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‘ Background

= DNA Cell
o Computationally, a string over | Nucleus
alphabet {4,C,G, T} @@I
s Genome Chromosomes
o Collection of all DNA 1n a cell
um Gene
o Encodes the recipe for mgﬂmg
producing proteins E“E'“'““'
m Protein
o A sequence of amino acids

Source: http.//rex.nci.nih.cov/behindthenews/ugt/05ugt/ugt05.htm
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Sequence Discovery

Genome

Gene

Regulatory elements
Proteins

Function

Gene to protein annotation
Gene expression analysis
Microarray experiments
RNA interference

Metabolic networks/pathway

Structure

Gene structure prediction
RNA structure prediction
Protein structure prediction

Evolutionary Studies

Tree of life
Speciation

Nuchear
Membrane

" =
Ribosome— Ty *’__— mRNA
(:-} = = {}

(c) Translation I

k (b) Post-transcription
_\/_/mnm.
&
-

%)F'nwpem-de . .

(0) Posttransistion / Population Genetics
Protein F .
Upon el Haplotype analysis

/

+— 1) Effector Malecule

Nucleotide polymorphism

Active Pratein

Protein Synthesis in an Eukaryotic Cell
Source: Science Primer, NCBI, NIH.

http://en.wikipedia.org/wiki/Image:Proteinsynthesis.png
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‘ GenBank

““An annotated collection of all publicly available nucleotide

and amino acid sequences.’’
Growth of the
International Nucleotide Segquence Database Collaboration
As of October 2005, the .
NCBI’s public collection :
contained: 1
*109.8 G bases, and 2
*60.3 million sequences, ‘E"
8
obtained from over ;3 F % % ;
*165,000 organisms T

Source: NCBI GenBank http.//www.ncbi.nih.gcov/GenBank/index.htm
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UniprotKB/Swiss-Prot

Size of the Swiss—Prot database

g _
7
A knowledge base .
for protein 87 il
sequences. ] o
. & — ]
Contains annotated & ¢ B
. B
protein sequences 3
Contains 201,594 - e
sequences, 2
73,123,101 amino
acids. o
SR B b BEE 5 § HigE
SHRS UERES O IONNAERERs HEE B SR B 2 0§ @ QTem

Swiss—-Frot Ae lease [rear)

Source: http://ca.expasy.org/sprot/relnotes/relstat. htm
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‘ Primary HPC Uses 1n Biology

The Envisioned Device:
A SoLID STATE NANOPORE
wWITH EMBEDDED
NANOTUBE SENSOR

m Massive Parallelism
o Sequencing: Pyrosequencing,
Nanopore, Polony
o Data assembly and mining
o Databases of genomes and derived

http://www.mcb.harvard.edu/branton/index.htm

information
. . Palymarasa
o Sequence comparisons (Smith- R g R
5§ e TGGAACTCA
Waterman, BLAST) Y
PP, _ T
ATP suliundass » ()ADP
Anyrase l
an (d)AMP
s‘_umﬁ'\
Pyrosequencing
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Primary HPC Uses 1n Biology

NP-hard Problems

0 Intractable (computationally expensive)
Exact solutions for small inputs
Approximate solutions for moderate to large inputs
0 Structure prediction and functional analysis
protein folding

0 Reconstructing evolutionary histories
Phylogenetic Relationships

Comparative Genomics

I[PDPS’07 Tutorial HPC Methods for Computational Genomics
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Topics for this Tutorial

Review high-performance methods in
computational genomics that belong one of the
following classes

1. Compare one sequence vs. another sequence
Application: Sequence alignment

part < ».  Compare one sequence against many sequences
- Application: Querying a database

part11 < 3. Analyze multiple sequences
- Applications: Clustering, Genome Assembly

Part 11K 4. Reconstruction of Evolutionary Histories

I[PDPS’07 Tutorial HPC Methods for Computational Genomics 11



Tutorial Schedule

Tuesday 7pm-10pm
7:00pm — 7:10pm:
7:10pm — 7:40pm:
7:40pm — 8:30pm:
8:30pm — 8:45pm:
8:45pm — 9:00pm:
9:00pm — 9:55pm:
9:55pm — 10:00pm:

o 0o O O 0O O O

Welcome and Introduction
Part 1

Part 11

Break

Part 11

Part 111

Conclusion

IPDPS’07 Tutorial HPC Methods for Computational Genomics
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Part I
Sequence Alignment and
Database Querying

IPDPS’07 Tutorial HPC Methods for Computational Genomics
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Why Compare One Sequence to Another?

* Mutation =% natural genetic variations

A genome mutating over generations )
» Mutations are random events

>< *The effect of only some mutation
o >< events carry over to future
= ﬂ / generations
= / ){( / » Sequence comparison key for
J J evolutionary studies

Alignmentbetween | $1* ACAGAGTA- AC

s and s, SZ:ACATA—TTAGTAC

substitution deletion insertion

I[PDPS’07 Tutorial HPC Methods for Computational Genomics 14



How to Compare Two Sequences?

Problem:

a Given two sequences s, and s, over a fixed alphabet 2, what 1s the
set of variations that best describes the genetic transformation from
s, to s, (or equivalently, from s, to s,)?

4 b

Combinatorial Optimality Probabilistic Optimality

* Based on finding a most
probable set of changes in
aligning two sequences

* Based on either
maximizing an alignment
score or minimizing edit

distance » Hidden-Markov Model

« Standard dynamic (HMM) techniques

programming techniques

I[PDPS’07 Tutorial HPC Methods for Computational Genomics

15



Two Important Types of Alignments

Preferred Applications

Global | Alignment between s, and s, . For detecting two highly
| . | similar sequences
: SPAT . (eg., two homologous
S, : .
' proteins)
Local Alignment between a substring of s, and For detecting highly
. a substring of s, . conserved regions (eg.,
S R e . genes) between two
S . sequences (eg., genomes)

Optimal global and local alignments can be computed in O(|s,|.|s,|) run-time and O(|s,|+|s,|) space

IPDPS’07 Tutorial HPC Methods for Computational Genomics 16



Need for a Fast Alignment Method

Let us say, we have a newly found gene candidate, s,,,, in an arbitrary
organism. Next, we want to locate “similar” genes in other organisms.

One Approach:

1. Concatenate all sequences in
our genomic database into one
sequence, say sy

2. Compute the local alignment gc& local alignments

between s, and s

Run-time: O(|s4.|Sew|)

3. Report all “significant” local
alignments {
Very long
query time !!

IPDPS’07 Tutorial HPC Methods for Computational Genomics 17



Basic Local Alignment Search Tool
(BLAST)

Altschul et al. (1990) developed a program called BLAST
to quickly query large sequence databases

Input:

o Query sequence q and a sequence database D

Output:

o List of all significant local alignment hits ranked in increasing
order of E-value (aka p-value, which is the probability that a
random sequence scores more than q against D).

