Knowledge and Cache Conscious Algorithm Design and Systems Support for
Data Mining Algorithms*

Amol Ghoting'! Gregory Buehrer!, Matthew Goyder', Shirish Tatikonda®,
Xi Zhang!, Srinivasan Parthasarathy!?, Tahsin Kurc?, and Joel Saltz'?

!Department of Computer Science and Engineering

?Department of Biomedical Informatics

The Ohio State University, Columbus, OH
PI Contact email: srini @cse.ohio-state.edu

Abstract

The knowledge discovery process is interactive in nature
and therefore minimizing query response time is impera-
tive. The compute and memory intensive nature of data
mining algorithms makes this task challenging. We pro-
pose to improve the performance of data mining algorithms
by re-architecting algorithms and designing effective sys-
tems support. From the view point of re-architecting algo-
rithms, knowledge-conscious and cache-conscious design
strategies are presented. Knowledge-conscious algorithm
designs try and re-use repeated computation between iter-
ations and across executions of a data mining algorithm.
Cache-conscious algorithm designs on the other hand re-
duce execution time by maximizing data locality and re-
use. The design of systems support that allows a variety
of data mining algorithms to leverage knowledge-caching
and cache-conscious placement with minimal implementa-
tion efforts is also presented.

1. Introduction

The knowledge discovery process is interactive in na-
ture. In fact, interactivity is key to facilitating effective data
understanding and knowledge discovery. Typically, during
the mining process, the user proceeds in a trial-and-error
fashion until the desired results are obtained. In such an
environment, minimizing response-time is imperative, be-
cause a lengthy delay between responses to two consecu-
tive user queries can disrupt the flow of human perception
and the formation of insight. The compute and memory
intensive nature of data mining algorithms makes this task

*This work is primarily supported by NSF grant #NGS-CNS-0406386.
The authors would also like to acknowledge NSF grants #CAREER-IIS-
0347662 and #RI-CNS-0403342.

TSupported by an IBM Ph.D. Fellowship

1-4244-0910-1/07/$20.00 (©2007 IEEE.

especially challenging. To address the aforementioned chal-
lenge, the past few years have seen researchers make signif-
icant progress in reducing the computational complexity of
data mining algorithms. However, the process continues to
be time consuming.

We believe that in order to derive high performance
on next generation computing infrastructures, one must
consider both re-architecting algorithms and designing ef-
fective middleware support. From the view point of re-
architecting algorithms, we propose to employ two new al-
gorithm design philosophies, namely knowledge-conscious
and cache-conscious algorithm designs. Given the itera-
tive and interactive nature of the knowledge discovery pro-
cess, one expects there to be significant repeated compu-
tation through successive executions of a data mining al-
gorithm. A knowledge-conscious algorithm design philos-
ophy attempts to expose this repeated computation, cache
it in a knowledge cache, and re-use it during successive
executions of a data mining algorithm. It is well known
that programs exhibiting poor data locality tend to keep a
processor stalled, waiting on the completion of data access
for a large fraction of the time. This is also known as the
memory wall problem and results in poor CPU utilization.
Cache-conscious algorithm designs attempt to alleviate this
problem by improving data locality. Furthermore, such de-
signs also allow one to effectively utilize architectural inno-
vations such as chip multiprocessing. From the view point
of designing middleware support, one must investigate the
types of services that are desired by a range of data min-
ing algorithms and how they can be designed to maximally
utilize the available infrastructures.

In this paper we present several mining solutions that
leverage the aforementioned views. Specifically, we make
the following contributions. First, we present the design of
systems support for knowledge-caching and memory place-
ment that can be utilized by a variety of data mining algo-
rithm. Second, we present knowledge-conscious algorith-

mic improvements for data clustering algorithms. Third, we
present cache-conscious designs in the graph mining and
tree mining domains. Fourth, we present an evaluation of
our designs.

