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Abstract

The goal of the work described in this paper is to design
and build a scalable infrastructure for executing grid ap-
plications on a widely distributed set of resources. Such
grid infrastructure must be decentralized, robust, highly
available, and scalable, while efficiently mapping applica-
tion instances to available resources in the system. How-
ever, current desktop grid computing platforms are typi-
cally based on a client-server architecture, which has inher-
ent shortcomings with respect to robustness, reliability and
scalability. Fortunately, these problems can be addressed
through the capabilities promised by new techniques and
approaches in Peer-to-Peer (P2P) systems. By employing
P2P services, our system allows users to submit jobs to be
run in the system and to run jobs submitted by other users
on any resources available in the system, essentially allow-
ing a group of users to form an ad-hoc set of shared re-
sources. The initial target application areas for the desktop
grid system are in astronomy and space science simulation
and data analysis.

1 Introduction

The recent growth of the Internet and the increasing
CPU power of personal computers and workstations en-
ables desktop grid computing to achieve tremendous com-
puting power with low cost, through opportunistic sharing
of resources [1, 2, 6]. Existing architectures for desktop
grid computing are typically based on a client-server model,
where a trusted server supplies jobs to a set of client ma-
chines distributed across the Internet. Robustness and re-
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liability are guaranteed by the server maintaining the sta-
tus of all outstanding jobs running on potentially unreliable
clients, so that jobs assigned to clients can be re-run if a
client does not return a result in a time period determined
by the computational complexity of the job. The server
must therefore be reliable, otherwise the status of outstand-
ing jobs could be lost. The server typically stores the state of
jobs in a (relational) database, which provides some level of
reliability. However, this centralized client-server architec-
ture is vulnerable to a single point of failure. No new jobs
can be assigned to a client whenever the server becomes
unavailable either due to server failure or network partition,
which results in inherent shortcomings with respect to ro-
bustness, reliability and scalability.

Our goal is to design and build a scalable infrastructure
for executing grid applications on a widely distributed set
of resources. Such infrastructure must be decentralized, ro-
bust, highly available, and scalable, while efficiently map-
ping application instances to available resources through-
out the system (called matchmaking). Fortunately, these are
precisely the characteristics promised by new techniques
and approaches in Peer-to-Peer (P2P) systems. Using P2P
services can provide a robust, reliable, and scalable job sub-
mission and execution system that is able to efficiently uti-
lize widely distributed available computational resources.
Such a confluence of P2P and distributed computing is a
natural step in the progression of grid computing, and has
indeed been described as inevitable [5, 7, 10, 13].

Applications that are suited for our proposed system
have both large computational requirements and relatively
low I/O requirements. With our astronomy collaborators
at the University of Maryland, we have identified multi-
ple problem areas with these characteristics, mainly related
to physical simulations and data analysis, including finding
habitable planets through N-body simulations, formation of
asteroid binaries through gravity simulations and analysis
and modeling of data from the NASA Deep Impact mission.
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Additional astronomy applications may be explored in the
later stages of our system development. While we are using
the astronomy applications as the initial set for testing the
system, applications from many other scientific and engi-
neering disciplines, among others, can make use of the sys-
tem, as evidenced by the widespread use of computational
resources managed by Condor [14] and BOINC-based sys-
tems [1].

The rest of paper is structured as follows. Section 2 de-
scribes our overall system architecture for executing jobs
using a P2P overlay network. Section 3 discusses efficient
algorithms for matching jobs to resources, while Section 4
presents related work. We conclude in Section 5.

2 System Architecture

We describe a system composed from a relatively loosely
coupled set of distributed, cooperating users (peers). Our
goal is to use scalable P2P services to allow users to sub-
mit jobs to be run in the system and to run jobs submitted
by other users on any resources available in the system, es-
sentially allowing a group of users to form an ad-hoc set
of shared resources. The overall system, from the point of
view of a user, can be thought of as a combination of a cen-
tralized, Condor-like grid system for submitting and run-
ning arbitrary jobs [14], and a system such as BOINC [1]
or SETI@Home [2] for farming out jobs from a server to
be run on a (potentially very large) collection of machines
in a completely distributed environment. However, to exe-
cute jobs in this decentralized and distributed environment
(which are main characteristics of P2P system) we have to
address several issues as follows:

1. Job submission - How can we submit a job into the P2P
network?

2. Matchmaking - How can we find a resource that meets
the minimum resource requirements of a job without
any centralized control and information about the sys-
tem for better scalability?