IPDPS’07 Tutorial HPC Methods for Computational Genomics 18



BLAST Algorithm

Preprocess: Build a lookup table of size |2|" for all w-length words

in D
1234567 2={A,C,G,T}
S;: | w=12
S, —> 42 (=16) entries in lookup table

Lookup table: / \4

AAIACIAGAT |CA|CCICG|CT |GA|GC|GG|GT|TA [TC |[TG|TT
I A A 1 1
S, 2 S,L1S.5 | S.6 S,3 iS4
4 v
S,,1 $,6 8,2 8,4 53

\ St s hafiad! . /

Preprocessing is a one time activity

I[PDPS’07 Tutorial HPC Methods for Computational Genomics



BLAST Algorithm ...

[dentify Seeds: Find all w-length substrings in g that are also in D
using the lookup table

Extend seeds: Extend each seed on either side until the aggregate
alignment score falls below a threshold

Ungapped: Extend by only either matches or mismatches

Gapped: Extend by matches, mismatches or a limited number of
insertion/deletion gaps

Record all local alignments that score more than a certain statistical
threshold

Rank and report all local alignments in non-decreasing order of E-
value

IPDPS’07 Tutorial HPC Methods for Computational Genomics 20



‘ [llustration of BLAST Algorithm

database —
ce e GGGGGTTAGCATCGGGG Gaaa

Ungapped
Extension

Gapped
Extension
(over a band
of

diagonals)

: W
T | ]
query T
G
jc
A
T '4
A
database —
ce e GGGGGTTAGCATCAGGG GaGaaG
'T N
query S
G @
C Q
A ®
T
A 4

IPDPS’07 Tutorial HPC Methods for Computational Genomics
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Different Types of BLAST Programs

Program | Query Database
blastn nucleotide nucleotide
blastp protein/peptide protein/peptide
blastx nucleotide protein/peptide
thlastn protein/peptide nucleotide
thlastx nucleotide nucleotide

http://www.ncbi.nlm.nih.gov/blast

IPDPS’07 Tutorial

HPC Methods for Computational Genomics
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An Example: Querying gene CCRS
against GenBank

M1: DO%02543 Reports Macaca mulatta is.. [gr114325125]

Fi| 1143251285 | gh| DQI02543 . 1| HMacaca malatta isolate 00021 CC chemokine receptor 5 (CCES) mwBENAL, complete cds
oo A AGAGCC AL TCTCCATC TAGTGAGCRGGAAGC TAGCAGCAALCCTTCCCTTCACTACARAALC
TTCATTGTTTGGCCARA LA GGGAGTTCATTCAATGTAGACATC TATGTATGGAATTALLAACCTATTGAT
GTATALRACTGTTTGCATTCAT GG TGGGCCACTARATACTTTC TAGGGC TTTATALAAGATCACTTTCTA
CTTATTCACAGGGTGEAAC A AGATGGACTTATCALGTGTCAAGTCCAACCTATGACATCGATTATTATACR
ToGGALCCCTGCC AL A TCAATGTGARACAALTCGCAGCCCGCCTCCTGCCTCCGCTCTACTCACTGS
TGTTCATCTTTGGTTT TG TG A ATACTGGTCGTCCTCATCC TGATARACTGCALLAGECTGALLLG
CATGACTGACATC TACC TGO TCAACCTGGCCATCTC TGACCTGC TTTTCCTTCTTACTGTCCCCTTC TGS
GUTCACTATGC TGO TGCCCAGTGGGACTTTGGALATACAATGTGTCAAC TCTTGACAGGGCTCTATTTTA
TAGGCTTCTTCTC TG GAATC TTC TTCATCATCCTCC TGACAATCGATAGGTACCTGGCTATCGTCCATGE
TGTGETTTGCTTTRAALAGCCAGGAC AGTCACCTTTGGGETGETGACAAGTGTGATCACTTGGGTHETHECT
GTGTTTGCCTC TC T CAGGAATCATC TTTAC CAGATC TCAGAGAGARGGTCTTCATTACACCTGCAGCT
CTCATTTTCCATACAGTCAGTATCAATTCTGGALGALTTTTCAGACATTARAGATGGTCATCTTGEHGCT
GETCCTECCGC TGO TTGTCATGGTCATC TGO TAC TC GG GAATCCTGARALC TC TGO TTCGGTGTCGRALLC
GAGAAGAAGRGGCACAGGGCTGTGAGGC TTATCTTCACCATCATGATTGTTTATTTTCTCTTCTGGGCTC
CCTACARCATTGTCCTTC TCC T AAC ACC TTCCAGGAATTCTT TG CC TGAATAATTGCAGTAGC TCTAL
CAGGTTGGACCARGCCATGCAGGTGACAGAGACTCTTGGATGACACACTGCTGCATCAACCCCATCATC
TATGCCTTYGTCGGGEAGALGTTCAGALRCTACCTCTTAGTC TTC TTCCARALGCACATTGCCAAACGCT
TCTECAAA TGO TGTTCCATTTTC CAGCARGAGGC TCCCGAGCGAGCAAGTTCAGTTTACACCCGATCCAC
TEEEEAGCAGGARATATCTGTGHFCTTGTGA

Disclaimer | Write to the Help Desk
FMCEL| MLM | M-
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‘ An Example: Querying Result (Page I)

BLASTI, - Mozlla Firefoy

Bl [ Wen O Dokeaks  Jook  Heb

TR~ N X | YTy

BLASTN 2.2.14 [May-07-2006]

Reference:

Alvackul, Stvephen F., Thomas L. Hadden, Alejandes L, Scharfsr,
Jinghui Ihang, Iksng Thang, Wabh Millar, and David J. Lipman
[1997), mFapped ELAST and PEI-ELAST: & mev QeEnscation of

> NCBI results of BLAST

protein daLabase ssarch progeams”, Hucleic Acids Res. IS:3389-340%.

