
Improving Data Access Performance with Server Push Architecture

Xian-He Sun, Surendra Byna, Yong Chen
Illinois Institute of Technology

Department of Computer Science
Chicago, IL 60616 USA

{sun, renbyna, chenyon1}@iit.edu

Abstract

Data prefetching, where data is fetched before CPU
demands for it, has been considered as an effective
solution to mask data access latency. However, the
current client-initiated prefetching strategies do not work
well for applications with complex, non-contiguous data
access patterns. While technology advances continue to
enlarge the gap between computing and data access
performance, trading computing power for data access
delay has become a natural choice. We propose a server-
based data-push approach. In this server-push
architecture, a dedicated server named Data Push Server
(DPS) initiates and proactively pushes data closer to the
client in time. We present the DPS architecture and study
the issues such as what data to fetch, when to fetch, how
to push, and data access modeling.

1. Introduction

Data access latency is a major contributor to the gap

between peak performance and sustained performance of

current high-end computing (HEC) machines.

Performance of processors and network interconnects are

increasing multiple times faster than that of memory and

I/O. This causes large stall times in processors to wait for

data to arrive. The data access performance must be

improved to utilize the capacity of large supercomputers

efficiently.

Prefetching has been considered as an effective

technique for masking data access latency. Prefetching

fetches data before it is requested by a processing unit.
Prefetching requires an algorithm to predict future

references spatially (what data to prefetch) and temporally

(when to issue a prefetch). Current prefetching

implementations typically predict the address of the next

load address when a constant stride between successive

accesses is found. However, many data access patterns are

complex, which are formed by variable strides that have

regularity. Various algorithms can predict these patterns,

but are too complex to implement. Existing prefetchers

are limited by the complexity of these prediction

algorithms. They lack adaptability to choose prediction
algorithms based on the history of data access patterns.

Using complex algorithms takes a bite of processing

power and may diminish the benefits of prefetching.

Emerging multicore processors and high-end

computing machines with thousands of nodes are good

candidates for utilizing part of processing power to handle

the complexity of prefetching. We propose a push-based
prefetching using a server, called Data Push Server

(DPS), which is dedicated to predict data access pattern

and push data closer to computing processors in-time.

Here the term ‘push’ also means that, unlike traditional

client-initiated prefetching, DPS initiates prefetching.
DPS can adapt to complex prediction algorithms for more

aggressive prediction and can push data into multiple

processing units1. It can adaptively choose a prediction

method based on the history of accesses and compiler

hints. This is very beneficial to HEC, where few of the so

called “grand challenge applications” often running

repeatedly. We also use temporal data access information

to predict when to push data. This avoids costly

synchronization needed by pre-execution strategies [3, 4,

7, 10, 11, 13] to initiate prefetching in time. DPS can fit at

multiple levels of memory hierarchy including to perform
I/O prefetching. We enhance the SimpleScalar simulator

[1] to provide performance results at cache prefetching

level. While these results on benchmarks are preliminary,

they show that DPS has merits and has a real potential.

2. Related Work

Data prefetching is a well studied research area in

computer architecture. Sequential prediction strategies

1

The notion of processing unit refers to a processing core in multi-core

processors and to a computing node in SMP and cluster computers.

1-4244-0910-1/07/$20.00 ©2007 IEEE

prefetch next k lines of data, while strided prediction

strategies prefetch future strides based on past accesses

[12]. With the increasing complexity of these methods,

the benefits of prefetching diminish in the traditioanl

client-initiated prefetching. Software-controlled

prefetching [9] gives control to a developer or a compiler
to insert prefetching instructions into programs. However,

software-controlled prefetching puts burden on

developers and compilers, and is less effective in reducing

memory stall time on ILP processors due to late

prefetches and resource contention.

With the emergence of multithread support in

processors, many thread-based solutions have been

proposed to deal with the complexity issue. These

methods can be roughly classified into two categories:

pre-execution based and prediction based. Pre-execution

based methods often use a helper thread to run slices of

code ahead of main thread. A small list among numerous
proposals using pre-execution include Luk et al.’s

Software controlled pre-execution [8], Liao et al.’s

Software-based speculative precomputation [7], Roth et

al.’s Data-driven multithreading [10], and Hassanein et

al.’s data forwarding [4]. Many of these methods often

rely on compiler support to select slices of code to pre-

execute and to trigger execution of that code. Zhou [13]

proposed dual-core execution (DCE) and Ganusov et al.