3. Load balance - How can we distribute the load (jobs)
across the nodes in the system?

4. Secure job execution - Compute hosts should be pro-
tected from malicious jobs.

5. Resilience to failures - The overall system must be re-
silient to failures of individual resources.

For all that follows, we assume an underlying Dis-
tributed Hash Table (DHT) infrastructure [17, 18, 19, 21].
DHTs use computationally secure hashes to map arbitrary
identifiers to random nodes in a system. This randomized
mapping allows DHTs to present a simple insertion and

lookup API that is highly robust, scalable, and efficient. A
system can build upon these basic services to allow users to
place idle computational resources into a general pool and
draw upon the resources provided by others when needed.
We insert both nodes and jobs into a single DHT, perform-
ing matchmaking by mapping a job to a node via the inser-
tion process, and then relying on that node to find candi-
dates that are able and willing to execute the job.

A job in our system is the data and associated profile
that describes a computation to be performed. A job profile
contains several characteristics about the job, such as the
client that submitted it, its minimum resource requirements,
the location of input data, etc. All jobs have modest I/O
requirements, with individual input data sets for our initial
target applications typically on the order of a few 100 KB
or less, with correspondingly small output datasets. How-
ever, the jobs for each problem are computationally inten-
sive, since simulation runs consist of advancing physical
variables forward in time by solving a set of coupled dif-
ferential equations, and data analysis runs perform complex
operations on the data. Finally, the jobs in the system are in-
dependent, which implies that no communication is needed
between them. This is a typical scenario in a desktop grid
computing environment, enabling many independent users
to submit their jobs to a collection of node resources in the
system.
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Figure 1. Overall System Architecture

Figure 1 shows the overall system architecture and flow
of job insertion and execution in the P2P network. The steps
of job execution are as follows:

1. A client inserts a job into a node in the system (the in-
jection node). The DHT provides an external mech-
anism that can find an existing node in the system
[17, 19].

2. The injection node assigns a Globally Unique IDen-
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tifier (GUID) to the job by using its underlying hash
function and routes the job to the owner node.

3. The owner node initiates a matchmaking mechanism
to find a run node capable of running the job.

4. Once the matchmaking mechanism finds a run node for
the job, the owner node sends the job to the run node.

5. The job is inserted into the job queue of the run node,
which processes jobs in FIFO order. While process-
ing the jobs, the run node periodically sends heartbeat
messages to the owner node.

6. When the job is finished, the run node returns the re-
sults to the client.

An owner node is responsible for monitoring the exe-
cution of the job and ensuring that its results are returned
to the client. Whenever a new job is assigned to an owner
node, the owner node attempts to find an appropriate node
for running the job (run node) through the matchmaking
mechanism. Matchmaking is the process of matching jobs
with physical resources, and consists of finding an appro-
priate node for running a job based on the constraints in the
job profile and the current (distributed) state of the nodes
in the system. The job profile can include several require-
ments for running the job, such as required CPU speed,
amount of memory, supported operating system type(s), etc.
Therefore, in the matchmaking process the first criterion in
finding a match is whether the job constraints can be met.
After finding one or more nodes that satisfy the job con-
straints, the matchmaking algorithm can consider balancing
load across multiple candidates. However, as overall system
scales to large configurations and heavy workloads, it be-
comes a challenge to efficiently match jobs having different
resource requirements with available heterogeneous com-
putational resources, to provide good load balancing, and
to obtain high system throughput and low job turnaround
times, all without any centralized control or information
about the system [12].