RID: 115ETO4SHI=ZSOR1=-4443TOTS519. ELASTO]

Database: ALll Cenlank+EHBEL+DDDJ+PDD sequences (but no E3T, 3TS,
GES, epvironmental saamples of phass 0, 1 or I HTGE sequences)
%, 377,637 segquences: 17,510,470,023 total lectecs

If you hawve any problems ar gueations with the pesulta of thia acacch

plesase relsr £o Che ULAST FAQE

Tasonomy cepocts

Query=
Length=1291

Distribution of 108 Blast Hits on the Query Sequence

|M0use—0vert0 show defline and scores, click to show alignments

Color Key for alignment scores

<40 40-50 50-80 80-200 >=200
@ e ry |
1 1 1 1 1 1
0 250 500 750 1000 1250
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An Example: Querying Result (Page 1I)

Fil=e Edit Wiew Go Bookmarks Tools Help

I, —
<:| - Ll/} - @ |_| @ I«(-j http: f frnens . ncbi.nlm . nib o BLAST JBlask . cgi

|| Customize Links | | Free Hotmail | | Windows Marketplace | | Windows Media | | windows

Distance tree of results MNEW

Socore E
Sequences producing significant alignments: [(Bits=s) Walue
oglil| 1550349 | gh | U7P7a72. 1| MMU? 7672 Macacs rmalatta CC chemokine ... o.o
gl | 7YVT0Z07S | gh | DQE17954.1| Homo sapiens C-C chemokine recepto... 2235 o.0o E’
gi| 22035607 | gh| ACO95615.2 | Homo sapiens chromosome 3 clone RP11- 2238 o.o
gl | 2739497 | gh| AFO31237.1| HECCRS5AES Homo sapiens CC chemokine rec 2235 o.o
gi| 2104517 | gh| US5626. 1| HE3US562 6 Homwmo sapiens cocrib [(ocr2), co... 2235 o.o
gi| 1262810 emb | ¥21492 . 1| HSCCCKR4G H.sapiens ChemRl3 gene 2238 0.0
gi| 13430055 | gh| AFEZ91669.1| AFZ291669 Macaca fascicularis chemokine 2113 o.0o
gi| 33575092 |gh| A¥344067. 1| Macaca nemestrina CC chemokine rec... 2097 o.o
i 13873080 | gh| AF1778858.1| AF1775888 Macaca sinics C—-C chemokin. .. 2097 0.0
gl | 135730284 | gh| AF177590.1| AF177520 Macaca nigra C—-C chemokine re 2090 o.o
gi| 13573092 |gh| AF177S559.1| AF177559 Macaca tonkeana C—C chemok... 2020 o.a
gi| 1771950 | gh| U73739. 1| MMUT73 732 Macacs mulactta CC chemokine rece 2020 o.o m
gi| 2245617 | gh | AFOOSE662 1| AFOO0S5662 Macscs mulatts CC chemokine. .. 2020 0.0
gi| 2245615 | gh| AFOO0S5661. 1| AFOOS5561 Macaca nemestrina CC chemok. .. 2090 o.o
gi| 22456153 | gh| AFOOS5660. 1| AFOOS560 Macaca fascicularis CC chem. .. 2090 o.o
gi| 2305195 | gbh| AFO115535.1] Fan troglodytes isolate MaCCRS5-140=s.. . 2054 o.o E
i 4406110 ghb | AFO7S5450. 1| AFO75450 Macascs arctoides C-C chemok. .. 2082 0.0
gi| 112421194 | ref | N 0010427735 .1 | Macaca mulatta CC chemokine rec =074 o.o E
oi| 4406105 | gh| AFOYS4349 . 1| AFO7S349 Nacaca assamwensis C-C chemo. .. 20743 0.0
gi| 3522870 gh | U762 . 1| MMIO2 6762 Macacs wulatta chemokine recepto 2074 o.o m
gi| 13873108 | gb| AF177597.1| AF177527 Lophocebus aterrimus C-C o... 2066 0.0
gi| 4426515 | ghb| AF1052553 .1 | AF105253 Macaca arctoides isolate ST... 2066 o.a
gi| 4426520 | gb | AF105290. 1| AF105250 Papio hamadryas isolate bab. .. 2055 0.0
gi| 4426519 | gh | AF105259. 1| AF105259 Papio hamadryas isolate bab. .. 2055 0.0
gi| 4426518 | gb | AF105258. 1| AF1052558 Papio hamadryss isolate bab. .. 2085 0.0
i 4426517 | gb | AF105257. 1| AF105257 Papio hamadryss isolate bab. .. 2085 o.ad
gl | 4102995 | gh| AFO0195379.1| AFO019379 Cercopithecus asthiops G—pr... 2055 o.o
gi| 2564675 | gb| AF023452.1| AF023452 Papio hamadryas anubis CC c... 2058 0.0
gi| 14552546 | gh| AF349652 .1 | AF34965:2 Cercocebus Corguatus torgu. . . 2050 o.a
gi| 13587353096 | gh| AF177591.1| AF177591 Theropithecus gelada C-C c... 2050 0.0
gi| 13873068 | gh| AF177877 .1 | AF1775877 Mandrillus sphinx C-C chem... 2080 0.0
gi| 13873066 | gh| AF177576. 1| AF177576 Mandrillus leucophaeus C-C... 2080 o.ad
mrh | EETO2OMN A~ ARNEd e 11 AFNE1 Ee Marmmra r hasanre artrarrharaars O einiin] m m

IPDPS’07 Tutorial HPC Methods for Computational Genomics
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What 1f the Database Does Not Fit in the Main

Memory?
3000 I I —T I I I I 1 6000
NCEI-BLAST execution time —— s Wb

2750 - Average blocks read/s ----- 5 - 5500
2300 + / . -1 5000 ©
L 2250 ¢ / 1 4500 @
& 2000 < o {4000 &
- )
= 1750 - ! e 1 3500 ¢
; +__,__+~*‘"’ &)
c 1300 ! / - 3000 ©
o . / I'e
'..g 1250 - ; / - 2500 O
O 1000 | i/ + 2000 &
) * f»* ©
X 75D L ! =4 1500 @
n y o
200 1 - 1000 <

250 |- HW#HH,HH;} 4 500

0 _|_.1—|--|—-|—"|—|'++++ gt 0
0 20 40 60 80 100 120 140 160 180

Database size in MBytes
Source: Darling ef al. (2003)

= Darling et al. (2003) show the effect by performing a blastn search when run on a system
with 128 MB RAM. The increase in run-time is due to 1/0O .
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HPC for BLAST

Sequential BLAST is suitable for small number of queries

HPC solutions for BLAST were developed to cater to large number
of queries and also to address the rapid growth in database sizes

We will review two HPC solutions for BLAST:

1. mpiBLAST:

Darling et al. (2003), “The Design, Implementation, and Evaluation of
mpiBLAST”, Proc. ClusterWorld.

