Supporting Quality of Service in High-Performance Servers

*

Yan Solihin, Fei Guo, Seongbeom Kim, Fang Liu
Dept. of Electrical and Computer Engineering
North Carolina State University
{solihin,fguo,skim16,fliu3 @ece.ncsu.edu}

Abstract

This paper describes issues that we have analyzed and
technology that we have developed in supporting Qual-
ity of Service in high-performance servers. More specifi-
cally, we target on-chip cache resource allocation and effi-
ciency needed for guaranteeing certain performance levels
on Chip Multi-Processor (CMP) architectures. Both prior
and ongoing work are summarized in this paper.

1 Introduction

Chip Multi-Processor (CMP) architecture has become
an architecture of choice for major micro-processor mak-
ers [19, 11, 16, 13]. With an increasing number of cores
per chip in a CMP system, throughput can be improved for
multi-threaded applications as well as for multiprogrammed
workload. However, since many on-chip resources such as
the lowest level on-chip cache and bandwidth to off-chip
interconnect are shared by all the processor cores, the per-
formance and throughput of programs running on a CMP
depend heavily on how these resources are allocated to
them. The absence of resource allocation policies, such
as the ability to partition caches and off-chip bandwidth,
can lead to unpredictable contention for these resources and
result in a large performance variation for many applica-
tions [4, 25, 12, 10]. It has been pointed out that the large
performance variation may even produce effects of cache
thrashing, starvation, and priority inversion, which are prob-
lematic to the Operating System design [4, 25, 7]. Without
any policies, these problems will become worse in future
CMP architectures where the number of cores as well as the
number simultaneously running applications are expected
to increase.

As aresult of this observation, researchers have proposed
various policies for managing these contended on-chip re-
sources. For example, Suh et al. proposed cache partition-
ing policy that minimizes the total number of cache misses
[29, 30], while Kim et al. has proposed cache partitioning
policy that optimizes for fairness (uniform slowdown) for
applications that share the cache [25]. These policies have

*This project is supported in part by NSF Grant CNS-0406306

1-4244-0910-1/07/$20.00 ©2007 |IEEE

been shown to improve throughput and/or fairness. How-
ever, they treat all applications in the same way without con-
sidering how important one application is with respect to
another. In many cases, it is useful to convey applications’
performance requirement to the hardware as an input that
guides the on-chip resource allocation policy. This is es-
pecially relevant in the context of virtual computing, utility
computing, and real-time computing. In virtual computing,
a virtual machine manager or VMM hosts multiple guest
Operating Systems, each of which is run for specific pur-
poses ranging from casual to critical computation, therefore
it is important for the system to enable the VMM to allocate
more resources to guest OSes with critical computation but
fewer resources to guest OSes used for casual computation.
In a virtual computing environment, programs from differ-
ent consumers share the same servers provided by a util-
ity computing provider. It would be helpful if the provider
is able to distinguish service levels for different customers,
and these service levels reflected proportionally in the frac-
tion of allocated resources. These service levels are often
referred o as Quality of Service (QoS) models. Finally,
real-time transactions in a service oriented computing do-
main require a certain minimum service level to be provided
to each task, requiring performance differentiation and per-
formance guarantee [20, 22].

Once QoS support, such as on-chip resource partition-
ing is there, there are still challenges of scalability of CMP
since each processor will get only a fraction of such re-
sources. It has even been pointed out that many-core
chips containing tens to hundreds of processor cores can
be built. The problem is whether the current memory re-
sources (caches and off-chip bandwidth) can support them
since declining share of resources per core would make each
core slow and further worsens the contention at lower level
memory hierarchy such as the off-chip bandwidth and main
memory. Therefore, it is important that each processor core
can improve its resource usage efficiency by adopting cache
policies that are bandwidth conserving.

Contributions. The contributions of the project include:

1. The identification, measurement, and modeling of con-
tention for onchip resources, primarily the caches [4,
25, 5,26].

2. Identification of cache replacement policy as a signif-
icant source of cache inefficiency which leads to in-

efficient use of off-chip bandwidth, modeling of such
inefficiency [8, 9], and new replacement policy and by-
passing techniques that reduce such inefficiency [15].

