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Abstract

Desktop computing remains indispensable in scientific
exploration, largely because it provides people with devices
for human interaction and environments for interactive job
execution. However, with today’s rapidly growing data vol-
ume and task complexity, it is increasingly hard for individ-
ual workstations to meet the demands of interactive scien-
tific data processing. The increasing cost of such interac-
tive processing is hindering the productivity of end-to-end
scientific computing workflows. While existing distributed
computing systems allow people to aggregate desktop work-
station resources for parallel computing, the burden of ex-
plicit parallel programming and parallel job execution of-
ten prohibits scientists to take advantage of such platforms.
In this paper, we discuss the need for transparent desktop
parallel computing in scientific data processing. As an ini-
tial step toward this goal, we present our on-going work on
the automatic parallelization of the scripting language R,
a popular tool for statistical computing. Our preliminary
results suggest that a reasonable speedup can be achieved
on real-world sequential R programs without requiring any
code modification.
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1 Introduction

Powerful parallel computers are increasingly relied upon
in scientific exploration, but these high-end facilities of-
ten lack means of direct interaction with scientists (such as
through a display device). Further, these systems are shared
resources normally located off-site and accessed through
batch schedulers. Therefore, desktop computing will con-
tinue to be an indispensable part of high-performance
computing workflows. By allowing direct interaction be-
tween end-users and their programs/data, personal comput-
ers form a window by which people interface daily with
high-end computing/storage facilities. Even the heaviest su-
percomputer users perform part of their tasks, such as data
visualization, on personal computers. However, with the
growth speed of high-end supercomputers and instruments
(e.g., the aggregate FLOPS supplied by the world’s No.1
supercomputer has increased by 800 times in the past 10
years), and consequently the rapid growth of data volumes
generated by these systems [5, 8, 7], it is difficult for indi-
vidual PCs to catch up even with the highest configuration.
As a result, limited throughput in interactive (as opposed
to batch-mode) desktop processing often compromises peo-
ple’s productivity in using powerful remote systems and
slows down scientific exploration cycles.

Meanwhile, PCs have bursty workload since they are
also used for daily tasks such as email and text process-
ing, and their owners do not use them constantly. In fact,
large portions of desktop computing/storage resources sit
idle [1, 10]. Such idle resources, once aggregated, will
significantly boost the performance and capacity of scien-
tists’ desktop processing. Most importantly, we are facing
a historical opportunity for developing the next-generation
desktop resource aggregation infrastructure: as the chal-
lenge increases for sustaining the speed growth predicted by
Moore’s Law due to power limitations, leading chip manu-



facturers such as Intel and AMD have directed their devel-
opment efforts to multi-core processors. These processors
bring unprecedented hardware parallelism to ordinary desk-
top machines. As exploiting parallelism in traditional per-
sonal applications may often be limited by the inherently se-
quential processing manner of the human brain, it is natural
to explore aggregating idle hardware for running demand-
ing scientific computing jobs as a secondary workload.

Harnessing idle resources on networked personal work-
stations for running parallel/distributed jobs is not a new
idea. However, this computation mode has not become a
main-stream option in scientific data processing. One of
the key problems with existing systems is that much ef-
fort has been focused on resource aggregation and manage-
ment, with little emphasis on enabling easy parallel appli-
cation development. Scientists are often expected to explic-
itly parallelize their existing sequential applications, which
is a very demanding and time-consuming task, usually re-
quiring both careful programming and intensive debugging.

Even when scientists are willing to spend the time and
effort parallelizing their codes, it is hard for the paral-
lelized code to run in the networked desktop workstation
context. Traditional parallel programming interfaces (such
as MPI, PVM, and OpenMP) expect reliable and homoge-
neous nodes. In particular, as the de facto standard for paral-
lel programming, MPI requires programmers to define ex-
plicit data distribution and inter-processor communication
schemes, even when supported on heterogeneous, unreli-
able systems [6]. This requirement works well for simula-
tions running on dedicated nodes in batch mode, but does
not fit the dynamic and opportunistic desktop environments
where scientists run their data analysis or visualization ap-
plications. While there exist flexible interfaces for master-
worker style parallel computing through programming APIs
or tools like DAGMan [4], they still require users explicitly
compose the master-worker framework.