2. Systems Support

Knowledge Caching: A knowledge-conscious mining
framework consists of a client and a server. The server
maintains a database, while the client manages a query
queue, a query execution engine, and a knowledge cache.
The query execution engine accepts a query from the query
queue, and executes the query using the contents of the
(local) knowledge cache and the (remote) database. Fur-
thermore, using the information gathered through an execu-
tion, the query execution engine updates the contents of the
knowledge cache to improve performance when answering
future queries.

We propose the development of a data-mining technique
centric knowledge cache, containing recently constructed
and/or used knowledge objects (Figure 1). Our goal is to
build an infrastructure that allows a variety of data mining
algorithms to gain the benefits of knowledge caching with
minimal implementation efforts. This knowledge cache will
be deployed on a cluster of nodes and leverage the com-
bined aggregate main memory and disk space available on
such a system.

Data mining algorithms will interface with such a knowl-
edge cache at the abstraction of a user-defined Knowledge
Object. This Knowledge Object must have Metadata and
Knowledge fields within it, as is dictated by the interface.
The metadata for a cached knowledge object maintains the
following information: user/process identifier, technique
adopted (association rule mining), technique-specific pa-
rameters (e.g. minimum-support value), and data-specific
information. This metadata can be used to determine if a
cached knowledge object can be reused for a query. While
Metadata field encodes information about the information
stored in the knowledge object, the Knowledge field en-
codes the actual knowledge. Data mining applications often
rely on specialized pointer-based data structures, for stor-
ing the results of queries to facilitate interactive exploration.
To deal with this issue, the user must implement linearize
and delinearize methods for the Metadata and Knowledge
fields. The linearize method allows the system to convert
the Metadata and Knowledge fields into a binary block of
memory, allowing for transmission over a network and effi-
cient storage. The delinearize method allows the system to
convert these fields into an algorithm interpretable form.

The data mining algorithms will interact with the
knowledge-cache using get and put methods. The put
method accepts a Knowledge Object from the client and in-
serts it into the knowledge cache. The gef method retrieves a
knowledge object from the cache using a user defined Query

Client — Responsible for Knowledge Cache —

creating knowledge objects Responsible for placement,
replacement, and retrieval of __-
knowledge objects "~

Cluster

Put(KO)

Knowledge
Cache

Get(QO)

000000

KO — Knowledge Object <
Metadata _ N
linearize() QO — Query Object :
delinearize() canReuse(KO)
Knowledge reuseScore(KO)
linearize()
delinearize()

Figure 1. Knowledge Cache

object. This Query object associates a re-use score with
each knowledge object and the most re-usable Knowledge
Object is returned by the knowledge cache.

The knowledge cache will be responsible for managing
both local disk space and memory space alloted for the
cache dispersed across multiple nodes. With a distributed
cache, one important issue is the effective management of
distributed space and bandwidth. In a heterogeneous en-
vironment, memory and bandwidth can vary across the ma-
chines in the system. Moreover, the memory space on a ma-
chine can be shared between the application and the cache.
Thus, the cache space on a machine may shrink, requiring
that some of the cached objects be evicted. We propose
to investigate adaptive strategies for placement and eviction
of cached objects in the system. One approach is to as-
sign a priority to each cached object. This priority can be
based on the static and dynamic attributes used by cache re-
placement policies (e.g., how recently the object has been
accessed, the popularity of the object relative to others, the
size of the object, and the cost of computing the object). A
high priority object will be cached on a machine with high
bandwidth. Since a cached object is made up of fixed size
cache blocks, we will also develop strategies to distribute
the blocks across the system to take advantage of distributed
bandwidth and cache space. When a cached object needs
to be evicted from a machine, it can be staged to the local
persistent cache on the machine or it can be transferred to
other machines in the environment. When selecting the ma-
chine to transfer the object to, the cache management strat-
egy should take into account the priority of the object as
well as the cost of the transfer operation; for instance, a sin-
gle transfer operation can create a cascade of transfers if the
selected machine does not have space to accommodate the
object. We will examine strategies to address these issues.
Memory Placement: We have also developed middleware
that handles memory placement for complex data structures
to improve reference locality for data mining algorithms.
The middleware supports different placement policies and
does not pollute the cache with boundary tag information.

