Intelligent Optimization of Parallel and Distributed Applications

Bhupesh Bansal?, Umit Catalyurek?®, Jacqueline Chame!, Chun Chen!, Ewa Deelman®,
Yolanda Gil!, Mary Hall', Vijay Kumar®, Tahsin Kurc,® Kristina Lerman!,
Aiichiro Nakano?, Yoon-ju Lee Nelson!, Joel Saltz?, Ashish Sharma?, Priya Vashishta?

1University of Southern California
Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292

{jchame,chunchen,deelman,gil,mhall,lerman } @isi.edu

2 University of Southern California
Department of Physics and Astronomy
Vivian Hall of Engineering, 610
Los Angeles, CA 90089-0242

{bansal,anakano,priyav }@usc.edu

Department of Biomedical Informatics
The Ohio State University
333 West, 10th Avenue
Columbus, OH 43210
{umit,vijayskumar kurc,saltz,ashish }@bmi.osu.edu

Abstract

This paper describes a new project that systemat-
ically addresses the enormous complexity of mapping
applications to current and future parallel platforms.
By integrating the system layers — domain-specific envi-
ronment, application program, compiler, run-time en-
vironment, performance models and simulation, and
workflow manager — and through a systematic strategy
for application mapping, our approach will exploit the
vast machine resources available in such parallel plat-
forms to dramatically increase the productivity of appli-
cation programmers. This project brings together com-
puter scientists in the areas represented by the system
layers (i.e., language extensions, compilers, run-time
systems, workflows) together with expertise in knowl-
edge representation and machine learning. With expert
domain scientists in molecular dynamics (MD) simula-
tion, we are developing our approach in the context of a
specific application class which already targets environ-
ments consisting of several hundreds of processors. In
this way, we gain valuable insight into a gemeralizable
strateqy, while simultaneously producing performance
benefits for existing and important applications.

1-4244-0910-1/07/$20.00 ©2007 IEEE

1 Introduction

Scientists are conducting data analysis of unprece-
dented complexity and scale. Many scientific appli-
cations are being built not as monolithic entities, but
rather by combining models and analysis routines con-
tributed by many scientists, specializing in different
areas of the problem. Resulting applications can be
defined as workflows composed of hundreds or thou-
sands of components to be executed in coordination
on a variety of resources. The application components
may have different performance characteristics and re-
source requirements and some require very specialized,
high-performance resources to achieve reasonable per-
formance.

Efficient, robust execution of application workflows
in heterogeneous, distributed environments is com-
posed of a set of problems at different scales-from low-
level architecture-specific optimizations to utilize the
memory hierarchy and individual processor, effective
parallelization, on up to high-level application compo-
sition. In the proposed research, we view application
optimization as hierarchical, consisting of optimization
of individual components, and the composition of com-
ponents into a workflow. Each component comprising
a workflow must be able to execute efficiently on the
target architecture(s), and under a variety of execution



cnvironment conditions, such as resource constraints
and data sct characteristics. In turn, these perfor-
mance metrics depend on a variety of application-level
features and the set of transformations applied by the
compiler. Further, the components must be composed
in such a way that the solution performs well globally
and makes productive use of valuable computing re-
sources.

In this paper, we describe a systematic solution
for performance optimization and adaptive application
mapping — a large step towards automating a process
that is currently performed in an ad hoc way by pro-
grammers and compilers — so that it is feasible to ob-
tain scalable performance on parallel and distributed
systems consisting of tens of thousands of processing
nodes. The application components will be viewed as
dynamically adaptive algorithms for which there exist
a set of variants and parameters that can be chosen to
develop an optimized implementation. A variant de-
scribes a distinct implementation of a code segment,
perhaps even a different algorithm. A parameter is an
unbound variable that affects application performance.
Variants and parameters are specified by users or de-
rived by the compiler. An instance of the application
can be viewed as a workflow where the nodes represent
the application components and dependences between
the nodes represent execution ordering constraints. By
encoding an application in this way, we can capture a
large set of possible application mappings with a very
compact representation. The application programmer
relies on the system layers to explore the large space
of possible implementations to derive the most appro-
priate solution. Because the space of mappings is pro-
hibitively large, the system captures and utilizes do-
main knowledge from the domain scientists and design-
ers of the compiler, run-time and performance models
to prune most of the possible implementations. Knowl-
edge representation and machine learning techniques
utilize this domain knowledge and past experience to
navigate the search space efficiently.