3. Quality of Service models supported by the architec-
ture and the Operating System [14].

4. Tutorial and public release of cache performance mod-
eling toolset [27].

2 Resource Contention Identification, Mea-
surement, and Modeling

Cache Contention Measurement. A certain class of appli-
cations, such as mcf and gzip, are very vulnerable to cache
sharing. To illustrate the performance problem due to cache
sharing, Figure 1 shows the number of L2 cache misses
(la) and throughput (measured as the number of instruc-
tions commmitted per cycle or IPC) (1b) for mcf when it
runs alone compared to when it is co-scheduled with an-
other thread which runs on a different processor core but
sharing the L2 cache. The bars are normalized to the case
where mcf runs alone. The figure shows that when mcf runs
together with mst or gzip, mcf does not suffer from many
additional misses compared to when it runs alone. How-
ever, when it runs together with art or swim, its number of
misses increases to roughly 390% and 160%, respectively,
resulting in IPC reduction of 65% and 25%, respectively.

400%

4
T g 350% S
= £ 300% B
g = 250% = 06
g 150% 5 o.
£ 35 100 %oz
83 500 e
0% =0
2 g £ 7 = 2 g £ 7 e
s I ¥ E § s I 3 £ 5
< 5 & & F 035 2 i I
g & g 03 E ¢ % 3%
S £ 2 g g g
£ £
(@) ()

Figure 1. The number of L2 cache misses (a), and
IPC (b), for mcfwhen it runs alone compared to when
it is co-scheduled with another thread. The 1.2 cache
is 512KB, 8-way associative, and has a 64-byte line
sizc.

Fairness is a critical aspect to optimize because the Oper-
ating System (OS) thread scheduler’s effectiveness depends
on the hardware to provide fairness to all co-scheduled
threads. An OS enforces thread priorities by assigning
timeslices, i.e., more timeslices to higher priority threads.
However, it assumes that in a given timeslice, the resource
sharing uniformly impacts the rates of progress of all the
co-scheduled threads. Unfortunately, we found that the as-
sumption is often unmet because a thread’s ability to com-
pete for cache space is determined by its temporal reuse be-
havior, which is often very different compared to that of
other threads which are co-scheduled with it.

When the OS’ assumption of fair hardware is not met,
there are at least three problems that can render the OS

scheduler ineffective. The first problem is thread starva-
tion, which happens when one thread fails in competing for
sufficient cache space necessary to make satisfactory for-
ward progress. The second problem is priority inversion,
where a higher priority thread achieves a slower forward
progress than a lower priority thread, despite the attempt
by the OS to provide more timeslices to the higher prior-
ity thread. This happens when the higher priority thread
loses to the lower priority thread (or other threads) in com-
peting for cache space. To make things worse, the oper-
ating system is not aware of this problem, and hence can-
not correct this situation (by assigning more timeslices to
the higher priority thread). The third problem is that the
forward progress rate of a thread is highly dependent on
the thread mix in a co-schedule. This makes the forward
progress rate difficult to characterize or predict, making the
system behavior unpredictable. Unfortunately, despite these
problems, cache implementations today are thread-blind,
producing unfair cache sharing in many cases.

Fair Caching. We define fairness as equal slowdown when
the execution time of an application is compared to the case
where it runs alone in the system. Let T'ded; denote the ex-
ecution time of thread ¢ when it runs alone with a dedicated
cache, and T'shr; denote its execution time when it shares
the cache with other threads. When there are n threads shar-
ing the cache and assuming that the threads are always co-
scheduled for their lifetime, an ideal fairness is achieved

when:
Tshry _ Tshra _ T'shry

Tded: Tdeds " Tdedy,

which we refer to as the execution time fairness criteria. To
enforce fairness, we approximate it with metrics that are
directly measurable at the shared L2 cache. We evaluate
five L2 cache fairness metrics that are directly related to the
L2 cache performance and are insensitive to external fac-
tors, while at the same time easy to measure. Let Miss
and M1ssr denote the number of misses and miss rates, re-
spectively. For any pair of co-scheduled threads ¢ and j, the
following metrics measure the degree of fairness between a
thread pair:

ey

Miss_shr;

MP = |X;— X;|, where X; = issded,)
MY = |X;— Xj|, where X; = Miss_shr; 3)
MY = |Xi— X;| where X; = % %)
MY = |X;— X;|, where X; = Missr_shr; (5)
M¥ = |X;— X,|, where

X; = Missr_shr; — Missr_ded; (6)

We found that Ay has the highest correlatation with the
execution time fairness criteria (94%). By periodically par-
titioning the L2 cache to optimize for the fairness metric,
fairness (measured as the difference in the fairness metrics
between two threads that share the L2 cache) improves by
4-5X, while throughput improves by 15%, as shown in Fig-
ure 2.