We illustrate (Figure 2) these policies in the context of the
hash-tree structure that is popular in data mining. We em-
ploy a localized placement policy that groups related data
structures together using local information present in a sin-
gle subroutine. In this policy, we utilize a reservation mech-
anism to ensure that a list node (LN) with its associated
itemset (Itemset) in the leaves of the final hash tree are
together whenever possible, and that the hash tree node
(HTN) and itemset list header (ILH) are together. This is
done because an access to a list node is always followed
by an access to its itemset, and an access to a leaf hash
tree node is followed by an access to its itemset list header.
We also employ a global placement policy that utilizes the
knowledge of the entire hash tree traversal order to place
the tree in memory. In our case, the hash tree is remapped
in depth-first order, which closely approximates the hash
tree traversal.

3. Knowledge-Conscious Clustering

We consider the problem of executing exploratory data
clustering queries[1]. Here, the user is interested in inter-
actively clustering different subsets of the data set D. Fur-
thermore, during this process, the user is also interested in
varying k, the desired number of clusters. Such an explo-
ration of the data can provide the user with a much deeper
understanding of the evolving behavior of the clusters [1].

Given a data set D consisting of n data points, each with
d dimensions, the data clustering problem is to partition this
data set into k subsets such that each subset behaves “well”
under some measure. The popular kMeans clustering al-
gorithm can be briefly described as follows. First, it be-
gins with & random centers, C° = {C?,... ,C?}. Next,
for each of the n data points, it finds its closest center in
C°. The data points are partitioned into k subsets based
on their closest centers. The center of mass for each of
these k subsets is used to find the new set of k centers,
C' ={C1, - ,C}}. This process continues iteratively un-
til we encounter an iteration 4 such that the centers C* and
CU+1) are identical. Each iteration of this naive kMeans
algorithm scales as O(nkd).

The state-of-the-art kMeans clustering algorithm, due to
Pelleg and Moore, improves the performance of the above
mentioned algorithm by employing a multi-resolution kd-
tree [7]. Multi-resolution kd-trees have the following prop-
erties. First, they are binary trees. Second, each node in
the kd-tree contains information about all points contained
in a hyper-rectangle h. This hyper-rectangle is stored at the
node using two boundary vectors A% and h™". At each
node is also stored the number and the center of mass of all
points that lie within A. All the children of a node repre-
sent hyper-rectangles contained within h. Third, each node
has a split dimension and a split point assigned to it. The
value of the split point on the split dimension is referred to

as the split value of the node. The children of a node rep-
resent two hyper-rectangles such that all points with values
less than the split value on the split dimension are assigned
to one child, and all points with values greater than the split
value on the split dimension are assigned to the other child.
This data structure has exactly n nodes.

Given a set of centers C* and a hyper-rectangle h,
owner(h, C?) is defined as the center ¢ € C* for which any
point in A is closer to ¢ than any other center in C®. Note
that h does not always have an owner in C°. Pelleg and
Moore used this concept of ownership to improve the per-
formance of the kMeans algorithm. The multi-resolution
kd-tree is used to assign the points to the k centers in each
iteration. The algorithm proceeds recursively and can be
briefly described as follows. First, beginning with the root
node, it checks to see if the hyper-rectangle associated with
the node has a unique owner in C*. If we have a unique
owner, statistics stored at the node (number of points and
center of mass) can be used to assign all points covered by
the hyper-rectangle to the unique owner, and the procedure
can then return. Otherwise, the split point associated with
the node is assigned to one of the k centers, and the children
of the node are processed in a similar fashion, recursively.