[3] proposed future execution (FE) to utilize idle cores of

a CMP to speed up single threaded programs. In contrast

to pre-execution approaches, our DPS resides on a
dedicated data server and adaptively chooses stride

prediction strategies. DPS is designed to serve multiple

processing cores simultaneously, where as DCE and FE

are tightly coupled to one core. In DPS, we target to

predict temporal pattern to provide in-time prefetching,

while pre-execution approaches require synchronization

to achieve that.

Prediction based multi-threaded strategies use helper

threads to predict future references. Solihin et al. [11]

propose memory-side prefetching, where a memory

processor is designed to reside within the main memory to

observe history of L2 cache misses that pushes data into
L2 cache. We use a dedicated server outside the main

memory to observe data accesses at L1 cache level and to

push predicted data to L1 and L2 caches. DPS also

predicts when to push data based on temporal pattern of

data accesses for in-time prefetching.

3. Data Push Server

Figure 1 shows the structure of Data Push Server

(DPS). Its three primary components are: pattern
detection manager, prefetch engine, and management

engine. The pattern detection manager (PDM) collects

history of data accesses in spatial and temporal

dimensions. Data access information in spatial dimension

includes the strides between successive accesses.

Information in temporal dimension refers to the time of

accesses, either in clock cycles or inter-reference distance.

The PDM then classifies patterns of those data accesses.

The prefetch engine is responsible to predict future

accesses and the timing. It in turn has three

subcomponents: prefetch strategy selector, prefetch

predictor, and request generator. The prefetch Strategy
Selector (PSS) adaptively selects an appropriate method

to predict future accesses based on the pattern

information. The prefetch predictor of the prefetch engine

decides what data to fetch and the request generator
decides when to push data so that the prefetched data

arrives at its destination in time. Here by ‘in time’, we

mean that data is pushed from its source to destination

within a window of time before it is required, and where it

does not replace other data blocks from cache falsely. By

moving data into a cache too early, it may replace data

blocks that would be accessed in the near future. Our

strategy aims to avoid such negative effects. Predicted

prefetch requests are kept in a prefetch queue and data
propeller in the management engine issues a signal to

push the data to its destination.
Source and destination of DPS vary based on where it

is implemented. In a multi-core processor environment,

the source is its main memory, and the destination is

cache memory. In I/O prefetching, the source is a disk and

the destination is the main memory of a client node.

Figure 2 shows a scenario of DPS system running on a

computing core, serving processing cores 1,2, …, m. We

show that each core in a multicore processor environment

contains its own L1 and L2 cache memories and shares

the memory among other cores. The core, on which DPS

is running, observes the data access patterns of L1 cache

of cores 1 to m, and predicts the future accesses
correspondingly. The data (prefetched cache line or PCL)

is pushed from the shared main memory to the prefetch

cache (PC) of each client core by issuing prefetch signals

Management Engine

Prefetch Engine

Prefetch

Decision

Prefetch

Predictor

Request
Generator

Data
Propeller

Prefetch

Request

Data Access
History Prefetch Strategy

Selector

Pattern

Detection
Manager

Access

Pattern

Prefetch

Signal

Prefetch

Queue

Access

Pattern

Figure 1. Components of Data Push Server

(PS) to the main memory. Regular memory operations
related to raw cache misses caused by an application are

served by main memory directly. These cache lines are

read or written by L2 cache and this data (CL) is

transferred between main memory and L2 cache. CPU on

each core accesses both L1 cache and prefetch cache

simultaneously. An L1 cache miss is propagated to lower

level L2 cache. A prefetch cache miss is discarded.

Similarly, DPS can be placed in computing nodes of

SMPs and clusters at various levels. In SMPs, data can be

prefetched from shared memory to compute nodes’ local

memory. Another scenario is that DPS acting as I/O

prefetcher to push data from I/O servers to client nodes as
a part of parallel file systems. In the following section, we

discuss the functionality of DPS system components in

detail.

4. Functionality of DPS

4.1 Prediction of Future Data Accesses

In research literature, there are many strategies to

predict future data references. However, no single

strategy accurately predicts all data access patterns.

Sequential and strided strategies can predict regular

constant and varying strided accesses, while another set of

strategies try to chase pointers and data structure

traversals [12] that require compiler and user provided
hints. Complexity of these strategies varies. Using simple

strategies cannot capture complex patterns and complex

strategies suffer from high overhead in predicting simple

access patterns. An accurate prefetching mechanism

should support various prediction strategies and should

adapt to data access patterns of an application at runtime.