2. ScalaBLAST:

Oehmen and Nieplocha (2006), “ScalaBLAST: A Scalable
Implementation of BLAST for High-Performance Data-Intensive
Bioinformatics Analysis”, IEEE Transactions on Parallel and
Distributed Systems, 17(8):740-749.

IPDPS’07 Tutorial HPC Methods for Computational Genomics 27



mp1BLAST

Input
o Set of Queries, Q={q;,95,--.,.q,,}»> and
o Database D={s,,s,,...,S,}

Let p denote the number of processors, M=%, .. [q;, and N=X,_,_ |||
Algorithm follows the master-worker paradigm (1 master, p-1 workers)

Assumption:
o Q 1is small enough to fit in the main memory of each worker

Preferred:

o Each worker processor has access to a local disk storage supporting contention-free
local I/O

IPDPS’07 Tutorial HPC Methods for Computational Genomics 28



Time

d

IPDPS’07 Tutorial

Master

The database D 1s fragmented
into numerous disjoint pieces:

E={fpfo - fif, k>>p

The master processor
broadcasts all queries in Q to
workers

The master processor records
the list of “owners” for each
database fragment

The master then marks all
fragments as unassigned

mpiBLAST: The Parallel Algorithm

Worker

Each worker p; reads a subset
F; of Finto its local storage,
s.t.,, F=U Sp-]Fi

Each worker sends the list of
its local fragments to the
master for housekeeping, and
also reports that it is idle

HPC Methods for Computational Genomics 29
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Master

The master assigns each database

fragment to one worker. The fragment

and order in which to assign is

dynamically determined in a “greedy”

fashion, as follows:

Each p;, is allocated all its unique
fragments first

Once such unique fragments are
exhausted, a fragment /'is assigned to

p,ff€ F and fis duplicated in least
number of other workers

Finally, the remaining unassigned
fragments are assigned to workers in
decreasing order of their degrees of
duplication

The master processor ranks and
outputs the hits for each BLAST

query

mpiBLAST: Algorithm

Worker

Each worker processor searches
(ie., performs serial BLAST of O
agamst) a database fragment
assigned by the master.

If a fragment is not present in the

local storage, it is copied from the
corresponding worker that has it

After searching each fragment, the
results are communicated to the
master processor

HPC Methods for Computational Genomics 30



mp1BLAST: Run-time

180

oo LA R SEED ] “Greon Destiny
:zz I — -Beowulf cluster with a
S _— 100 Mb/s Ethernet
5 100 | |
SJ; LU / . -Each compute node has a
? wl ! 667 MHz TM5600 CPU,
of : 640 MB RAM, and a 20
nf o . GB local hard drive
‘ D’w 2I0 4IU BIO BIO 1[|JO 'IIZCI 140

Number of processors
Source: from Darling et al. (2003)

Database size is 5.1 GB

Super-linear speedup observed as more memory becomes available for caching
a bigger chunk of the local database fragments

However, efficiency drops because of serial processing of output (during the
final reporting step)

IPDPS’07 Tutorial HPC Methods for Computational Genomics 31



mpiBLAST: Effect of the Input and
Output Processing Overhead

1600

1400
1200

B Other

O Search

1000

800

600

400
200

Execution Time (s)

0 T
16 32

64

Number of Processes

Source: Lin et al. (2005)

Lin ef al. (2005) observed an
almost linear speedup

IPDPS’07 Tutorial

4500

4000 +— mSearch B Other
3500

3000

2500

Execution Time (s)

2000
1500
1000
500
0 | |
31 61 96 167

Number of Fragments

Source: Lin et al. (2005)

Lin ef al. (2005) also observed a
steep rise in the non-search time
when the number of database
fragments was increased (keeping
number of processors fixed).
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mpiBLAST: Recent Improvements and
Updates

Parallel 1/O for output processing (mpiBLAST-
PIO) - Paillel 1O

0 (Local sorting + global merging) for all output records
corresponding to each query

0 Improved scalability

http.//mpiblast.lanl.gov/

IPDPS’07 Tutorial HPC Methods for Computational Genomics 33



ScalaBLAST: Main Ideas

Removes I/O dependency by loading the entire target database into
(distributed) memory

All processors can access the entire database through Global Array,
which 1s an interface for non-uniform memory access

A query 1s evaluated entirely by a single processor group to avoid
the serialization of reporting results later

Supports layered parallelism:

o The work related to each query is shared by processors in a MPI process
group (compute nodes of an SMP node)

o The query list itself is partitioned among the process groups

IPDPS’07 Tutorial HPC Methods for Computational Genomics 34



ScalaBLAST: Data and Processor Organization

An example with 8 processors:

8

o 2
Process Group .
&o Mo "M m, M
m, () D Global Array (distributed) m; [EeHon)

Q goigIEgzigs

Py 12
Py b

83

m; [memory)

Ps V2

IPDPS’07 Tutorial HPC Methods for Computational Genomics
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ScalaBLAST: The Algorithm

1. Both the database D and query list QO are evenly partitioned across processor groups
over their sizes

2. In each process group g;, the corresponding p,” and p,” perform BLAST search on
the local query list, one query at a time. For a given query g,

p, performs the BLAST operation on the first half on the database while p,”
performs BLAST operation on the second half

Results for g are then trivially merged, ranked and reported by one of the
Processors

3. Each process element posts a non-blocking request for the next portion of database
resident in a remote memory, before starting to compute BLAST operation on
the current portion of database. This pre-fetching masks communication
overhead with computation

I[PDPS’07 Tutorial HPC Methods for Computational Genomics



‘ ScalaBLAST: Performance Results

m Database: 1.5 million protein sequences = 503 characters
m  Query: 1,000 sequences of total size 709 Kbytes
= Experimental Platforms:

o MPP2, a distributed memory machine with 1.5 GHz Itanium II processors and
Quadrics Elan-4 interconnect, 6 to 8 GB RAM/per node

o SGI Altix, an SMP with 128 1.5 GHz Itanium II processors and with 256 GB.

. . 10000 /
Phase-wise Run-time 0000 ¥
8000 rf
Setup % | Query % [ Output % § ;ggg i —o—MPP2
@ sk —5—ALTIX
e o —A—HTCBLAST
=100 S 4000 @
Ing ~2.5 ~95 ~2.5 S 3000 ~ MPI-BLAST
p= 2
2000
'@g 10001 o ~98.5 ~14 1000 M\g}%
p_ 0 T T 1
[Q=1000 [ <0.3 ~98.3 ~15 0 50 100 150
p=32 number of processors

Source: Oechman and Nieplocha (2006)
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More information about ScalaBLAST

m http.//hpc.pnl.gov/projects/scalablast/

IPDPS’07 Tutorial HPC Methods for Computational Genomics
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Books
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D. Hirschberg (1975). A linear space algorithm for computing maximal common subsequences.
Communications of the ACM, 18(6):341-343.