O1.RU OPLRU OFairM1Dyn B FairM3Dyn -FairM4Dyn‘

Normalized Combined IPC

apsi+art

apsi+bzip2
apsi+equake
apsi+mcf
gzip+applu
gzip+apsi
gzip+art
mst+equake

perlbmk+art

perlbmk+swim
perlbmk+twolf
swim+gzip
tree+art
tree+mcf
twolf+swim

|OLRU OPLRU OFairM1Dyn B FairM3Dyn B FairM4Dyn |

205 253 1.98/2.92

Normalized Fairness M1
OO0
(=] SN Ne Yo To SN Ne ¥

]
=
<
3z
&
<

apsi+bzip2
apsi+equake
gzip+applu
gzip+art
mst+equake
perlbmk+art

Figure 2. Throughput (top chart) and fairness metric My

M, values indicate better fairness.

Figure 2 shows the throughput (top chart) and fairness re-
sults (bottom chart) of our dynamic partitioning algorithm
for the benchmark pairs and their average. Throughput and
faimess are represented as the combined Instructions Per
Cycle (IPC) and metric M7, respectively. Each benchmark
pair shows the result for four schemes. The first bar (LRU)
is a non-partitioned shared L2 cache with LRU replace-
ment policy. The second bar (PLRU) is a non-partitioned
shared L2 cache with pseudo-LRU replacement policy that
is more likely to be implemented in highly associative L2
cache in real systems, compared to LRU. The last three bars
(FairM1Dyn, FairM3Dyn, and FairM4Dyn) are our L2 dy-
namic partitioning algorithms that minimize AM;, M3, and
M, metrics, respectively. All the bars are normalized to
PLRU, which is selected as the base case because it is a
more realistic L2 cache implementation.

The figure shows that PLRU and LRU achieve roughly
comparable throughput and fairness. FairMIDyn and
FairM3Dyn improve fairness over PLRU significantly, re-
ducing the AM; metric by a factor of 4 on average (or
75% and 76%, respectively) compared to PLRU. This im-
provement is consistent over all benchmark pairs, except
for FairM3Dyn on tree+mcf. In tree+mcf, PLRU already
achieves almost ideal fairness, and therefore it is difficult
to improve much over this. The figure also shows that
fairness strongly impacts throughput. By achieving better
fairness, both algorithms achieve a significant increase in
throughput (15%). The throughput improvement is consis-
tent for almost all benchmark pairs. Nine out of eighteen
cases show throughput improvement of more than 10%.
In gzip+art, the throughput increases by almost two times
(87%). The reason for the improved throughput is that by

perlbmk+swim =3
perlbmk+twolf
swim+gzip
tree+art
twolf+swim
vpr+applu

(bottom chart) of dynamic partitioning algorithms. Lower

achieving better fairness, we eliminate situations where one
of the processor in a 2-core chip is under-utilized due to
unfair cache usage, and hence the overal throughput in gen-
eral improves. The only noticeable throughput decrease is
in apsi+art and tree+mcf, where FairM1Dyn reduces the
throughput by 11% and 4%, respectively. In those cases,
the fairness is improved (M is reduced by 89% and 33%,
respectively). This implies that, in some occasions, opti-
mizing fairness may reduce throughput.

3 Modeling and Improving Cache Replace-
ment Policies as Means to Conserve Band-
width

Modeling Cache Replacement Policy Performance [9, §].
Due to the increasing gap between CPU and memory speed,
cache performance plays an increasingly critical role in de-
termining the overall performance of microprocessor sys-
tems. Utility computing servers increasingly use multi-core
chips as their building blocks. In these chips, because multi-
ple processors share the L2 and L3 caches, the caches suffer
from increased capacity pressure. Cache replacement pol-
icy, in addition to cache associativity and block size, is an
important factor that affects cache performance for a fixed
cache size. The performance variation between different
cache replacement policies can be quite significant in many
cases.