In our DPS, the pattern detection manager (PDM)

detects data access patterns, and the prefetch strategy
selector selects an appropriate prediction strategy based

on the detected pattern. To detect whether a pattern is

formed by simple strides or complex variable strides, the

PDM observes the distances (spatial and temporal strides)
between consecutive data references. We classify data

access references into contiguous, non-contiguous, and

combinations of contiguous and non-contiguous patterns.

We divide these patterns further based on repetition of

occurrence of each pattern and on variation of strides

between non-contiguous patterns. Based on this

classification, the PDM characterizes a pattern and passes

that information to the prefetch strategy selector.

The prefetch strategy selector (PSS) chooses a

prediction strategy based on initial information regarding

a pattern. Many strategies exist to predict future

references with similar strides or patterns of strides [12].
However, patterns with variable strides and repetitions

need more analysis to find regularity among them. With

DPS, as dedicated computing power is available for

prediction, we can use Markov Chain [5] and a novel

Multi-level Distance Table (MLDT) [2] based predictions

to find regular patterns with constant stride as well as

variable stride accesses and repeating patterns.

4.2. Prediction of When to Prefetch

The issue of when to prefetch in existing prediction

based prefetching methods is limited by the occurrence of

an event such as a cache miss or a page fault (prefetch on

miss) or the first access to a data block (tagged prefetch)

etc. However, these strategies do not guarantee that the
prefetched data will reach its intended destination “in
time” to overlap the processor stall time. The efficiency of

prefetching in time depends on three factors (Figure 3):

the time to predict future accesses (
predT), the latency of

initiating and transferring data from its source to

destination (
latT), and the gap between current time and

the next data reference that would cause a demand cache

miss (∆T) when no prefetching is applied. If (
predT +

latT)

= ∆T , the prefetching is in time and is the most effective.

T0

Tmiss

Tpred Tlat

∆T

Figure 3. In time prefetching

…

PS

DPS Core

(DPS threads)

Main Memory

PCL CL

DAP

PCL

Core 1

L

2 L1

CL DAP

P

C

CPU

PCL

Core 2

L

2

L1

CL DAP

P

C

CPU

PCL

Core m

L

2

L1

CL DAP

P

C

CPU

Data

Prefetch

server

Figure 2. Data Push Server for Multi-core
Processors

If
miss

T denotes the penalty caused by a cache miss, there

is a partial gain of performance improvement based on

how much of
missT is overlapped if (predT +

latT) > ∆T

and (predT +
latT) < (∆T + missT). If data is prefetched too

early, i.e. (
predT +

latT) < ∆T , there is a possibility of

replacing useful cache lines.

To benefit from prefetching, a prefetching strategy has

to be adaptive to decide if a prefetch would be useful or

not. A useless prefetch increases traffic of the bus, and

may pollute a location on the destination of that prefetch.

This necessitates the prediction of ∆T to make a decision

whether to prefetch or not.

In DPS, the request generator decides when to

prefetch. The request generator chooses what future
reference (prefetch distance) has to be prefetched based

on the detected spatial and temporal data access history of

a cache. Temporal history contains clock ticks of

processing core to recognize its timing pattern. The

request generator predicts
∆T and adjusts the value of

prefetch distance so that (
predT +

latT) is equal to
∆T . We

assume that only one application runs on a processing

core at a time, since it is complex to observe temporal

pattern of data accesses when multiple tasks are running

on the same core. We currently use MLDT [2] method to

identify temporal pattern in order to predict
∆T . In the

future we plan to use ARIMA models [5] to predict

temporal access patterns.

4.3. Pushing Predicted Data

The data propellor component of DPS delivers data to

processing units. After predicting the addresses of future

references by the prefetch engine, the data at these

addresses has to be delivered to appropriate processing

units. In traditional hardware prefetching strategies,

prefetching instructions are issued by the same processing

unit that executes a program. In DPS strategy, the

predicted future data references are stored in a prefetch

queue. The prefetch engine sends this prefetch queue to
the data propellor, and the data propellor issues

prefetching (push) instructions to move the data from the

memory to processing units that need data. Special

hardware support is needed to issue instructions to push

data.

4.4. Suggestions for Implementation

In order to implement DPS and obtain the benefits of

aggressive prediction strategies, special hardware is

needed to support the implementation of DPS on multi-

core processors. DPS requires to collect data access

information from processor cores in order to recognize

their data access pattern. For instance, in a multicore

processor, the DPS core collects data access history of the

processing cores. DPS also requires hardware support to

push data from memory to upper level cache of the

processing cores. DPS sends prefetch signal to main
memory to push data into L1 level cache of the processing

cores. Existing multicore processor architectures do not

have such support to perform these two operations

directly. The current cores of processors can issue

prefetch instructions to fetch data closer to their own core,

but not to prefetch data to other cores. Emerging chip-

level multiprocessors (IBM’s Cell processor,

ClearSpeed’s co-processors etc.), have many processing

cores. These processors show some prospect to implement

DPS. The cores of a Cell processor have an internal bus,

which can be used for observing patterns of their local

memories and for pushing data directly to their local
memory. Address translation also needs some support.