2 Motivating Example: MD Simula-

tion

Our goal is a general strategy towards systematic
workflow optimization. To focus our efforts, we are de-
veloping this strategy in the context of a specific class of
applications, namely molecular dynamics (MD) simula-
tions. MD simulations involve deriving the phase-space
trajectories of the system in terms of the positions and
velocities of all particles at all times [15]. Different al-
gorithm wvariants are used, depending on the number of
particles N, their distribution (uniform/nonuniform),

and boundary conditions, while the parallel perfor-
mance of algorithms will depend strongly on the gran-
ularity N/P, for processors P [16, 14]. Furthermore,
within a given algorithm, there are a number of param-
eters that may affect performance, such as the size of
a “cell” or collection of particles.

Currently, algorithm variants, computational pa-
rameters and workflow mappings for MD are derived
empirically through expert knowledge and limited sets
of performance measurements. Compiler variants and
parameters are selected based on compiler models,
which are often derived statically and based on con-
servative approximations. As the optimization space
grows rapidly on scalable systems, such ad hoc ap-
proaches to application development and optimization
are becoming increasingly inadequate. Further, there
is a need for application programmers, compilers and
run-time systems to work in collaboration, rather than
independently.

The main objective of this project is to develop
a systematic framework and set of tools for auto-
matic, optimized mappings of MD simulation work-
flows. From experience with MD simulation, we will
develop a generalizable framework to optimize work-
flows for large-scale parallel systems. Because we are
basing this framework on existing tools in wide use,
this system will lead to a research vehicle for building
general productivity tools for parallel systems.

3 System Overview

An overview of the proposed system is shown in Fig-
ure 1. The key innovation is the incorporation of a pair
of search engines that search a set of alternative map-
pings of the application to the hardware to select the
implementation that has the best overall performance
for a specific problem instance. A search engine collab-
orates with the compiler and run-time environment to
derive the best implementation of specific application
components for a particular target environment, using
both models and empirical data. Another search engine
considers the space of possible mappings of workflow
components to available resources, guided by heuris-
tics for local optimizations, to derive a mapping that
results in the smallest execution time for the overall
workflow. Domain knowledge of the programmer is
captured through the specification of algorithm vari-
ants, computational parameters and expected resource
requirements. The compiler processes these specifica-
tions and provides compiler variants and parameters
for a set of target architectures. The workflow map-
ping composes the optimized components into a final
implementation.
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Figure 1. Overview of System.

Developing a systematic approach to workflow op-
timization is essential to productive utilization of the
vast machine resources of large-scale parallel platforms
with thousands of processors, but deriving a simulta-
neously effective and practical approach is quite chal-
lenging. Even with thousands of processors, empirical
search of a large number of alternative implementa-
tions of a computation is infeasible. To be successful,
this research program must address the following con-
siderable technical challenges:

¢ Workflow design and mapping techniques that
capturc optimization dccisions and component
choices.

e A set of linguistic mechanisms that allow the appli-
cation programmer to specify algorithm variants
and computational parameters at a very high level.

e Capturing the optimization parameters and work-
flow properties for the MD algorithms.

e Formulation and representation of component op-
timization as a machine-learning problem.

e Identification of search algorithms to efficiently
navigate the search space of various optimizations.

¢ Compiler technology to decouple analyses and
code transformations from optimization.

e Appropriate models to guide search algorithms
and prune the search space.

e An efficient approach to dynamically generate or
select component implementations

In the remainder of the paper, we will discuss the tech-
nology that is used in our system, and the progress
in the early months of the project on addressing these
challenges.

4 Technology Development

We are basing this framework on existing tools, some
of which are already in wide use. This section briefly
describes the existing tools.