To provide desktop parallel computing as a general ser-
vice to assist scientists in their daily data analysis, we need
to find out how they can easily parallelize their crucial and
time-consuming applications. Or better, we want to auto-
matically parallelize such codes in a transparent and flexi-
ble way that is suitable for opportunistic parallel computing
on unreliable idle nodes.

In this paper, we present our on-going work towards au-
tomatically parallelizing one type of common desktop sci-
entific computing tasks: data processing using scripting lan-
guages such as Matlab and Python. More specifically, we
are going to focus on R [11], a popular language and envi-
ronment for statistical computing. Techniques developed in
our work, however, may apply to other high-level scripting
languages.

The rest of the paper describes pR, our automatic par-

allelization and execution framework for R.2 pR borrows
the parallelizing compiler technology to perform whole-
program dependence analysis and couples it with runtime
analysis as well as dynamic task scheduling. Our prelimi-
nary results show that pR produces good speedup without
any modification to the sequential script. Although our cur-
rently prototype still runs in batch mode on a computer clus-
ter, the pR design allows it to be extended to the desktop
environment and interactive execution in a fairly straight-
forward way. Given the pervasive use of scripting language
tools and the increasing amount of data to be processed,
such a framework will be able to increase scientists’ data
analysis productivity without bringing them the hassle of
traditional parallel computing.

2 The pR framework overview

2.1 R background

R [11] is an open-source software and language for sta-
tistical computing and graphics, which is widely used by the
statistics, bioinformatics, engineering, and finance commu-
nities. It has a center part that was developed by its core de-
velopment team and provides add-on hooks for external de-
velopers to write and add extension packages. The R source
codes were written mainly in C. R can be used on various
platforms such as Linux, Macintosh and Windows and can
be downloaded from the CRAN (Comprehensive R Archive
Network) site at http://www.r-project.org/.

R is an interpreted language, whose basic data structure
and entity is an object. Internally an R object is imple-
mented as a C struct SEXPREC, whose naming roughly cor-
responds to a Lisp “S-expression.” For example, an object
may be a vector of numeric values or a vector of charac-
ter strings. R also provides a list, an object consisting of a
collection of objects.

R can be used in both interactive and batch modes. Our
current pR prototype targets batch mode execution, while
our next step is to extend it to support interactive runs. In
the batch mode, an R script is supplied as a file and executed
from the R prompt. Results can be written into output files
or retrieved from the standard output as in the interactive
mode.

2.2 Parallel R tools

A detailed discussion of related work in parallelizing
high-level scripting languages can be found in our technical
report [9]. Here we briefly describe several existing parallel
R tools or environments.

2 An expanded version discussing pR in more details is currently under
submission for publication [9].



Libraries such as Rmpi [16] and rpvm [13] provide wrap-
pers to popular parallel programming packages like MPI
and PVM. Users of these libraries need to explicitly or-
chestrate the message passing in the parallel execution of
their scripts. Another category of tools, including our own
RScalLAPACK [14, 15], support transparent execution of
standard R functions by using external numerical computa-
tion packages such as the ScaLAPACK library [2]. How-
ever, this type of tools cannot exploit task parallelism and
are only suitable for closely coupled, homogeneous envi-
ronments.

The snow package [12] is probably the closest related
project to our framework, in the sense that both tools allow
users to parallelize independent operations. snow works
with interactive execution while pR currently only supports
batch-mode runs. However, pR’s parallelization is much
more general (for example, it can parallelize two heteroge-
neous function calls), and unlike snow, pR does not require
any modification to the sequential R source code.

2.3 pR design issues

Our key observation is that the use pattern of high-level
scripting languages is significantly different from those
of general-purpose compiled languages such as C/C++ or
Fortran. Most R codes are composed of high-level pre-
built functions [3] typically written in a compiled lan-
guage but made available to R environment through dy-
namically loadable libraries. On the other hand, while
users would not frequently write their own nested loops
to implement tasks such as matrix operations (as many
such operations are already provided by R), loops are
widely used to carry out similar tasks repeatedly, such as
Markov Chain Monte Carlo, bootstrap sampling or likeli-
hood maximization or going through a collection of data
files. These “coarse-grained” operations, compared with
“fine-grained” loops used in numerical functions, typically
have less inter-iteration dependency and higher per-iteration
execution cost, making them ideal candidates for data-level
parallelization.