In order to perform exploratory data clustering using
the state-of-the-art, a system typically proceeds as follows.
First, it queries the remote database to retrieve the desired
subset of the data. Next, it builds a multi-resolution kd-tree
using the data retrieved from the database. Finally, it uses
the aforementioned variant of the kMeans algorithm (due to
Pelleg and Moore) to cluster the data.

Existing solutions to exploratory data clustering suffer
from the following drawbacks. First, when the database it
very large and cannot be cached on the client’s side, dur-
ing query execution, the system needs to retrieve a signifi-
cant amount of data from the remote database. This is often
time-consuming. Second, there is no re-use of computation
between iterations of the kMeans algorithm and between
executions of two different kMeans clustering queries. This
redundant computation is often excessive and significantly
affects performance. We propose to facilitate exploratory
data clustering by employing a client-side knowledge cache
to tackle the above mentioned challenges.

Reducing Remote 1/0: In order to reduce remote 1/O
during execution, we propose to maintain a low-resolution
summary of the data set on the client’s side. This low-
resolution summary must have the following characteris-
tics. First, given that a summary with a satisfactory res-
olution is available, a kMeans clustering using this sum-
mary should be identical to that when using the entire data
set. Second, when the clustering cannot be performed accu-
rately, we should be able to improve the resolution of this
summary to the desired level, incrementally, accessing only
a small subset of the remote database. After query execu-

tion, for each kd-tree that is built, the sub-tree that is ac-
cessed when executing the kMeans query is stored at the
client. This cached sub-tree is a low-resolution summary of
the data in a block and can be used to answer future queries.
Furthermore, depth-first data re-ordering allows the cached
sub-tree to be grown incrementally.

Reducing the Number of Candidate Centers between
Iterations: When executing a kMeans query, the main op-
eration is that of assigning a point or a hyper-rectangle to
one of the k candidate centers. In order to make an assign-
ment, for a data point, we need O (k) computations, and for
a hyper-rectangle, we need O(k?) computations. Using the
execution history of a query, we propose to reduce the set of
candidate centers, and thereby reduce the number of com-
putations needed to make an assignment.

Let us assume that in iteration ¢ of a kMeans query, data
points and hyper-rectangles in the cached sub-tree are as-
signed to one of k centers in C?. Let C“t1) be the new set
of k centers to be used in (i + 1)*" iteration. Let rad(C})
be the radius of the j** center in C*. Let d(C},Cj) be
the euclidean distance between centers C’; and C}. Let
mazdist(C%, h) be the maximum distance between h (a
hyper-rectangle or a point) and a center C7.

Lemma 1 If a hyper-rectangle or a data point is assigned to center C; in iter-

ation i, then in the (i + l)th S’_H)

forwhich d(CF, C{ D)+ d(Cf, oY) < d(CE, CF) /2 — rad(C)).

iteration, it cannot be assigned to any center C'

Lemma 2 If a hyper-rectangle (or a data point) h is assigned to center C’JZ
in iteration 1, then in the (z —+ 1)”h iteration, it cannot be assigned to any cen-
ter C£i+l) for which d(C’;, C;Hl)) + d(C,i’, C',(CVHI)) < d(C;’,C’L’)/Q —
maa:dist(C]i, h).

The kMeans using kd-trees algorithm is very easily mod-
ified to benefit from the aforementioned lemmas [5]. These
lemmas can also be used to reduce redundant computations
between multiple kMeans queries.

A scaling factor of 0.05 represents a data set with
well separated clusters. Figure 3 shows the time required
for remote I/O and computation for the naive kMeans,
the kMeans using kd-trees, and the knowledge-conscious
kMeans algorithms. We see up to a 10-fold reduction in
remote I/O time and 6-fold reduction in computation due
to knowledge re-use for the knowledge-conscious kMeans
algorithm, an overall 8-fold reduction in execution time.