Describing and Scheduling Workflows Work-
flows are described using Wings (Workflow INstance
Generation and Selection) [10]. Wings allows for the
specification of a workflow template (a skeleton of the
analysis) that identifies all the application components
and their dependencies. Then it enables the user to se-
lect the appropriate input data products and generate
a workflow instance that uniquely describes the overall
analysis in a resource-independent way. Wings relies
on semantic descriptions of the workflow components



to make surce that only secmantically-compatible com-
ponents arc composed in the workflow template. When
the workflow template is instantiated, the semantic
types of data that is used to populate the template
are validated against the specifications in the template.
Wings also maintains information about the metadata
of the data (both intermediate and final) generated
by the workflow. The workflow instance is then given
to Pegasus [7], a workflow mapping system that maps
the resource-independent workflow description onto the
available resources. Pegasus queries: 1) the environ-
ment for the available resources and their characteris-
tics, 2) the transformation catalog to find where the ex-
ecutables for the workflow components are located and
what their environment requirements are, 3) data reg-
istries to find the location of the input data. Together,
Wings and Pegasus aim to optimize the workflow based
on the overall workflow runtime by selecting the imple-
mentations for the workflow components, and/or the
parameters for the components that are most appro-
priate given the available resources.

Managing Data in DataCutter. The system in-
corporates DataCutter [1], a component-based middle-
ware framework. The DataCutter framework provides
a coarse-grained data-flow system and allows combined
use of task- and data-parallelism. In DataCutter, ap-
plication processing structure is implemented as a set
of components, referred to as filters, that exchange data
through a stream abstraction. A stream denotes a uni-
directional data flow from one filter (i.e., the producer)
to another (i.e., the consumer). The DataCutter run-
time system supports execution of filters on heteroge-
neous collections of storage and compute clusters in a
distributed environment. Multiple copies of a filter can
be created and executed, resulting in data parallelism.
The runtime system performs all steps necessary to in-
stantiate filters on the desired hosts, to connect all logi-
cal endpoints, and to invoke the filter’s processing func-
tion. Each filter executes within a separate thread, al-
lowing for CPU,1/0 and communication overlap. Data
cxchange between twolters on the same host is carried
out by pointer hand-off operations for languages that
support pointers (C++), while message passing is used
for communication between filters on different hosts.

Model-Guided Empirical Optimization in ECO.
The Empirical Compilation and Optimization (ECO)
compiler uses an approach to compiler-directed code
optimization called model-guided empirical optimiza-
tion [3]. This approach simultaneously optimizes
across multiple levels of the memory hierarchy for
dense-matrix computations by combining compiler

models and heuristics with guided empirical search to
take advantage of their complementary strengths. The
models and heuristics limit the search to a small num-
ber of candidate implementations, and the empirical
results provide the most accurate information to the
compiler to select among candidates and tune opti-
mization parameter values. Results on matrix mul-
tiply have demonstrated results that are comparable
and in some cases outperform hand-tuned libraries with
a compiler-based approach. While the initial frame-
work used a heuristic-based based on compiler domain
knowledge, a subsequent paper examined how to for-
mulate the search systematically and considered how
to use AI search techniques [4]. In our system, com-
ponents for which this completely compiler-based opti-
mization strategy is applicable are tuned automatically
for multiple levels of the memory hierarchy.

5 Recent Progress

Workflow Optimization. Many workflows today
are not only compute-intensive, but also data-intensive.
As the execution environment is often shared among
many communities and applications, the amount of re-
sources available to a particular workflow may be lim-
ited. Although workflow performance may suffer, if
the compute resources are not adequate, the applica-
tion may fail due to lack of data storage resources. In
our current work, we are studying mechanisms for min-
imizing the amount of disk space needed by a particular
workflow. One approach requires adding tasks to the
workflow to explicitly remove the data when they are
no longer needed. This approach involves examining
the use of data files within the workflow and identify-
ing when the data have been staged out to storage or
when they have been consumed by a workflow compo-
nent and no longer needed. In our simulations of the
execution of a LIGO workflow (a gravitational-wave
physics analysis) on 4 distributed execution sites, we
were able to reduce the maximum amount of space
needed by the workflow by approximately 50%. The
largest workflow we simulated contained about 40,000
tasks [&].

Wings and DataCutter As an initial step toward
integrating Wings and Data-Cutter, we have devel-
oped a Wings representation for an electron microscopy
workflow, based on the algorithms and optimizations
described in [12]. This workflow resembles the MD
simulation computations in its pipeline structure and
the need for out-of-core data management. Since it
builds on extensive evaluation using Data-Cutter with



this application, this application provides a good start-
ing point for integrating these tools.

