M. Bubak, H. Afsar-
manesh, R. Williams, and B. Hertzberger, editors, Proceed-
ings of HPCN Europe 2000, volume 1823 of Lecture Notes
in Computer Science, pages 633–643. Springer Verlag, May
2000.

[4] Berkeley Open Infrastructure for Network Computing
(BOINC).

[5] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail,
M. Faerman, S. Figueira, J. Hayes, G. Obertelli, J. Schopf,
G. Shao, S. Smallen, N. Spring, A. Su, and D. Zagorodnov.
Adaptive computing on the grid using AppLeS. IEEE Trans-
actions on Parallel and Distributed Systems, 14(4):369–382,
2003.

[6] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intel-
ligence: From Natural to Artificial Systems. Oxford Uni-
versity Press, Santa Fe Institute Studies in the Sciences of
Complexity, 1999.

[7] D. Buaklee, G. Tracy, M. K. Vernon, and S. Wright. Near-
optimal adaptive control of a large grid application. In Pro-
ceedings of the International Conference on Supercomput-
ing, pages 315–326, June 2002.

[8] L. Cannon. A Cellular Computer to implement the Kalman
Filter Algorithm. PhD thesis, Montana State University,
1969.

[9] A. J. Chakravarti, G. Baumgartner, and M. Lauria.
Application-specific scheduling for the Organic Grid. In
Proceedings of the 5th IEEE/ACM International Workshop
on Grid Computing (GRID 2004), pages 146–155, Pitts-
burgh, November 2004.

[10] A. J. Chakravarti, G. Baumgartner, and M. Lauria. The Or-
ganic Grid: Self-organizing computation on a peer-to-peer
network. In Proceedings of the International Conference on
Autonomic Computing, pages 96–103. IEEE Computer So-
ciety, May 2004.

[11] A. J. Chakravarti, G. Baumgartner, and M. Lauria. The or-
ganic grid: self-organizing computation on a peer-to-peer
network. IEEE Transactions on Systems, Man, and Cyber-
netics, Part A, 35(3):373–384, 2005.

[12] A. A. Chien, B. Calder, S. Elbert, and K. Bhatia. Entropia:
architecture and performance of an enterprise desktop grid
system. J. Parallel and Distributed Computing, 63(5):597–
610, 2003.

[13] Y. Dimitrov and M. Lauria. A combinatorial model for self-
organizing networks. Technical Report OSU-CISRC-1/07-
TR02, Dept of Computer Science and Engeneering, The
Ohio State University, Jan. 2007.

[14] N. R. A. et al. An overview of the bluegene/l supercom-
puter. In Proceedings of the 2002 ACM/IEEE conference on
Supercomputing. IEEE Computer Society Press, 2002.

[15] ExScal (formerly Echelon). http://www.cse.ohio-
state.edu/ duttap/echelon/start.html.

[16] folding@home.
[17] S. Forrest, editor. Emergent computation. MIT Press, Cam-

bridge, MA, USA, 1991.
[18] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke.

Condor-G: A computation management agent for multi-
institutional grids. In Proc. IEEE Symp. on High Per-
formance Distributed Computing (HPDC), pages 7–9, San
Francisco, CA, August 2001.

[19] A. Gierer and H. Meinhardt. A theory of biological pattern
formation. Kybernetik, 12:30–39, 1972.

[20] A. S. Grimshaw and W. A. Wulf. The Legion vision of a
worldwide virtual computer. Comm. of the ACM, 40(1):39–
45, Jan. 1997.

[21] E. Heymann, M. A. Senar, E. Luque, and M. Livny. Adap-
tive scheduling for master-worker applications on the com-
putational grid. In Proc. of the First Intl. Workshop on Grid
Computing, pages 214–227, 2000.

[22] J. A. H. John F. Shoch. The ”Worm” programs — early
experience with a distributed computation. Comm. of the
ACM, 25(3):172–180, Mar. 1982.

[23] J. M. Kahn, R. H. Katz, and K. S. J. Pister. ”next century
challenges: mobile networking for smart dust”. In Proceed-
ings of the 5th annual ACM/IEEE international conference
on Mobile computing and networking, pages 271–278. ACM
Press, 1999.

[24] N. T. Karonis, B. Toonen, and I. Foster. MPICH-G2: A grid-
enabled implementation of the message passing interface.
Journal of Parallel and Distributed Computing, 63(5):551–
563, 2003.

[25] T. Kindberg, A. Sahiner, and Y. Paker. Adaptive Parallelism
under Equus. In Proceedings of the 2nd International Work-
shop on Configurable Distributed Systems, pages 172–184,
Mar. 1994.

[26] M. Litzkow, M. Livny, and M. Mutka. Condor — a hunter
of idle workstations. In Proceedings of the 8th International
Conference of Distributed Computing Systems, pages 104–
111, June 1988.

[27] M. Maheswaran, S. Ali, H. J. Siegel, D. A. Hensgen, and
R. F. Freund. Dynamic matching and scheduling of a class of
independent tasks onto heterogeneous computing systems.
In Proceedings of the 8th Heterogeneous Computing Work-
shop, pages 30–44, Apr. 1999.

[28] M. Mamei and F. Zambonelli. Co-Fields: a Physically In-
spired Approach to Distributed Motion Coordination. IEEE
Pervasive Computing, 3(2), April 2004.

[29] A. Montresor, H. Meling, and O. Babaoglu. Messor: Load-
balancing through a swarm of autonomous agents. In Pro-
ceedings of 1st Workshop on Agent and Peer-to-Peer Sys-
tems, number 2530 in Lecture Notes in Artificial Intelli-
gence, pages 125–137. Springer-Verlag, July 2002.

[30] SETI@home.
[31] I. Taylor, M. Shields, and I. Wang. Grid Resource Man-

agement, chapter 1 - Resource Management of Triana P2P
Services. Kluwer, June 2003.

[32] G. Theraulaz, E. Bonabeau, S. C. Nicolis, R. V. Sol, V. Four-
cassi, S. Blanco, R. Fournier, J.-L. Joly, P. Fernndez, A. Gri-
mal, P. Dalle, and J.-L. Deneubourg. Spatial patterns in ant
colonies. PNAS, 99(15):9645–9649, 2002.

[33] TOP500 Supercomputing Sites project.
http://www.top500.org/.

[34] A. Turing. The chemical basis of morphogenesis. Philos.
Trans. R. Soc. London, 237(B):37–72, 1952.

[35] A. M. Turing. The chemical basis of morphogenesis. Philo-
sophical Transactions of the Royal Society (B), 237:37–72,
1952.

[36] United Devices. Grid computing solutions.
[37] G. Woltman. GIMPS: The great internet mersenne prime

search.