To illustrate the extent of the performance variation, Fig-
ure 3 compares the L2 cache miss rates and normalized ex-
ecution time of three memory-intensive Spec2000/NAS ap-
plications under two replacement policies: Least Recently

Used (LRU) replacement which is the most popular imple-
mentation in caches, and random replacement policy which
replaces more recently used lines with a higher probability
than less recently used lines (Rand-MRUskw). The figure
shows that the applications achieve much lower L2 cache
miss rates (by up to 67%) and execution time (by up to 67%)
with Rand-MRUskw compared to LRU. Although the very
high performance variation shown in the figure is not typi-
cal across all applications, it clearly shows that replacement
policy is a factor that should be taken into account in de-
signing a cache and modeling cache performance. Further-
more, we also found that a majority (10 out of 17) of the
Spec2000/NAS applications tested achieve more than 5%
lower miss rates under Rand-MRUskw versus under LRU
on at least one cache size configuration.

100% -y
B
=
o 20%

0%

rrrrrrrrrrrrrr mLRU ORand-MRUskw

Normalized Execution
imi
o
N

art ammp cg

(a) b)

art ammp g

Figu re 3. The L2 cache miss ratc (a), and cxccution time
(b), for art, ammp and cg under LRU and Rand-MRUskw
replacement policies. The 1.2 cache is 8-way, 512-KB, and
has 64-B block size.

Despite the extent of the performance variation, cur-
rent analytical cache performance models ignore the im-
pact of cache replacement policies on performance. They
assume a certain replacement policy in their theoretical
derivation, such as LRU [3, 4, 6, 21, 23, 24, 28], or fully
random [1, 2, 17]. Assuming a LRU or random replace-
ment policies greatly simplifies cache performance mod-
eling, and the assumption was relatively valid for small
caches which tend to have a low associativity or are direct-
mapped. However, modern lower level caches (L2 and L3
caches) are often highly associative and large, increasing
the role of replacement policy in determining cache perfor-
marnce.

The contribution of this paper is an analytical cache
model that predicts the performance of cache replacement
policies. To the best of our knowledge, this is the first at-
tempt to arrive at such a model. The input of our model
is the circular sequence profiling [4] of each application.
The profiling can be easily collected, and requires very lit-
tle storage. Only one profiling run is required for each ap-
plication to generate the predicted performance across dif-
ferent replacement policies. The output of the model is the
predicted miss rates for a given application. The model is
based on probability theory and utilizes Markov processes
to compute each cache access’ miss probability. The model
uses realistic assumptions and relies solely on the statistical
properties of each application’s access pattern (i.e. it does
not employ any heuristics or rules of thumbs). Replace-
ment policies are represented by a replacement probabil-
ity function (RPF) which specifies the probability of a line

in different LRU stack position to be replaced on a cache
miss. Many replacement policies, such as LRU, Random,
Not Most Recently Used (NMRUx), and Skewed Random,
can be specified or approximated by an RPE.

Our model allows an in-depth analysis of how an ap-
plication’s behavior impacts its performance under differ-
ent cache replacement policies. This analysis is difficult to
achieve with simulation models, because they are limited by
the discrete and possibly narrow behavior patterns available
in current benchmark suites. Behaviors that are not repre-
sented by current benchmark suites cannot be analyzed. In
addition, any two applications usually differ in more than
one factor, making it difficult to isolate any particular fac-
tor’s contribution to performance. The model achieves sig-
nificant advantages compared with trace simulations in term
of running time and storage overhead for studying cache re-
placement policy performance. The model takes a constant
time of less than 0.1 seconds to generate a miss rate esti-
mate on an Intel Xeon 2.0-GHz processor platform, com-
pared to ©(number of events) run time needed by a trace
simulation, which is in the order of hours—days for realistic
workloads. The model also requires a small and constant
storage overhead for the profiling information, compared to
O(number of events) in a trace simulation.