Once an appropriate run node is found, the new job is
inserted into the job queue of the run node. Each run node
processes jobs in its job queue in FIFO order and only pro-
cesses one job at a time. Until a job is completed and its
results are returned, the run node periodically sends a heart-
beat message to the owner node, which can relay the mes-
sage to the client that initiated the job. This heartbeat mes-
sage informs the owner node about the status of the running
job and also indicates that the run node is still alive. The
run node must generate heartbeat messages for every job in
its job queue, including jobs that are not yet running. This
soft-state heartbeat message plays an important role in fail-
ure recovery during the processing of jobs in our system.
By employing the owner node and run node pair, our sys-
tem can provide a robust environment for processing jobs,

as the job profile is replicated both on the owner and run
nodes to enable reconstruction of job information in case
of failures. If either the owner or run nodes fails, the other
node will detect the failure and initiate a recovery mech-
anism to make progress in the job execution. If both the
owner and run node fail before the recovery protocol com-
pletes, the client must resubmit the job. To communicate
via the heartbeat message, for efficiency we employ a direct
connection between the run node and the owner node, for
example by a socket connection, rather than using the P2P
network routing mechanism.

Besides dealing with recovery from failures, the run
node must also be able to ensure secure execution of each
job in its job queue, to prevent jobs from adversely affect-
ing the state of a node it is running on, and vice versa. We
discuss node and job security more in Section 5. After suc-
cessful completion of the job, the result can be returned to
the client as either a pointer to the result (another GUID) or
as the result itself.

As the first step in our concrete system design and im-
plementation, we have concentrated on developing match-
making algorithms for a decentralized and heterogeneous
environment. We next describe the current state of devel-
opment of our matchmaking algorithms, and provide some
preliminary results obtained via simulations.

3 Matchmaking Algorithms

In this section, we briefly describe two approaches for
matching incoming jobs to available system resources that
we have developed: the Rendezvous Node Tree, and CAN-
based resource matching.

3.1 The Rendezvous Node Tree

The Rendezvous Node Tree (RN-Tree or RNT) uses
a distributed data structure built on top of an underlying
Chord DHT [19]. Specifically, the RN-Tree copes with dy-
namic load balance issues by performing a limited random
walk after the initial mapping to an owner node, and per-
forms matchmaking by passing information describing the
maximal amount of each resource available up and down
the tree.

An RN-Tree contains all participating nodes in the desk-
top grid. Each node determines its parent node based only
on local information, which enables building the tree in a
completely decentralized manner. Due to the uniform dis-
tribution of GUIDs of the nodes in the system, the overall
height of the RN-Tree is likely to be O(log N) where N
is the total number of live nodes in the system (for details
see [11]). Once the parent-child relationship in the RN-Tree
is determined, each node periodically sends local subtree re-
source information (for the subtree rooted by that node) to
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its parent node, and this information is aggregated at each
level of the RN-Tree (hierarchical aggregation).

Jobs are injected into the system by mapping a job to a
randomly chosen node that becomes the job’s owner, which
achieves a good initial load balancing by spreading the jobs
across the system. The owner initiates a search for a node on
which to run the job. The search first proceeds through the
subtree rooted at the owner, only searching up the tree into
subtrees rooted at the ancestors of the owner if the subtree
does not contain any satisfactory candidates. The search
is pruned using the maximal resource information carried
by the RN-Tree. Rather than stopping at the first candidate
capable of executing a given job, the search proceeds until
at least k capable nodes are found for better load balancing
(extended search). More details about the RN-Tree can be
found in [11, 12]

3.2 Content-Addressable Network

A Content-Addressable Network (CAN) [17] is a DHT
that maps GUIDs of nodes and data to points in a d-
dimensional space, so that each node divides up the CAN
space into rectangular zones and maintains neighbor in-
formation. Based on this basic CAN, we can formulate
the matchmaking problem as a routing problem in a CAN
space. By treating each resource type as a distinct dimen-
sion, nodes and jobs can be mapped into the CAN space by
using their capabilities or requirements for each resource
type, respectively, to determine their coordinates. Then the
matchmaking process becomes somewhat straightforward
since we can search for the closest node whose coordinates
in all dimensions meet or exceed the job’s requirements.

A job is inserted into the system by using its require-
ments as coordinates and defining the owner of the result-
ing zone as the owner of the job. The owner creates a list
of candidate run nodes, and chooses the (approximately)
least loaded among them based on load information peri-
odically exchanged between neighboring nodes. The candi-
date nodes are drawn from the owners of neighboring zones,
such that each candidate is at least as capable as the original
owner in all dimensions (capabilities), but more capable in
at least one dimension.