Evaluating MD visualization parameters. We
have developed an implementation of the visualization
phase of MD simulation, in which application-level pa-
rameters and a range of values for these parameters
are provided to the system. We have focused on two
application-level parameters: (1) cell size, the group-
ing of particles into an aggregate object; and, (2) cache
size, an additional grouping of neighboring cells to
be cached during a computation to manage locality.
Varying both of these parameters, and for several data
sets and numbers of processors, we have analyzed the
performance relationship between these two parame-
ters. Qur current work focuses on how to automati-
cally search for the appropriate combinations of these
parameters for a given data set.

Model-guided empirical optimization. We have
extended model-guided empirical optimization to ar-
chitectures with multimedia extensions. This is acom-
plished by combining our model-guided empirical opti-
mizations to the cache and TLB levels of the memory
hierarchy with optimizations targeting superword-level
paralelism (SLP) at the register level. Our compiler-
based approach yields performance on matrix multiply
that outperforms the hand-coded Intel MKL library,
and achieves results within 4% of the ATLAS self-
tuning library on an Intel Pentium M. To expand the
scope of applications to which this approach is appli-
cable, we have developed a new transformation frame-
work handles imperfect loop nests and non-rectangular
loop bounds. Compiler-generated LU decomposition
achieves performance within 7% of the hand-tuned In-
tel MKL library for the Pentium M and within 18% of
the hand-tuned SCSL library on the SGI R10K.

6 Related Work

Performance tuning of large parallel applications, in
practice, involves a tedious manual process of evalu-
ating a set of alternative implementations, coded and
debugged by the programmer, examining their perfor-
mance properties, and repeating until either satisfac-
tory performance has been obtained, or the program-
mer gives up on further improvement. This ad hoc ap-
proach is used in MD simulation, and a similar strategy
has been used in LS-DYNA, a widely used engincering
crash code, which we have automated using a special-
ized code generator [13]. Since the performance of an
application is largely architecture dependent, this pro-

cess must be repeated for each port to a new parallel
architecture.

A wealth of high-level language, compiler and run-
time technology has been developed to support this
process, and while this technology has achieved some
degree of success at the small to moderate scale of par-
allel system (on the order of 64 or fewer processors), it
has not been generally effective in scaling up to larger
platforms. Today, most applications developed for hun-
dreds to thousands of processors have been written
in MPI, and have often bypassed high-level compiler
transformations in favor of programmer-controlled op-
timization, as in the LS-DYNA example above.

A recent suite of sclf-tuning librarics and domain-
specific tools have been developed that use special-
ized code generators and a search engine to system-
atize performance tuning and porting to new architec-
tures, largely focusing on memory hierarchy optimiza-
tion. These systems have been hugely successful at
portable high performance, largely for the single pro-
cessor. As examples, ATLAS [22] and PhiPAC [2] focus
on linear algebra, while FFTW [9] and SPIRAL [18],
are for the signal processing domain. Most use brute
force scarch, applying some domain knowledge to prunc
the search space. In the case of SPTRAL, genetic tree
algorithms are used [19]. In general, the search technol-
ogy in these systems is used only at library installation
time.

Recently, several research groups have been applying
machine learning techniques to compiler optimization
problems, in specific ways. The current work in this
area largely focuses on low-level optimizations, such
as determining optimization order [6, 11], instruction
scheduling [20] and code size for embedded systems [5].
High-level optimizations considered focus only on loop
tiling for the memory hierarchy [17, 21]. The types of
search algorithms include simulated annealing [6, 17],
hill climbing [6], and genetic algorithms [5, 21, 20].
These types of search algorithms incorporate little or
no domain knowledge from the decades of compiler
optimization research. Thus, the searches are pro-
hibitively expensive and are of necessity performed off
line. Where domain knowledge has been used, the
practicality of using these techniques has greatly in-
creased [11].

7 Conclusion

In this paper we described a systematic approach
to composing and optimizing large-scale complex ap-
plication workflows on high-performance architectures,
using molecular dynamics simulation as an initial de-
sign point for the system. We draw upon techniques



developed in a varicty of computer science ficlds such
as compilers, workflow optimization, AT and others to
develop system components that can work together to
better represent the problem space and support an ef-
ficient search for solutions.
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