T. Smith and M. Waterman (1981). Overlapping genes and information theory, J. Theoretical Biology, 91:379-
380.

O. Gotoh (1982). An improved algorithm for matching biological sequences. J. Molecular Biology, 162(3):705-
708.

J. Fickett (1984). Fast optimal alignment. Nucleic Acids Research, 12(1):175-179.

M.S. Gelfand ef al. (1996). Gene recognition via spliced alignment. Proc. National Academy of Sciences,
93(17):9061-9066.

A. Delcher et al. (1999). Alignment of whole genomes. Nucleic Acids Research, 27(11):2369-2376.
X. Huang and K. Chao (2003). A generalized global alignment algorithm. Bioinformatics, 19(2):228-233.

S. Rajko and S. Aluru (2004). Space and time optimal parallel sequence alignments. I[EEE Transactions on
Parallel and Distributed Systems, 15(12):1070-1081.

D. Gusfield (1997). Algorithms on strings, trees and sequences: Computer Science and Computational Biology.
Cambridge University Press, Cambridge, London.

J. Setubal and J. Meidanis (1997). Introduction to computational molecular biology. PWS Publishing Company,
Boston, MA.

B. Jackson and S. Aluru (2005). Chapter: “Pairwise sequence alignment” in Handbook of computational
molecular biology, Ed. S. Aluru, Chapman & Hall/CRC Press.
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Selected Bibliography for BLAST Related Topics

Serial BLAST

S. Altschul et al. (1990). Basic Local Alignment Search Tool, J. Molecular Biology, 215:403-410.

W. Gish and D.J. States (1993). Identification of protein coding regions by database similarity search. Nature
Genetics. 3:266-272.

T.L. Madden et al. (1996). Applications of network BLAST server. Meth. Enzymol. 266:131-141.

S. Altschul, et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs. Nucleic Acids Research, 25:3389-3402.

Z. Zhang et al. (2000). A greedy algorithm for aligning DNA sequences. J. Computational Biology, 7(1-
2):203-214.

HPC BLAST

T. Rognes (2001). ParAlign: A parallel sequence alignment algorithm for rapid and sensitive database
searches, Nucleic Acids Research, 29:1647-1652.

R. Bjornson ef al. (2002). TurboBLAST®: A parallel implementation of BLAST built on the TurboHub, Proc.

International Parallel and Distributed Processing Symposium.

A. Darling, L. Carey and W.C. Feng (2003). The design, implementation, and evaluation of mpiBLAST, Proc.

ClusterWorld.
D. Mathog (2003). Parallel BLAST on split databases, Bioinformatics, 19:1865-1866.

J. Wang and Q. Mu (2003). Soap-HT-BLAST: High-throughput BLAST based on web services,
Bioinformatics, 19:1863-1864.

H. Lin et al. (2005). Efficient data access for parallel BLAST, Proc. International Parallel and Distributed
Processing Symposium.

K. Muriki, K. Underwood and R. Sass (2005). RC-BLAST: Towards a portable, cost-effective open source
hardware implementation, Proc. HICOMB 2005.

M. Salisbury (2005). Parallel BLAST: Chopping the database, Genome Technology, pp 21-22.
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NCBI BLAST - Web Resources

= NCBI BLAST Webpage:
http://www.ncbi.nlm.nih.gov/BLAST/

= For a comprehensive list of BLAST related
references:

http://www.ncbi.nlm.nih.gov/blast/blast references.shtml
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Part II:
Large-Scale Sequence Analysis

IPDPS’07 Tutorial HPC Methods for Computational Genomics

42



‘Genome Assembly

Input: Multiple copies of the same genome

-~ e
W W W

— e

Process: Randomly fragment each copy
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‘ Genome Assembly

Output: Unordered genome fragments
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‘ Sequence Assembly Required!

|75« NTERPRETATNA |
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EST Clustering

mRNA AAAAAAAS
cDNA TTTTTIT >

—

ESTs
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‘ Genes Are Not Uniformly Sampled

Gene 1 Gene 2 Gene 3

No expression

Low expression

High expression
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'EST Based Gene Discovery

enomic
]g)N A 2 exon, | exon, |

“, exon, i exom, if exon, ;&

.i
mRNA ¥ .

cDNA

ESTs S
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‘ Single Nucleotide Polymorphisms (SNPs)

} Allele 1

™

> Allele 2

} Allele 3
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SNPs Based on Assembly

ATGTTTAAAGACTACCATGATGGTTATG

ATGTITAAAGACTACCATGATGGTTATG

ATGTTTAAAGACTGCCATCATGGTTATG

ATGTTTAAAGACTGCCATCATGGTTATG

ATGTATAAAGACTGCCATGATGGTTATG

[ [ [
T T [
TR [ [
R R, -

IPDPS’07 Tutorial

ATGTATAAAGACTGCCATGATGGTTATG

HPC Methods for Computational Genomics

Alignment of
related genomic
sequences

Consensus
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‘ SNPs Based On Clustering

ATGTITAAAGACTACCATGATGGTTATG
ATGT;"IE“TAAAGACTA:CCA"IE“GATGGTTATG
ATGTTTAAAGACTGCCATCATGGTTATG

Samples that
ATGTTTAAAGACTGCCATCATGGTTATG are aligned

to the consensus
ATGTATAAAGACTGCCATGATGGTTATG
ATGTATAAAGACTGCCATGATGGTTATG
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Naive Approach

All vs. All alignments + post processing

Compute-intensive and wasteful!

33 million fragments for mouse assembly

7+ million human ESTs

I[PDPS’07 Tutorial HPC Methods for Computational Genomics

52



Typical Methodology

Identify pairs of fragments that have a good exact
match (promising pairs).

Restrict alignment computations to promising
pairs.

Perform post-processing.
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Lookup Table Pair Generation

1234567891011
CATTATTAGGA

0

1

2 3 4

5

6 7 8

9 10 11 12 13 14 15

AA

AC

AG

AT

CA

CC

CG

CT

GA

GC

GG

GT

TA|TC

TG

TT
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Problems for Large-scale Analysis

Longer matches are revealed as multiple short
matches 1n a lookup table based approach.

Matches are arbitrarily generated.

Linear space for uniformly random overlaps with
constant coverage but worst-case quadratic in the
non-uniform case.