The basic CAN procedure works in all cases, but may
cause serious load imbalance when many nodes have sim-
ilar, or even identical, resource capabilities. Since the co-
ordinates of a node are defined by its resource capabili-
ties, identical nodes are mapped to the same place in the
CAN volume. The best way to distribute ownership of a
zone across multiple such nodes is not immediately obvi-
ous. Conversely, many jobs might have very similar re-
quirements. For example, many jobs will likely be inserted
into the system with no resource requirements at all speci-
fied. In this case, all of the those jobs will be mapped to the

single node that owns the zone containing the origin in the
CAN space.

We address this problem by supplementing the “real” di-
mensions (those corresponding to node capabilities) with a
virtual dimension. Coordinates in the virtual dimension are
generated uniformly at random. Whenever a new node joins
the system, a representative point for the new node is gener-
ated by combining the resource capabilities of the node and
a randomly generated virtual dimension value. Therefore,
even when multiple identical nodes join the system, they
are mapped to distinct locations, and CAN zone splitting
is straightforward. Similarly, when a new job is inserted
into the system, the new job’s coordinates become a com-
bination of the job’s requirements and a randomly assigned
virtual dimension coordinate. In combination, the randomly
assigned node and job coordinates act to break up clusters
and spread load more evenly over nodes. More details about
CAN matchmaking can be found in [12].

3.3 Initial Experimental Results

We have employed an event-driven simulator to investi-
gate the basic behavior of a P2P network, namely creating
and maintaining the network and performing lookups into
the distributed hash table based on peer IDs.

The results for our matchmaking algorithms for different
workload scenarios and under relatively heavy loads, with
multiple clients submitting jobs over time at different aver-
age rates are shown in Figure 2. Our test workloads differ
on two axes. Workloads are categorized as either clustered
or mixed. The former divides all nodes and jobs into a small
number of equivalence classes (in terms of resource capabil-
ities and constraints, respectively), where all nodes or jobs
in a given equivalence class are identical. The latter assigns
node capabilities and job constraints randomly. Based on
these concepts, the overall problem space for grid comput-
ing environments can be divided along two axes, measur-
ing the degree to which the nodes and jobs are either clus-
tered or mixed. Systems such as Condor [14] mainly target
mixed jobs running on clustered nodes, while systems like
BOINC [1] or SETI@Home [2] often deal with clustered
jobs on mixed nodes. Our intent is to effectively support all
four scenarios.

In the experiments presented here, workloads are also
distinguished by whether the jobs are lightly or heavily con-
strained. For a given job, each type of resource has a fixed
independent probability of being constrained: “lightly-
constrained” jobs have an average of 1.2 constraints (out
of the 3) and “heavily-constrained” jobs have an average of
2.4. As a job has more resource requirements (i.e., heavily-
constrained workloads), it is likely to be harder to match
the job to the available resources, since fewer nodes in the
system can meet those multiple constraints. All of the test
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Figure 2. Job Wait Time for Clustered and Mixed Workloads

workloads consist of 1000 nodes and 10000 jobs, each of
which has an average running time of about 200 seconds.
The job arrival times are based on a Poisson distribution
with an average inter-arrival rate of 0.1 seconds. To see how
well the workload could be balanced, we also show results
for a centralized scheme that uses knowledge of the status
of all nodes and jobs. Such a scheme would be very expen-
sive to implement in a decentralized P2P system, but serves
as a target for achieving the best possible load balance from
an online matchmaking algorithm.

Overall, we found that for most scenarios, the CAN-
based matchmaking framework shows very competitive
performance in terms of balancing loads, even compared
to the centralized scheme, with low matchmaking cost (in
results not shown, we have verified that both the RNT and
CAN can find an appropriate run node for a job with a small
number of hops through the P2P overlay network). How-

ever, we found that under some conditions the CAN-based
algorithm works very poorly due to serious load imbal-
ance, namely when jobs with few resource requirements are
run on nodes with heterogeneous (mixed) resource capabil-
ities (i.e., the lightly-constrained workloads in Figures 2(c)
and 2(d)).