As aresult, in designing this proof-of-concept parallel R
framework, we focus on parallelizing two types of opera-
tions: function calls and loops. In a typical computation-
intensive R program (and programs in other languages as
well), these two form the bulk of the execution time. To our
best knowledge, pR is the only system that performs whole-
program automatic parallelization of a scripting language
(the state of the art in parallel scripting language was nicely
summarized for Matlab [3] and the discussion also applies
to R).

Here we highlight the two major innovations in the
most recent pR design. The first one is runtime analy-
sis/parallelization. We perform dynamic dependency anal-
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Figure 1. pR Architecture.

ysis before interpreting R statements and identify tasks and
loops that can be parallelized. This allows us to go beyond
loop parallelization, which has been the primary focus of
parallelizing compilers, to also exploit task parallelism be-
tween any two statements. In addition, we perform incre-
mental analysis that delays the processing of conditional
branches and dynamic loop bounds until the related vari-
ables are evaluated.

To parallelize an entire program at the granularity of
individual statements, however, may generate too much
scheduling and data communication overhead and hurt the
overall performance. We address this with our second inno-
vation - a selective and asymmetric parallelization model.
Instead of generating a symmetric Single Process Multi-
ple Data (SPMD) type of parallel code using one or more
“fork-join” sessions, we adopt a master-worker paradigm
that only “outsources” the expensive jobs (i.e., function
calls and loops) to the workers. All the light-weight opera-
tions, such as simple statements and conditional statements
that do not contain any loops or function calls, are executed
locally by the master. This selective and asymmetric paral-
lelization approach reduces the parallel execution overhead
as well as the communication cost.

2.4 pR architecture

The key feature of pR is that it dynamically and transpar-
ently analyzes a sequential R source script and accordingly
parallelizes its execution. The results of partial execution
are collected to perform further analysis at run time. The
framework is built on top of and does not require any mod-
ifications to the native R environment. Internally, the MPI
library is used for inter-node communication.

When users run their R scripts in parallel using pR, one
of the processors, the one with the MPI rank 0, is assigned
as the master node, while the others become worker nodes.
As shown in Figure 1, there is an R process running on the



master and each of the worker nodes. This process executes
individual R tasks: functions and parallelized loops on the
workers and all the other tasks on the master.

The basic execution unit in pR is an R task (or task for
brevity), which is the finest unit for scheduling. A task is
essentially one or multiple R statements grouped together
as a result of parsing, dependence analysis and loop trans-
formation. A task can be a part of a parallelized loop, a
standard function call, or a block of other statements be-
tween these two types of objects. As shown in Figure 1,
there is an R process running on the master and each of the
worker nodes. This process executes R tasks: functions and
parallelized loops on the workers and all the other tasks on
the master.

The major complexity of pR resides at the master side,
which performs dynamic code analysis, on-the-fly paral-
lelization, task scheduling, and worker coordination. These
are carried out by two components: an analyzer and a par-
allel execution engine.

The analyzer forms the front-end of our pR system. Its
primary functionality is to perform syntactic and semantic
analysis of R scripts. Such analysis helps pR identify exe-
cution units and their precedence relationship to exploit task
and data parallelism.

The parallel execution engine works as the back-end of
pR and takes input from the analyzer. It is responsible for
dispatching tasks, coordinating the communication among
the workers, supervising the local R processing, and collect-
ing results.

The analyzer pauses where static analysis is not suf-
ficient to perform parallelization, such as conditional
branches and loops with dynamic bounds. The analyzer re-
sumes its analysis after the parallel execution engine pro-
vides appropriate runtime evaluation results. In this case,
these results are fed-back to the analyzer, as shown in Fig-
ure 1.