TLB misses may occur if address mapping is not updated

at compute core. This can be solved by providing separate

virtual prefetch cache. Such provision reduces false

replacement of data from L1 or L2 caches. As the

processing unit searches data cache and prefetch cache in

parallel, the server-based data-push model benefits more

by reducing data cache misses further.

5. Experimental Results

We compare the performance results for three cases:

base case, strided prefetching and DPS prefetching. Base

case performs no prefetching. The strided prefetching

strategy predicts the next stride based on history of recent

accesses and a prefetch instruction is issued on the

occurrence of a cache miss. Prefetching distance is

constant for strided prefetching. Prefetching is initiated by

the DPS core for DPS strategy. Prefetching distance

varies based on request generator decisions on when to
prefetch.

We evaluate the performance by using an extended

version of the SimpleScalar toolset v4.0 [1]. The baseline

simulator configuration consists of a four-issue dynamic

superscalar cores similar to that of Alpha 21264, with L1

cache (32 KB, 2-way, 64 byte cache line, and 2 cycle hit

time) and L2 cache (1MB, 4-way, 64 byte line, 12 cycle

hit time, and 100 cycle miss penalty) To apply strided

prefetching, we modified the sim-outorder simulator

using a 512-entry reference prediction table (RPT) [12].

The prefetch distance is constant and set as 8 for strided
prefetching. Our experiments have shown that this

prefetch distance has least cache misses for the tested

benchmarks. To implement DPS prefetching strategy, we

use a 512-entry Data Access History (DAH) [2] structure

to collect load instruction information. The DAH is

similar to RPT, but stores more information. DAH has a

tag, count, tail and head pointer fields. Tag field records

the instruction address. Each entry is a doubly linked list,

which is a queue and keeps track of data access addresses

and the time of occurrence (in cycles) of the

corresponding entry instruction. To simulate the DPS
core, we modified the sim-outorder simulator to add

another Alpha 21264 core that contains all the

components of DPS core. Operation of this core does not

affect the cycles or instructions of the processing core. To

simulate data prefetching functionality, we modified the

memory module of the DPS core to introduce an

instruction to prefetch data into the L1 cache of

processing core.

We present performance results of SPEC CPU2000

benchmarks that have poor L1 cache performance. Figure

4 shows L1 cache miss rates of these benchmarks. With

DPS prefetching, L1 miss rates are reduced significantly
for all the benchmarks. For ammp L1 miss rate reduction

is 97.05%. For applu it is 48.9%, for art it is 96%, for mcf
it is 32%, and for mgrid benchmark it is 66.5%. These

miss rates are 40% to 95% less (66% on average)

compared to strided prefetching.

Figure 5 shows the values of IPC (instructions per

cycle) improvement for the above CPU2000 benchmarks.

The first bar shows the IPC improvement with strided

prefetching. The second bar represents the IPC

improvement when DPS prefetching is implemented

without a dedicated DPS core, i.e. DPS prefetching is
implemented on the same processing unit, where

benchmark code is running. The third bar represents the

IPC improvement, when we use a dedicated DPS core for

our prefetching strategy. Strided prefetching improves

IPC slightly, but degrades for applu benchmark. When

DPS is implemented on the same processing core, the IPC

improvement is negative for all benchmarks except for

ammp benchmark. This shows that, even though

aggressive DPS prefetching is effective, when it is

implemented on the same processing core, the overall

performance degrades. With the use of a dedicated

memory server, the IPC values improve significantly,

benefiting from aggressive prefetching.

These performance results show the potential of using

a dedicated DPS for prefetching. In actual

implementation, the observation of data access patterns at
processing cores may involve some overhead. The use of

a DPS core reduces the actual prefetching overhead at

processing cores and the performance gain would

supercede the overhead involved in observing the

patterns. We plan to study these costs in the future.

Moreover, DPS has flexibility to choose prediction

strategies adaptively, to prefetch data in time and to serve

multiple clients. These functionalities of DPS broadens

the impact of CMP architectures in bridging the

divergence gap of HEC.