4. Cache-conscious Algorithm Designs

Over the past decade, processor speeds have increased
much faster than DRAM speeds, leading to the creation
of a gap between processor performance and memory sys-
tem performance. Programs that exhibit poor data locality
leave the processor stalled for a large fraction of the execu-
tion time due to long memory latencies. In such situations,

¥ | : 2 /
HINP#11 ‘ i \/I/‘ | | M VI | HINP#4

HASH TREE
Standard Malloc

TN#3

H ‘ Hash Table | ‘ Hash Table | :

1‘ Ttemset List ‘; :‘ Ttemset List

R pping in Depth-First Order
HIN#1 | HINP#2 [HIN#10

: [HIN#3[HINP#4 |
| HTN#S [LN#6] Itemset#7 | Li#8;

Ttemset#) o=

r

i N#L [TNHG| :‘LVES‘ /I 3
| ool | !
‘ B |

Itemset#14
Itemset#7
Itemset#9

=

=

LEGEND: HIN (Hash Tree Node), HTNP(HIN Pointer Array), LN(List Node)

#x Denotes Order of Node Creation
Flg ure 2. Memory placement

DS1 - 2D - 10 million points DRemote YO @ Computation

Scaling factor = 0.05

8000

7000

6000

_ 5000
@

2 4000

Tim

3000
2000

1000
0 |

kMeans KMeans using kd-trees Knowledge-conscious

Figure 3. Reduction in remote I/O and computation - DS1

maximizing data locality is imperative. Furthermore, it is
commonly accepted that Chip Multiprocessors (CMPs) will
become the de facto standard for commodity PCs. These
processors contain multiple processing cores on the same
die. The cores not only share all off-chip resources, but
many on-chip resources, such as cache, making memory
bandwidth a bottleneck. Therefore, it is paramount that al-
gorithm designers research effective strategies to incorpo-
rate task parallelism and efficient memory system usage to
ensure that application performance is commensurate with
such architectural advancements[3, 4, 6].

Graph Mining: Finding frequent patterns in graph
databases such as chemical and biological data, XML doc-
uments, web link data, financial transaction data, social net-
work data, and other areas has posed an important chal-
lenge to the data mining community. A major challenge
in substructure mining (also termed graph mining) is that
the search space is exponential with respect to the data set,
forcing runtimes to be quite long. These long runtimes can
be mitigated by parallelizing the workload, and executing it
on a CMP.

To achieve high scalability in a parallel graph mining al-
gorithm, one must overcome several fundamental obstacles.
The two most challenging of these are load imbalance and
efficient utilization of the memory hierarchy. The basis for

[HINP#11 [HIN#12[LN#13 Itdmset#14 |

LEVEL 1

@
LEVEL2 6
LEVEL 3

e

Figure 4. Adaptive vs. levelwise partitioning.

effective load balancing is a task partitioning mechanism
possessing sufficient granularity so as to allow each pro-
cessing element to continue to perform useful work until
the mining process is complete. In itemset mining, for large
databases frequent-1 items generally suffice. However, for
graph mining this is not the case. In graph mining, a single
frequent-1 item may contain 50% or more of the total exe-
cution cost. This is because task length is largely dependent
on the associativity in the dataset.

CMP systems typically have far less cache per processor
than other parallel architectures, including message-passing
clusters or shared memory multiprocessors. Sharing of the
L2 cache is of particular concern. If multiple threads have
independent working sets, then the effective size of the
cache is significantly diminished. This is predicated by the
real estate constraints of the chip, since for a fixed chip size
each additional core will use silicon previously dedicated
to cache. In graph mining, data accesses often lack tempo-
ral locality because the projected data set is typically quite
large. These accesses also lack good spatial locality because
most of the data structures employed are pointer-based.

We performed a simple working set study to evaluate the
benefits of improved dataset graph accesses. We compared
two strategies for parallel graph mining. First, we forced
threads to always mine their own child tasks. Second, we
allowed threads to mine other threads’ tasks; that is, task
stealing. The cache miss rates for the first strategy were,
on average, three times lower than the second strategy. The
reason is that when a task is stolen, typically most of the
needed data set graphs are not in cache. As such, algorithm
designers should explore and optimize the tradeoffs between
improved temporal locality and proper load balancing.