We validate the model by comparing the predicted miss
rates of seventeen Spec2000 and NAS benchmark applica-
tions against cycle-accurate execution-driven simulations.
The model is very accurate, achieving a prediction error
(the absolute difference between the predicted and simu-
lated miss rates) of 1.41% on average, and 20% in the worst
case. There are only 14 out of 952 validation points in
which the prediction errors are larger than 10% across all
experiments with different cache sizes, associativities, and
four replacement policies. Finally, to illustrate one possi-
ble practical use of the model, we present a case study that
analyzes the relationship between cache access patterns of
an application with its performance under different replace-
ment policies. The case study reveals that temporal reuse
patterns of applications play a major part in deciding how
they perform under different replacement policies.
Counter-Based Cache Replacement and Bypassing [15].
Recent studies have shown that in highly associative caches
such as the L2 cache, the performance gap between the
Least Recently Used (LRU) and Belady’s theoretical opti-
mal replacement algorithms is large. For example, the num-
ber of cache misses using LRU can be up to 197% higher
than using the optimal replacement [31, 18]. This suggests
that alternative replacement algorithms may be able to im-
prove cache performance significantly over LRU. The need
for more efficient cache design is even more important in
multi-core chips, which are the building blocks of utility
computing servers, in which multiple processors share the
caches and increase capacity pressure on the caches.

LRU replacement algorithm tries to accomodate tempo-
ral locality by keeping recently used lines away from re-
placement, in hope that when they are reused, they will still
be in the cache. Unfortunately, two things work against
LRU replacement. For one thing, each cache line will be
eventually replaced after its last use. However, even after

its last use, a line is not immediately replaced because it
remains in the cache until it becomes the LRU line. Such
“dead” lines unnecessarily reduce the cache capacity avail-
able for other lines. The dead time, i.e. time between when
a line becomes dead and when it is eventually replaced, be-
comes worse with larger cache associativities since it takes
longer for a line that is recently last-used to travel down
the LRU stack to become the LRU line. Hence, although
a larger cache associativity improves cache performance in
general, the performance gap between LRU and the opti-
mal replacement algorithm also increases. Clearly, replac-
ing dead lines promptly after their last use would improve
cache performance by making the wasted capacity avail-
able for other cache lines that are not dead yet. In order
to achieve that, a dead line prediction technique is needed
to identify and replace dead lines early.

Another factor that works against LRU replacement is
that temporal locality may invert when there are multiple
levels of caches. There are many cache lines that exhibit
bursty temporal reuses. This is often due to spatial reuses of
different bytes of the same cache line, which tend to occur
in burst. Current caches typically have large cache lines (64
or 128 bytes), amplifying this bursty reuse pattern. With
a single-level cache, this bursty temporal reuses would be
well accomodated by the LRU replacement. However, in
multi-level caches, this bursty pattern often manifests at the
L1 cache only and is filtered by the L1 cache. To the L2
cache, the line does not appear to have temporal reuse since
it is brought into the cache but is not used until it is re-
placed. Hence, the lines are immediately dead after they are
brought into the L2 cache. Such never-used lines unnec-
essarily waste the L2 cache capacity. Ironically, lines with
less frequent temporal reuses cannot be filtered by a small
L1 cache and such reuses will show up at the L2 cache.
Note that for never-used lines, immediately replacing them
after they are brought into the L2 cache would only be par-
tially beneficial. A better approach is to identify them and
avoid placing them in the L2 cache in the first place, using
a technique often referred to as cache bypassing.

Our main finding is that a single mechanism can simul-
taneously achieve both dead line prediction and cache by-
passing. Our mechanism relies on counters that keep track
of the number of relevant cache events in a cache line’s
history, and use that to predict the cache line’s future be-
havior. We call our approach counter-based cache replace-
ment and counter-based cache bypassing. In our approach,
each L2 cache line is augmented with an event counter that
is incremented when an event of interest (such as certain
cache accesses) occurs. For replacement decisions, when
the counter reaches a threshold, the line expires, and imme-
diately becomes replaceable. We design and evaluate two
alternative algorithms, which differ by the type of events
counted and the intervals in which they are counted: Ac-
cess Interval Predictor (AIP) counts the number of accesses
to a set in an interval between two consecutive accesses
to a particular cache line, while Live-time Predictor (LvP)
records the number of accesses to a cache line in an in-
terval in which the line resides continuously in the cache.
For bypassing decisions, the same event counters can iden-

tify never-used lines, and in the future they can be directly
placed in the L1 cache without polluting the L2 cache.