Each of the worker nodes also has a front-end process,
which interacts with the master and other worker nodes.
This way, data communication can be performed without
interrupting the R task execution carried out by the R pro-
cess. The front-end process manages the data, tasks, and
messages for the worker. It supplies the R process with task
scripts and input data, and collects the output data from the
latter.

The inter-node communication in pR is performed via
MPI, while the inter-process communication on each node
is performed via the UNIX domain sockets.

3 Preliminary results

In this section, we give part of our experimental results
in evaluating pR. Our experiments were performed on the
opt®* cluster located at NCSU, which has 16 2-way SMP
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Figure 2. Performance of pR with the Boost
application.

nodes, each with two dual-core AMD Opteron 265 proces-
sors. The nodes have 2GB memory each and are connected
using Gigabit Ethernet and run Fedora Core 5. A single
NFS server manages 750GB of shared RAID storage.

Considering the space limit, here we only present results
from Boost, a real-world application that we acquired from
the Statistics Department at NCSU. This code is a simu-
lation study evaluating an in-house boosting algorithm for
the nonlinear transformation model with censored survival
data. The nonlinear transformation model is complex, and
the boosting algorithm is computationally intensive. More-
over, the simulation study often requires a large number
of repeated data generation and model fitting, and the to-
tal computational time can be forbidding.

The bulk of computation in Boost is spent on a loop,
which contains other loops. The only modification we made
to Boost before running it in pR is to change the number of
iterations in one inner loop (which is not parallelized) to re-
duce the execution time, as the original code runs for dozens
of hours.

Figure 2 shows the speedup of running Boost with pR,
on 2 to 32 processors, with the “1 processor” data point
marking the sequential running time of Boost in the na-
tive R environment. We also plot the ideal speedup for pR,
which grows linearly with the number of workers (note that
the master does not carry out any heavy-weight computa-
tion). For example, with 8 processors the ideal speedup
is 7. The results indicate that the actual pR performance,
including all the preprocessing, analysis, and scheduling
overhead, follows the ideal speedup pretty well, until when
there are 15 workers. Up to this point, the R task compu-
tation time still decreases linearly, but the pR initialization
and data communication overhead becomes more signifi-
cant (Table 1 will give more details). The overall speedup



with 15 workers is 13.5. When the number of processors is
increased to 32, the gap between the ideal speedup and the
pR actual performance widens: the actual speedup is 24.7
rather than the ideal speedup of 31. This is mainly due to the
fact that the contention between the two processors on each
SMP node, as the computation speedup (the speedup in ex-
ecuting Boost’s main loop) drops to around 1.5 from 16 to
32 processors. Meanwhile, the pR overhead also increases
when both processors on a node are used.

2 4 8 16 32
Initialization 0.05 | 0.13 | 0.31 | 0.65 | 1.28
Analysis 0.00 | 0.00 | 0.00 | 0.01 | 0.04
Master MPI 0.00 | 0.00 | 0.00 | 0.00 | 0.01
Max wkr. serial. | 0.42 | 0.69 | 1.15 | 2.05 | 3.19
Max wkr MPI 0.00 | 0.03 | 0.07 | 0.15 | 0.26
Max wkr socket | 0.01 | 0.01 | 0.02 | 0.04 | 0.05

Table 1. Itemized overhead with the Boost code, in per-
centage of the total execution time. The sequential execu-
tion time of Boost is 2070.7 seconds.

Tables 1 lists the itemized overhead measured from the
Boost tests, in the percentage of the total execution time.
E.g., “0.05” in a cell means 0.05% of the total execution
time is spent on this particular category of overhead.

We measure six types of pR overhead. “Initialization”
includes the cost of initializing the master and the worker
processes, performing the initial communication, and load-
ing necessary libraries. “Analysis” includes the total depen-
dence analysis time. “Master MPI” is the sum of time spent
on message passing after the initialization phase on the mas-
ter node. The next three categories stand for the data seri-
alization, inter-node communication (MPI), and intra-node
communication (socket), respectively. The data serializa-
tion stands for the process where the underlying R environ-
ment packs and unpacks R data objects into buffers.