Our solution to maintain excellent cache utilization
while still affording load balance is called Adaptive Task
Partitioning, and is shown in Figure 4. Every mining task
generates some number of child candidates from which
to extend the currently mined graph. FEach candidate
is then recursed upon. With adaptive partitioning [2],
each processor makes a decision at runtime for each fre-
quent child extension. A child is an edge tuple (srcN-
ode,destNode,srcLabel,edgeLabel,destLabel) which can be
added to the currently mined graph to create a new frequent
subgraph. The child task may be mined by the creating pro-
cessor, or enqueued.

The decision whether to mine the task is based on the
current load of the system. We do not require a specific

mechanism to make this decision, because in part it is based
on the queuing mechanism used. In our experiments, we
evaluate the size of the local thread’s queue, using a thresh-
old of 10% of the total number of frequent-1 edges. Another
option could be to set a threshold for the smallest current
size of any queue.

At each step in the depth-first mining process, each sub-
task can be enqueued into the system for any other processor
to mine. Thus the granularity of a task can be as small as
a single mining call, which is rather fine-grained. Adaptive
partitioning is depicted in Figure 4 (left). In this example,
task (A-B) had two children, namely (A-B-C) and (A-B-
E). Tasks which were enqueued are shaded gray. A circle
has been drawn around a task which was allowed to grow
dynamically. Task (A-B-E) was enqueued, while task (A-B-
C) was mined by the parent process. After mining (A-B-C),
only one child was created, which was kept by the parent.
The subsequent two children were both mined by the par-
ent, because the queues had sufficient work so as to allow
it.

The performance difference between full partitioning
and adaptive partitioning is primarily due to the poor cache
performance exhibited in full partitioning. We perform a
working set study to compare the temporal locality of the
two strategies in the context of graph mining. We use
Cachegrind on a single processor machine (Pentium 4 ma-
chine). Because Cachegrind currently does not profile mul-
tiple threads, we simulate 32 threads by allowing a single
thread to remove from any point within 32 locations from
the head of the queue with equal probability. As seen from
the results in Figure 5, adaptive partitioning reduces the
miss rates by 50%. This is due to the improved temporal
locality. In adaptive partitioning, there is a much higher
probability that the processor which mines a parent task will
also mine its child tasks. Child patterns are extensions of
parent patterns, thus the database objects which embed a
child must be a subset of the database objects which embed
its parent. As such, the database objects which embed the
child task’s pattern are more likely to be in cache. The end
result is improved scalability.

Tree Mining: We proposed new algorithms for mining fre-
quent subtrees from a database of trees [8]. Researchers
have shown frequent tree mining to be useful in wide va-
riety of applications. It is first applied in bioinformatics in
order to find the similarity of phylogenetic trees, and RNA
structures. Web usage analysis can benefit from frequent
tree mining as the user’s access patterns of a website are of-
ten modeled as trees. It is also shown to help in XML query
selectivity estimation, designing XML classifiers, and net-
work multicast routing algorithms. We designed two new
algorithms, namely TRIPS and TIDES to mine rooted sub-
trees which can either be induced, embedded, labeled, un-
labeled, ordered, unordered, or edge-labeled. These generic

5
"
454 \
\\
4 \'K ‘ -+ Dynamic Partitioning
3.5 = Full Partitioning
2 3 \
&
T 25
1]
s 2
1.5 1
14
0.5 1
0
LI N R Y
I N S U N S

L1 Cache Size

Figure 5. Working sets for adaptive partitioning and full partitioning.