Through a detailed simulation evaluation, AIP and LvP
speed up 10 out of 21 Spec2000 applications that we tested
by up to 41%, or 11% on average without slowing down the
remaining eleven applications by more than 1%. Both AIP
and LvP outperform other dead line predictors in terms of
coverage (fraction of replacements initiated by the predic-
tors), accuracy (fraction of replacements that agree with the
theoretical optimal replacement), and IPC improvement us-
ing comparable hardware cost compared to other dead line
predictors. Furthermore, bypassing can be added to AIP and
LvP without additional hardware, which further improves
the average speedup to 13%. Both AIP and LvP only incur
small overheads: each cache line is augmented with 21 bits
to store prediction information, equivalent to 4.1% storage
overhead for a 64B line. In addition, a simple 40-KB pre-
diction table is added between the L2 cache and its lower
level memory components. The prediction table is only ac-
cessed on an L2 cache miss and thus its access is overlapped
with the L2 cache miss latency.

4 Hardware and OS Support for Quality of
Service in Servers

(This is an ongoing work. Preliminary results are
published in the Proceedings of the Workshop on De-
sign, Architecture and Simulation of Chip Multi-Processors
(dasCMP) in December 2006 [14].)

We will look at the implications of various QoS mod-
els on the performance of the system and the ability of the
system to provide performance guarantee. In particular, the
ability of the system to provide performance guarantee de-
pends on whether the system has an ability to compare its
spare computation capacity with the the capacity requested
by a incoming job. Without this ability, QoS cannot be en-
sured. Furthermore, the ability of the system to guarantee
QoS also has a direct impact on its throuhgput. For exam-
ple, the system may be very conservative in allocating more
resources than needed for a job to satisfy its QoS requests,
however doing this would limit the number of jobs that run
on the system and in turn reduce overall throughput. There-
fore, we plan to study QoS models, admission control of
jobs, and how to maximize throughput while satisfying the
QoS requests of each job.

We have revised Linux OS to interface with QoS-capable
hardware and have constructed a full system processor sim-
ulation based on Simics. We are implementing major func-
tionalities of the system and are starting to analyze the first
set of results.

5 Cache Modeling Tool

Together with IBM researchers, we are holding a tu-
torial “Practical Cache Performance Modeling for Com-
puter Architects” at the [3th International Symposium on
High-Performance Computer Architecture, Phoenix, Ari-
zona, Feb 11, 2007. The tutorial presenters would be Yan

Solihin, Thomas Puzak, and Phil Emma. We are releasing
the cache performance modeling tool that we have devel-
oped to the public, and in the tutorial we plan to demonstrate
how to use the tool.

References

[1] A. Agarwal, J. Hennessy, and M. Horowitz. An analytical
cache model. ACM Trans. Comput. Syst., 7(2):184-215, 1989.

[2] E. Berg and E. Hagersten. StatCache: A Probabilistic Ap-
proach to Efficient and Accurate Data Locality Analysis. In
Proc. of the IEEE Intl. Symp. on Performance Analysis of Sys-
tems and Software, pages 20-27, 2004.

[3] C. Cascaval and D. A. Padua. Estimating cache misses and
locality using stack distances. In Proc.of the 17th Intl. Conf.
on Supercomputing, pages 150-159, 2003.

[4] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting Inter-
Thread Cache Contention on a Chip Multiprocessor Archi-
tecture. In Proc. of the 11th Intl. Symp. on High Performance
Computer Architecture, pages 340-351, 2003.

[5] D. Chandra, S. Kim, and Y. Solihin. Predicting the Impact of
Cache Contention on a Chip Multiprocessor Architecturc. In
IBM T.J. Watson Conf. on Interaction between Architecture,
Circuits, and Compilers, 2004.

[6] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equa-
tions: an analytical representation of cache misses. In Proc.of
the 11th international conference on Supercomputing, pages
317-324, 1997.

[7]1 R. Goodwins. Does hyperthreading hurt server perfor-
mance? http://news.com.com/Does+hyperthreading+hurt
+server+performance/2100-1006-3-5965435. html, 2005.

[8] F. Guo and Y. Solihin. A prediction model for alternative
cache replacement. In Proc. of the IBM Watson Conf. on Inter-
action between Architecture, Circuits, and Compilers, 2003,

[9] F. Guo and Y. Solihin. An Analytical Model for Cache Re-
placement Policy Performance. In Proc. of ACM SIGMET-
RICS/Performance 2006 Joint Intl. Conf. on Measurement
and Modeling of Computer System, 2006.