6. Conclusions

In this study, we have presented the server-based data

push architecture, called Data Push Server (DPS), for

effectively masking processor stall time. DPS uses a data

server in parallel with processing core (or cores) to

predict future data accesses and to push the required data

to its destination in time. A structured design is presented

to implement DPS in multi-core processors. Initial
simulation results show that DPS has a profound potential

to improve the memory access performance of various

data access patterns.

We have only demonstrated some potential of DPS in

this study. Many research issues remain open. We plan to

investigate DPS approach further for fast data access and

to explore its potential in other domains of information

processing. We plan to extend this work to study detailed

implementations of DPS and to design a strategy to select

various pattern prediction strategies based on compiler

and user-provided hints. This will improve the

0 %

5 %

10 %

15 %

20 %

25 %

30 %

ammp app lu art mcf mgrid

L
1

 c
ac

h
e
 m

is
s

ra
te

Base Case St r ided P refetchin g DP S P refet ch in g

Figure 4. Comparison of L1 miss rate

245.25

15.52
28.23

70.69

23.95

-100.00

-50.00

0.00

50.00

100.00

150.00

200.00

250.00

300.00

ammp applu art mcf mgrid

%
 o

f
IP

C
 i

m
p

ro
v
e

m
e

n
t

Strided DPS (w ithout dedicated core) DPS (w ith dedicated core)

Figure 5. IPC results with DPS prefetching

effectiveness of DPS in predicting irregular patterns such

as data structure traversals. We intend to explore more

accurate pattern prediction algorithms, such as time series

analysis models.

Acknowledgments

This research was supported in part by national science

foundation under NSF grant CNS0509118 and CCF-

0621435.

References

1. D.C. Burger, T.M. Austin, and S. Bennett, “Evaluating
Future Microprocessors: the SimpleScalar Tool Set”,
Technical Report 1308, University of Wisconsin-Madison
Computer Sciences, 1996.

2. S. Byna, X-H. Sun, Y. Chen, “Server-based Data Push for
Multiprocessor Environments”, IIT CS TR-2007-12,
January 2007, http://www.cs.iit.edu/~suren/research.html

3. Ilya Ganusov and M. Burtscher, “Future Execution: A

Hardware Prefetching Technique for Chip
Multiprocessors”, in Proceedings of the 14th Annual
International Conference on Parallel Architectures and
Compilation Techniques (PACT'05), 2005.

4. W. Hassanein, J. Fortes and R. Eigenmann. “Data
Forwarding through In-Memory Precomputation Threads”,
in Proceedings of the International Conference on
Supercomputing (ICS), 2004.

5. D.Joseph and D. Grunwald. “Prefetching Using Markov
Predictors”, in Proceedings of the 24th International
Symposium on Computer Architecture, Denver-Colorado,
pp 252-263, 1997.

6. N. Kohout, S. Choi, D. Kim, and D. Yeung, “Multi-chain
prefetching: Effective exploitation of inter-chain memory
parallelism for pointer-chasing codes,” in Proceedings of
the 10th International Conference on Parallel Architectures
and Compilation Techniques (PACT-01), 2001.

7. S. Liao, P. Wang, H. Wang, G. Hoflehner, D. Lavery, and
J. Shen, “Post-Pass Binary Adaptation Tool for Software-
Based Speculative Precomputation”, in Proceedings of the
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’02), 2002.

8. Chi-Keung Luk, “Tolerating memory latency through
Software-Controlled Pre-Execution in simultaneous
multithreading processors”, in Proceedings of the 28th

International Symposium on Computer Architecture
(ISCA), pages 40-51, 2001.

9. T. Mowry and A. Gupta, “Tolerating Latency Through
Software-controlled Prefetching in Shared-memory
Multiprocessors,” Journal of Parallel and Distributed
Computing, Volume 12, Issue 2, June 1991.

10. Amir Roth and Gurindar S. Sohi, “Speculative data-driven
multithreading”, in Proceedings of the 7th International

Symposium on High Performance Computer Architecture
(HPCA), 2001.

11. Y.Solihin, J.Lee, and J.Torrellas “Using a User-Level
Memory Thread for Correlation Prefetching”, in
Proceedings of the International Symposium on Computer
Architecture (ISCA), May 2002, 171-182.

12. Steven P. Vanderwiel , David J. Lilja, “Data prefetch
mechanisms”, ACM Computing Surveys (CSUR), v.32 n.2,

p.174-199, June 2000
13. H. Zhou, “Dual-Core Execution: Building a Highly

Scalable Single-Thread Instruction Window”, in
Proceedings of the 2005 International Conference on
Parallel Architectures and Compilation Techniques
(PACT’05), 2005.