For each type of operation, we sum up the total overhead
spent on such operations on each worker, and then report
the maximum value across all the workers.

From Table 1, we see that the analysis and the master
node scheduling overhead (from the MPI communication
time at the master) are both quite small, even with 31 work-
ers. Initialization, on the other hand, steadily increases with
the number of workers, because this process involves load-
ing libraries at the workers. This overhead grows as the
I/O contention increases, especially with the NFS server
equipped at our test cluster.

The worker-side overhead heavily relies on how data-
intensive an application is. With Boost, the total amount of
data distributed across the workers is around 10MB, and the
data serialization and message passing overhead may take
as much as 3.5% of the total execution time. In particular,
we have found that the R serialization procedure is signifi-

cantly slower than the inter-processor communication.

Overall, it appears that the analysis and scheduling pro-
tocol of pR is quite efficient, while the data serialization
procedure provided by R requires a lot of improvement.

In our other experiments [9], we have compared the
performance of pR with that of the snow package [12],
which exploits embarrassingly parallel tasks and does re-
quire code modification. We used two synthetic test cases,
one computation-intensive and the other both computation-
and data-intensive. We have found that pR matches snow’s
performance (achieving a nearly linear speedup) with the
first code, and significantly outperforms snow with the sec-
ond one.

4 Discussion

With pR, we made the first step toward transparent desk-
top parallel computing. Based on our experience of imple-
menting and evaluating pR, we are convinced that script-
ing languages are (1) suitable for parallelization due to the
abundance of both task and data parallelism in user applica-
tions, and (2) ready candidates for runtime, automatic par-
allelization due to their limited syntax and the interpreted
nature of their execution.

Although it is much more challenging to perform au-
tomatic parallelization on desktop data processing applica-
tions in general, we believe that this first step attacks a wide
range of tools that are used extensively in many fields of
science, especially for data analysis. With frameworks like
PR, users can simply run their sequential code in a parallel
environment, without seeing any details regarding task/data
decomposition, inter-process communication and synchro-
nization, and task scheduling.

However, as mentioned earlier, our current system tar-
gets batch-mode execution on a traditional multi-processor
platform, while the ultimate goal of our project is to enable
transparent, interactive parallel computing on distributed
desktop machines. In the next phase of the project, we plan
to approach this goal in two directions.

First, we plan to enable interactive execution with pR.
Since pR can already perform incremental dependence anal-
ysis, conducting online parallelization while a user types
in commands is not difficult. However, we must deal with
the data placement/communication problem: the data ac-
cess pattern is not known in advance. While transferring all
intermediate results to the client machine may significantly
increase data traffic, it can reduce the response time if the
user directly requests the data. One possible strategy is to
intelligently replicate data objects, so that the client can re-
trieve the intermediate or final output quickly, while the data
locality of subsequent computation at the worker nodes can
still be exploited.

The second step is more demanding: we will improve pR



to work on heterogeneous and unreliable desktop machines.
This requires us to have more flexible parallelization and
scheduling schemes, as well as appropriate fault-tolerance
measures. For one, the current proof-of-concept implemen-
tation of pR has not taken into account issues such as load
balancing or locality-aware scheduling. These issues will
become very important when we move to the desktop en-
vironment, with large differences between individual ma-
chines’ computation capacity, as well as much lower inter-
node communication performance than on clusters. Finally,
a large-capacity shared file system is often not available in
a desktop environment and we have to deal with distributed
/O too.

5 Conclusion

In this paper, we gave the motivation for interactive,
transparent parallel computing in an opportunistic desktop
environment. We presented pR, an automatic runtime paral-
lelization framework for the popular R scripting language,
as our initial effort in bringing transparent parallel com-
puting to assist scientists’ in their increasingly demanding
desktop data processing tasks.

With our preliminary results obtained through pR, we
show that a reasonable speedup can be achieved on a real-
world statistics application without any modification to the
sequential source code. With extensions to handle interac-
tive workloads as well as heterogeneous and unreliable ma-
chines, we expect to enable scientists to make use of idle
workstation resources around them to run many data pro-
cessing scripts without changing either the execution inter-
face or the scripts themselves.
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