[10] L.R. Hsu, S. K. Reinhardt, R. Iyer, and S. Makineni. Com-
munist, utilitarian, and capitalist cachc policics on cmps:
caches as a shared resource. In Proc. of the I5th interna-
tional conference on Parallel architectures and compilation
techniques, pages 13-22,2006.

[11] Intel Corporation. Intel dual-core proces-
sorsithe first step in the multi-core revolution.
hitp://www.intel.com/technology/computing/dual-core/,
2006.

[12] R.Iyer. Cqgos: a framework for enabling qos in shared caches
of cmp platforms. In Proc. of the 18th annual international
conference on Supercomputing, pages 257-266, 2004.

[13] R.Kalla, B. Sinharoy, and J. M. Tendler. Ibm powerS5 chip: A
dual-core multithreaded processor. IEEE Micro, 24(2):40-47,
2004.

[14] H. Kannan, F. Guo, L. Zhao, R. Illikkal, R. Iyer, D. Newell,
Y. Solihin, and C. Kozyrakis. From Chaos to QoS: Casc Stud-
ies in CMP Resource Management. In Proc. of the Work-
shop on Design, Architecture and Simulation of Chip Multi-
Processors, 20006.

[15] M. Kharbutli and Y. Solihin. Counter-based cache replace-
ment algorithms. In Proc. of the Intl. Conf. on Computer De-
sign, 2005.

[16] K. Krewell. Best servers of 2004.

hitp:/fwww.mdronline.com/, 20035.
[17] R.E. Ladner, J. D. Fix, and A. LaMarca. Cache performance
analysis of traversals and random accesscs. In Proc. of the

tenth annual ACM-SIAM symposium on Discrete algorithms,
pages 613-622, 1999.

[18] W.-F. Lin and S. Reinhardt. Predicting Last-Touch Refer-
ences under Optimal Replacement. University of Michigan
Tech. Rep. CSE-TR-447-02, 2002.

[19] K. Olukotun and L.. Hammond. The future of microproces-
sor. ACM Queue, 3(7), 2005.

[20] M. P. Papazoglou and D. Gceorgakopoulos. Scviced-
oriented computing:introduction. Communications of the
ACM, 46(10):24-28, 2003.

[21] R.W. Quong. Expected i-cache miss rates via the gap model.
In Proc. of Intl. Symp. on Computer Architecture, pages 372—
383, 1994.

[22] P. Ranganathan and N. Jouppi. Enterprise it trends and im-
plications for architccture rescarch. In Proc. of the 11th inter-
national Symp. on High Performance Computer Architecture,
pages 253-256, 2005.

[23] S. Sen, S. Chatterjee, and N. Dumir. Towards a theory of
cache-efficient algorithms. Journal of the ACM, 49(6):828—
858, 2002.

[24] J. P. Singh, H. S. Stone, and D. F. Thiebaut. A model of
workloads and its use in miss-rate prediction for fully asso-
ciative caches. IEEE Trans. on Computers, 41(7):811-825,
1992.

[25] S.Kim, D. Chandra, and Y. Solihin. Fair Cache Sharing
and Partitioning on a Chip Multiprocessor Architecture. In
Proc.of the Intl. Conf. on Parallel Architectures and Compi-
lation Techniques, 2004.

[26] S.Kim, D. Chandra, and Y. Solihin. Fair Caching on a Chip
Multiprocessor Architecture. In IBM T.J. Watson Conf. on
Interaction between Architecture, Circuits, and Compilers,
2004.

[27] Y. Solihin, T. Puzak, and P. Emma. Practical Cache Per-
formance Modeling for Computer Architects. Tutorial at the
13th Intl. Symp. on High-Performance Computer Architec-
ture, 2007.

[28] G. E. Suh, S. Devadas, and L. Rudolph. Analytical cache
models with applications to cache partitioning. In Proc. of
the 15th international conference on Supercomputing, pages
1-12, 2001.

[29] G. E. Suh, S. Devadas, and L. Rudolph. A New Mcmory
Monitoring Scheme for Memory-Aware Scheduling and Par-
titioning. In Proc. of Intl. Symp. on High Performance Com-
puter Architecture, 2002.

[30] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic Partition-
ing of Shared Cache Memory. Journal of Supercomputing,
2002.

[31] W.Wong and J.-L. Bacr. Modified LLRU Policics for Improv-
ing Second-Level Cache Behavior. In Proc. of the Intl. Symp.
on High Performance Computer Architecture, 2000.