I[PDPS’07 Tutorial HPC Methods for Computational Genomics
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PaCE Methodology

Reduce space requirement from quadratic to linear.

Generate promising pairs in decreasing order of maximal
common substring length.

Constant time per generation of a pairwise maximal
common substring.

Significantly reduce number of alignments without
affecting quality.

Massively parallel processing — reduce run-time; increase
available memory.
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A Specific Application:
Maize Genome Assembly
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Why sequence the maize genome?

Maize (i.e., corn) 1s an economically important crop.
Best studied model organism for the cereal crops.

Just as the human genome project will intensify upcoming
medical advances, cereal genomes (rice and maize) will
help improve worldwide food production.
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T ypical Assembly Strategy

............... N
. , | pairs

p—— E— . =0 ( n?l? ) run-time

Filter

O(n) pairs
O(nl?) run-time
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Genome Assembly Example

Human Genome Assembly (Venter ef al. 2001):
0 Input: 27 million fragments

0 Program: Celera Assembler

2 10,000 CPU hours for detecting overlaps

Parallelized to run on 64 GB shared memory machine + 10 4-
processor SMPs with 4-GB memory

o 10,000 CPU hours for the rest
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Maize Genome Assembly

Maize genome 1s comparable 1n size to the
human genome (2.5 GB) but 1s highly
repetitive (65-80%). About 15-20% 1s gene
space.

NSF Workshop 1n July 2001 to debate
sequencing strategies

I[PDPS’07 Tutorial HPC Methods for Computational Genomics
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Maize Genome Assembly

NSF funded pilot projects (2002; $10.2 million):

“gene-enrichment” — Consortium for Maize
Genomics (Danforth Center, TIGR, Purdue & Orion
Genomics)

a2 Methylation filtration (MF)
o High C ¢ selection (HC)

BAC sequencing — Rutgers & Univ. of Arizona.

Dept. of Energy (DOE) added about 2.4 million
fragments.
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'Methylation Filtration

methylated region methylated region

1.) Fragment

e
D

bacteria

e
e
e
e

3.) Sequence ATATGTGACCA TTGTGAACCTT
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‘ High C_¢ Selection

repeat region repeat region

1.) Fragment = === E= = = = ==
dsDNA = E = =

2.) Denature M N G R B e e S e
into ssDNA I T S S s O a0 .

3.)S10lel"€f07”m __= =_ =—— =I:I= [ @ |

dsDNA

4.) Sequence S s s [ S S e .
remaining ssSDNA
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Random vs. Biased Sampling

Uniform layout Nonuniform layout

Uniform case — O(n) overlaps

Non-uniform case — O(n?) overlaps
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PaCE Methodology

First cluster, then assemble.

Two sequences fall in the same cluster 1f there 1s a chain of
overlaps that leads from one sequence to the other.

Each cluster can be assembled into a contig.
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Clustering Strategy

Initially, treat each sequence as a cluster by itself.

If two sequences from two different clusters show
significant overlap, merge the clusters.

Use union-find data structure.
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Processing High-quality Overlaps first 1s
important!

Successful overlap results 1n
Merging of two clusters.

No need to test other promising pairs of fragments
where a member of the pair comes from each
constituent cluster.
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Clustering Heuristic

Promising pairs Pairs aligned
—s— i =2 L
J—{(——— o —(
| o | o~/ P
I —( ) —— i ] —
k0> T k0 X
T e = = Yo
j — AT |
/ X :> Alignment unnecessary!
I[PDPS’07 Tutorial HPC Methods for Computational Genomics

Initialize: {i}, {j}, {k}, {1}

g kg, 5

g kol

{1,,k,1}

Pair generation order
matters !
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Pair Generation Methodology

Generate pairs

o In non-increasing order of maximal common substring length
o On-demand without storing previously generated pairs
o O(1) amortized time per pair

o Using linear space
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PaCE Software Architecture

H[

Alignment
Evaluation

}

h -

On-demand pair Pair

generation

\ 4

GST Construction

A

Selection
N Y,

A 4

) 4

A

Cluster

&\4anagemen

)

J

Construction | Parallel Clustering Phase

Phase

IPDPS’07 Tutorial HPC Methods for Computational Genomics

71



'Generalized Suffix Tree (GST)

WINDOWS INDIGOS$
1234567 1234567

\
s 1,7
& & %o 2,7)
4,
P
(2, 6)
1, 6) 1, 1)
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Parallel Construction of GST

Q Virtual root
P N Exact
word length
Proc #1 Proc #2 - Proc #p
O(nl/p) leaves O(nl/p) leaves .. O(nl/p) leaves
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Parallel Construction of GST

Bucket the suffixes of the sequences based on the
first £ bases.

Redistribute the suffixes in parallel such that each
processor owns a set of buckets.

Build GST locally 1n each processor.
In each processor, #leaves = O(nl/p)
Run-time = O(nl’/p)
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GST Construction on BlueGene/L

Input: 250 million bases

700

600

m Computation
@ Communication

3500
S

2400 |
2300

£200
(14
100 -

912 768 1024

Number of processors

IPDPS’07 Tutorial

Run-time in seconds

1400
1200
1000
800
600
400

200

Input: 500 million bases

B Computation

E Communication

256 512 768 1024

Number of processors
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Pair Generation Algorithm

Process the nodes in the local GST 1n the
decreasing order of string-depth and generate
pairs at each node.

Generate a pair at a node only 1f the
corresponding overlap 1s maximal.
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'Main Idea of the Algorithm

e Maximal match

(S51) (Spf) (spoit1) (8p,j+1)
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Left Character Sets (/sets)

leaf-set(v) = set of strings whose suffixes are
present in the subtree of v.

[set (v) = partition of leaf-set(v) into |X|+1 subsets,

L), [c(v), Lg(v), [(v), [,(v).
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Maximal Match Detection

Right Maximality

= s(i) and s ’(j) are in
subtrees of two

different children of u

Left Maximality

=sfi-1] #s’[j-1],1f i>1
and j>1

IPDPS’07 Tutorial

Pair generation at an internal node u

Iset(4),
lset(C))

Run-time: O(1) per pair

HPC Methods for Computational Genomics
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Run-time for Pair Generation

Sorting of nodes in the local GST
= O(nl/p)

Processing of all nodes 1n the local GST
= Q( # pairs generated )
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Number of Duplicates

o /§\
K — A, 1Bz w
F, —

o b o

eg., (F,F,) 1s generated at most twice.