In ongoing work, we have improved the basic CAN-
based matchmaking mechanism to address this problem by
pushing jobs into underloaded regions of the CAN space
based on dynamic aggregated load information. The basic
concept is that when a new job is inserted into the system
and routed to the owner node, the job is pushed into an un-
derloaded region in the CAN space. To determine whether
to initiate pushing of a job, a fixed amount of current system
load information is propagated along each dimension in the
CAN space. If the overall system is lightly loaded, the job
can be pushed into the upper regions of the CAN space (far-
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ther from the origin) and utilize the more capable nodes in
the system. In preliminary experiments not shown here, we
have verified that the modified CAN-based matchmaking
mechanism dramatically improves the quality of load bal-
ancing compared to the basic scheme presented here, still
with low matchmaking cost.

4 Related Work

Recently there have been several research efforts to com-
bine P2P and grid computing techniques to improve the ro-
bustness, reliability and scalability of commonly available
client-server based desktop grid infrastructure.

Research such as [4, 10] proposes a P2P architecture
to locate and allocate resources in a grid environment by
employing a Time-To-Live (TTL) mechanism. TTL-based
mechanisms are relatively simple but effective ways to find
a resource (that meets the job requirements) in a widely dis-
tributed environment without incurring too much overhead
in the search. However, such mechanisms may fail to find a
resource capable of running a given job, even though such
a resource exists somewhere in the network.

Studies on encoding static or dynamic information about
computational resources using a DHT hash function for re-
source discovery have also been conducted [5, 9, 16]. How-
ever, there can be a load balancing problem for these encod-
ing techniques, since a small fraction of the nodes can con-
tain a majority of the resource information whenever there
are many nodes that have very similar (or identical) resource
capabilities in the system.

The CCOF (Cluster Computing on the Fly) project [15,
22] has conducted a comprehensive study of generic search-
ing methods in a highly dynamic P2P environment to locate
idle computer cycles throughout the Internet. More recent
work from the CCOF researchers, on a peer-based desk-
top grid system called WaveGrid, constructed a timezone-
aware overlay network based on a Content-Addressable
Network [17] to use idle night-time cycles geographically
distributed across the globe [23]. However, the host avail-
ability model in that work is not based on the resource re-
quirements of the jobs, and that work does not consider bal-
ancing load across the available system resources.

5 Conclusions and Future Work

In this paper, we have proposed an architecture that em-
ploys P2P services to allow users to submit jobs to be run
in the system and to run jobs submitted by other users on
any resources available in the system. Our experimental re-
sults obtained via simulations show that the system can reli-
ably execute grid applications on a widely distributed set of
resources with good load balancing and low matchmaking
cost.

Sequential applications with large computing require-
ments and relatively low I/O requirements are the intended
users of our proposed system. Application areas that fall
into this class include bioinformatics applications such as
DNA sequence comparison and protein folding, Monte
Carlo and other physical simulations in various scientific
disciplines, and more esoteric applications such as search-
ing for extraterrestrial life (SETI@Home) [2]. However,
unlike existing projects, the proposed system can be used
by any participant (peer) to execute any set of jobs desired.
It then becomes the responsibility of the system to utilize all
available computational resources to execute all submitted
jobs in a fair manner, allocating resources to requests from
both users submitting large numbers of jobs at once (as in a
parameter sweep for a physical simulation application) and
from users with smaller resource requirements. We leave
this fairness issue as part of our future work.

In our current formulation of the problem, there are no
dependencies between jobs, but if computational scientists
also use the system for data analysis of results, then the
system will have to distinguish between job types (simu-
lation vs. analysis) and perform the jobs in the correct order
(analysis after simulation of a given problem), and make
the output of a simulation job available as the input for the
corresponding analysis job(s). We will investigate using ex-
isting software packages, such as Condor’s DAGMan [20],
for managing dependencies between jobs.

Compute nodes should be protected from malicious jobs
through the use of existing technology, such as chroot
jails, that prevent applications from either reading or writ-
ing any files outside of a prescribed set. We will constrain
jobs to not be able to access the network, and all output pro-
duced is stored on the node executing the job until the job
terminates. These policies will be enforced using standard
process containment techniques [3, 8]. We will also employ
generalized quotas to limit overall job resource usage (e.g.,
disk space), to minimize the effects of malicious or runaway
jobs.

We are in the process of building a prototype sys-
tem using CAN-based matchmaking, and will characterize
its behavior on real workloads, via consultation with our
application-area collaborators in astronomy and physics. In
the future, we will measure and report on the behavior of
our system for heterogeneous environments running real ap-
plications.
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