108

TRIPS T
TIDES ~— —>—

FAborted

Run Time (sec)

1200 1100 1000 900 800 700
Minimum Support

Figure 6. Performance of TRIPS and TIDES on Cslogs

algorithms operate on the sequence based representation of
the database trees to efficiently generate and evaluate the
candidate subtrees. TRIPS and TIDES differ in their use of
tree-sequencing methods. TRIPS uses the Prufer sequence
encoding whereas TIDES is based on depth-first sequences.
Similar to other pattern mining algorithms, our algorithms
also have two important steps, candidate generation and
support counting. The candidate generation process that
is transformed into a relatively easy process of sequence
extension is complete and non-redundant. It generates ev-
ery possible subtree in the search space and generates each
subtree only once. Our novel candidate generation process
also makes the support counting step a trivial task of accu-
mulating the counts. The algorithms make use of a meta-
structure, embedding list, to speedup the mining process.
Since both the data representation and the meta-structures
are based on simple arrays, our algorithms exhibits excel-
lent cache performance.

Figure 6 shows the performance of our algorithm on
the Cslogs data set compared to a state-of-the-art algorithm
TreeMiner. Clearly, our algorithms out performs TreeM-
iner achieving a speedup up to 355 times on Cslogs. This
efficiency is achieved while using very less main memory
when compared to TreeMiner. For example, on Cslogs data

set, at minimum support of 800, TreeMiner used 2.4GB of
main memory (RSS size) whereas our algorithms used only
60MB. Added to that, our array based data structures for
both storing data and meta information make our algorithms
cache-friendly. In fact, on tested real and synthetic data sets,
our algorithms achieved average L1, L2 hit rates of 98%,
99%, respectively and an average CPI of 0.7. More detailed
results are available in [8].

5. Conclusions

In this paper, we presented knowledge-conscious and
cache-conscious design strategies to improve the perfor-
mance of data mining algorithms that are both compute and
memory intensive. Knowledge-conscious designs target the
computation that is repeated between iterations and execu-
tions of a data mining algorithm. Cache-conscious designs
improve performance by targeting data locality. First, the
design of systems support that can ease the development of
knowledge-conscious solutions and handle memory place-
ment, for a variety of data mining algorithms, is presented.
Second, we showed how data clustering algorithms can be
made knowledge conscious. Finally, we demonstrated that
cache-conscious designs in the graph mining and tree min-

ing domains can provide significant performance improve-
ments.

References

[1] C. Aggarwal, J. Han, J. Wang, and P. Yu. A framework for
clustering evolving data streams. In Proceedings of the Inter-
national Conference on Very Large Databases (VLDB), 2003.

[2] G. Buehrer, S. Parthasarathy, and Y. Chen. Adaptive paral-
lel graph mining for cmp architectures. In Proceedings of the
International Conference on Data Mining (ICDM), 2006.

[3] G. Buehrer, S. Parthasarathy, and A. Ghoting. Out-of-core
frequent pattern mining on a commodity pc. In Proceedings
of the International Conference on Knowledge Discovery and
Data mining (KDD), 2006.

[4] G. Buehrer, S. Parthasarathy, S. Tatikonda, T. Kurc, and
J. Saltz. Towards terabyte data mining: An architecture con-
scious solution. In Proceedings of the Symposium on Princi-
ples and Practice of Parallel Programming, 2007.

[5] A. Ghoting and S. Parthasarathy. Knowledge-conscious ex-
ploratory data clustering. In Proceedings of the International
Conference on Principles of Data Mining and Knowledge Dis-
covery, 2006.

[6] A. Ghoting, S. Parthasarathy, and M. Otey. Fast mining of
distance-based outliers in high dimensional datasets. In Pro-
ceedings of the SIAM Conference on Data Mining, 2006.

[7] D. Pelleg and A. Moore. Accelerating exact kmeans algo-
rithms with geometric reasoning. In Proceedings of the Inter-
national Conference on Knowledge Discovery and Data Min-
ing (SIGKDD), 1999.

[8] S. Tatikonda, S. Parthasarathy, and T. Kurc. Trips and tides:
new algorithms for tree mining. In CIKM ’06: Proceedings
of the 15th ACM international conference on Information and
knowledge management, pages 455-464. ACM Press, 2006.