# of times a pair 1s generated

< # of distinct maximal common substrings
(of length > )
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Possible Fragment Overlaps

F1
a
\ K, F, ——
b F, — F,
e a...c b...c
F, g1 I gl
v d ? b...d *a...d

C

— Compute only lower and upper rectangles

— Do banded dynamic programming
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Parallel Clustering Phase

Send promising pairs
for alignment

Master Processor

_ N

_

Send new promising
pairs and results of

Slave #1

Local GST

alignment

IPDPS’07 Tutorial

Slave #p

Local GST
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Clustering Phase Performance on

BlueGene/L

Run-time for clustering phase

» \ —— 250 million bases

o —a— 500 million bases

600 |

ca ~
=200 T~

('3 \’\0\.

296 512 768 1024
Number of processors

Promising Pairs and Alignment

60

_50 - 0 Aligned and accepted

c B Aligned and rejected
% :‘=E40 || @Unaligned
o E
2£30 i
e 210

o L=

230 500 1000 1252
Input (in million bases)
84
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‘ Overview of Assembly Pipeline

MF (230.6 MB) HC (186.4 MB)  BAC ends (68.5 MB) / Shotgun (5.3 MB)

1.) Collect data Find SDRs
(e oo

Vector criteria:
2.) Clean up data Voo | SeqClean
< 30% from end Mask repetitive sequence
Contaminant criteria: > 80% identity for > 30 bp with an E-val <5 10™
> 94% identity, > 60 bp
Flag SASy reads

Discard
3 .) MaSI< repeats 0.01 significance level .

Atypical reads for
manual classification

Y

”l
-

Reads to be e
assembled

4.) Cluster data

Cluster Fragments

PaCE

1 Parameters: 30 bp initial match, 92 % identity

l Generate contigs using CAP3
5.) Assemble smaller s e 80p ot
subproblems cars |, / Magis /
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‘Maize Assembly on BlueGene/L

Number of Number of PaCE Runtimes (in minutes)
Input Bases nodes
(in billions) Tree Clustering Total
Construction
1.25 1,024 13 89 102

IPDPS’07 Tutorial
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Maize Assembly on BlueGene/L

Number of Number of PaCE Runtimes (in minutes)
Input Bases | processors
(in billions) Tree Clustering Total
Construction
0.5 8,192 1.2 11 13
1.15 8,192 2.3 72 75

IPDPS’07 Tutorial
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Maize Assembled Genomic Islands (MAGIs)

MAGI v4.0
Input Sequences 3,202,268 |
Assembly Size 329.61 MB .
GC Content 44.9%
Contigs 217,106
Non-repetitive 567,797
Singletons
Avg contig len 1,518
Avg GSS per contig 4.78
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‘Gene “archipelagoes”

MAGI3.1 4593 (12,498 bp)
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'Gene “archipelagoes™

MAGI_4593

f
1
I
P
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Maize assembly Portal

IPDPS’C

Address I@ http: /v, plantgenomics.iastate . edu/maize/ j @GD Limks **

)

M f GI Maize Assembled - IOWA STATE UNIVERSITY
Genomlc ISIand Aluru Lab | Ashlock Lab | Schnable Lab
T ey

Welcome to the MAGI website, which reports the results of 3 maize genome assembly
project being conducted by the Aluru, Ashlock and Schnable research groups.

As the best-studied biological model for cereals and one of the world's most important
crops, there is a strong rationale for sequencing the maize genome { Bennetzen et al.,
2001 ; Chandler and Brendel, 2002% and the Mational Science Foundation has recently
announced an BFP to do so. Pilot studies have already generated substantial numbers of
gene-enriched genomic survey sequences {555s; Whitelaw et ., 2003; Palmer et s/l
20033, as well as BAC sequences and random shotgun G5Ss from maize and sorghum that
are available for download from Maizegenome.arg.

We have recently reported the development of innowvative parallel algorithms for the
efficient assembly of non-uniformly sampled genomic fragments {such as gene-enriched
G55s) into "genomic islands" {(Emrich et al., 2004), We have used these procedures and a
64 processor IBM xSeries cluster to assemble ~850,000 maize G555 generated by the
Consortium for Maize Genomics into MAGIS (Maize Assembled Genomic Islands). We have
similarly assembled ~500,000 gene-enriched sorghum{ATx623) G555 generated by Crion
Genomics and their partners NC+Hybrids and Solvigen into SaMIs {Sorghum Assembled
genoMic Islands),

Based on computational and biological quality assessments it appears that a very high
percentage of genic MAGIs and SAMIs accurately reflect the structure of the maize and
sorghum genomes (Fu et al., submitted),

To identify genomic contigs associated with particular genes or functions, MaGIs and —
SAMIs may be searched using BLAST. In addition, MAGIs have been annotated via

sequence similarity, alignments to ESTs using GeneSeger and the ab-initio gene prediction

tool FEGEMESH (¥ao et al., submitted; Fu et al., submitted). The G55s that comprise each

MAGI can also be displayed. It is also now possible to request that specific MaGIs be




‘ More information ...

= PaCE software download
http://www.ece.1astate.edu/~aluru/software/PaCE

a Over 50 academic/governmental/non-profit users from 10
countries.

a0 2 companies.

= Maize Assembly Website
http://www.plantgenomics.iastate.edu/maize

o Used by researchers from Berkeley, Cornell, Purdue, Penn
State, Dupont, BASF etc.
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More Information ...

Publications:

On Maize Assembly

o S.J. Emrich ef al. (2004). A strategy for assembling the maize (Zea mays L.) genome,
Bioinformatics, 20(2):140-147.

o A. Kalyanaraman ef al. (2006). Assembling genomes on large scale parallel computers, Proc.
International Parallel and Distributed Processing Symposium.

On PaCE

o A. Kalyanaraman ef al. (2003). Space and time efficient parallel algorithms and software for
EST clustering, IEEE Transactions on Parallel and Distributed Systems, 14(12):1209-1221.

o A. Kalyanaraman ef al. (2003). Efficient clustering of large EST data sets on parallel
computers, Nucleic Acids Research, 31(11):2963:2974.

On Maize Genomics

o Y. Fuetal (2005). Quality assessment of maize assembled genomic islands (MAGIs) and large-

scale experimental verification of predicted novel genes. Proceedings of the National Academy
of Sciences, 102(34):12282-12287.
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Future of Maize Genome Sequencing
Project

US $32 million project by NSF, DOE, and USDA for
large-scale sequencing.

Goal 1s to sequence all genes, determine their order and
orientation, and anchor them to genetic/ physical maps.

Projects started November 15, 2005.
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'$32 million B73 maize genome
sequencing consortium

Washington University™* Iowa State University

University of Arizona Cold Spring Harbor

Courtesy of the NSF
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Another Application: Mouse
EST Clustering
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Mouse EST clustering

Input:

o A random subset of 56,470 UniGene clusters downloaded in
March 2006

o 3.78 million total entries including ESTs and full-length cDNAs

Output:

a 60,862 clusters with more than one sequence

o Average cluster = 55; Largest = 807,671

a0 83% of clusters are composed of a single UniGene
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Validation

Single-linkage clustering performs at most » merges.

When comparing to UniGene, one measure of accuracy 1s
the number of additional or missed merges performed.

Ignoring clusters of size 1, our data suggest that over 98%
of the links 1n UniGene were correctly determined by
PaCE.
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‘ Clustering accuracy

PaCE clustering
decisions
/~
/
26,125 3,213,878 45,058
\\
N

UniGene clustering
decisions

False negatives
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Run-time Scaling: Mouse EST

Clustering

450

400

350

[
2
i

250

Run-time in minutes
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[+ n=100000 |
= n=250,000

' . n=500,000
= n=1000,000
| ——n=2,000,000 |

32

64 128 256 512
Number of processors
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PaCE: Promising Pairs Statistics

2500
O Aligned and Accepted

B Aligned and Rejected
2000 qm Unaligned

)

1500

in millions

1000

(

Number of pairs generated

200

Number of ESTs
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Selected Bibliography on EST Clustering and
Genome Assembly
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Selected Bibliography on EST Clustering and
Genome Assembly ...

J. Pontius et al. (2003). UniGene: a unified view of the transcriptome. The NCBI
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G. Pertea ef al. (2003). TIGR Gene Indices clustering tool (TGICL): A software system
for fast clustering of large EST datasets, Bioinformatics, 19(5):651-652.
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Bioinformatics, 19(10):1221-1226.
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A. Kalyanaraman et al. (2003). Space and time efficient parallel algorithms and software for EST
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Nucleic Acids Research, 31(11):2963:2974.
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A. Kalyanaraman et al. (2006). Assembling genomes on large scale parallel computers, Proc.
International Parallel and Distributed Processing Symposium.
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Part III:
HPC for Phylogenetics
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Cyber Infrastructure for Phylogenetic Research

= www.phylo.org
m A community project, funded by an $11.6M NSF Information
Technology Research grant

» Georgia Institute of Technology: D.A. » U Connecticut: P. Lewis

Bader * U Arizona: D. Maddison, W. Maddison
 University of New Mexico: B.M.E. « UC Berkeley: B. Mischler, E. Myers, S.
Moret, T. Williams Rao, S. Russell

» UC San Diego: F. Berman, P. Bourne * Florida State U: D. Swofford

* Yale: M. Donoghue » American Museum of Natural History:

» U Texas-Austin: T. Warnow, D.M. Hillis, W. Wheeler
W. Hunt, D. Miranker, L. Meyers
* U Pennsylvania: J. Kim
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‘ Phylogeny

Orangutan

[Zurbis:e‘l;m
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Phylogeny informs everything in biology

It relates organisms and genes.

It helps us understand and predict:

0 1nteractions between genes (genetic networks)
o functions of genes

0 relationship between genotype and phenotype
0 drug and vaccine development

0 origins and spread of disease

0 origins and migrations of humans
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‘ The Tree of Life: The Ultimate Phylogeny

ARCHEA

Methanosarcina  Halophiles m CIPRES aims to establish
Hethanobactenm the cyber infrastructure
(platform, software,
Thermococcus database) required to
attempt a reconstruction of
the Tree of Life

(10-100M organisms)
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‘ Comparative Genomics
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Phylogenetic Trees

Represents evolutionary relationships
Leaves of the tree contain known taxa
Internal vertices represent ancestral species

Edges represent evolutionary events
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Eukaryotic Cell

microtubules chromatin

nuclear envelope
nuclear pore
nucleolus

mitachondrion

centriole .
Golgi complex

. lysosome
vesicle

cytosol

rough . smooth
endoplasmic endoplasmic
reticulum ribosomes reticulum
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Types of Phylogenies

Relationships between taxa
0 Species Trees

0 Gene Trees

Data

2 Morphological
Tree of Life Web (Maddison/Maddison): http://tolweb.org/

2 Nuclear Genome

0 Organelle Genome

IPDPS’07 Tutorial HPC Methods for Computational Genomics 112



Example Phylogenies

Some herpesvirus known to affect humans

Campanulaceae (Bluebell Flowers) S —

KHSV
EBV
HSV1

Wahlenbergia HSV2
Merciera
Trachelium
Symphyandra PRV
Campanula E 1
Adenophora
Legousia VZV
Asyneuma HHV6
Triodanus HHV7
Codonopsis
Cyananthus HCMV
Platycodon = 2 =5,

s = - g z= 22 w5 B
Tobweo 8 2 L3TEEEc gfiEifEfeflig

“-SEE%'EW U%Emggg‘g%nfl.e“il‘f'ﬁg
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Leeches
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Commercial Aspects of Phylogeny Reconstruction

Identification of microorganisms

o public health entomology

o sequence motifs for groups are patented

o example: differentiating tuberculosis strains

Dynamics of microbial communities

o pesticide exposure: identify and quantify microbes in soil
Vaccine development

o variants of a cell wall or protein coat component

o porcine reproductive and respiratory syndrome virus isolates from US and Europe were separate
populations

o HIV studied through DNA markers
Biochemical pathways

o antibacterials and herbicides

Glyphosate (Roundup™, Rodeo ™, and Pondmaster ™): first herbicide targeted at a pathway not present
in mammals

Q ghylci)gengtic distribution of a pathway is studied by the pharmaceutical industry before a drug is
evelope

Pharmaceutical industry

o predicting the natural ligands for cell surface receptors which are potential drug targets

o asingle family, G protein coupled receptors (GPCRs), contains 40% of the targets of most
pharm. companies
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Techniques

Maximum parsimony

0 Occam’s razor: simplest explanation for evolution,
minimizes the sum of the number of evolutionary
events along the tree branches

Maximum likelihood

0 Statistical methods that use an evolutionary model
such as the transition/transversion rate ratio for the
nuclear genome
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Exploiting data about
gene content and gene order

has proved extremely challenging from a computational
perspective

o tasks that can easily be carried out in linear time for DNA data
have required entirely new theories (such as the computation of
inversion distance) or appear to be NP-hard

The focus has thus been on simple genomes, preferably
genomes

o consisting of a single chromosome, and

o where evolution can reasonably be assumed to have been driven
mostly through gene order changes.
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Cell Organelles

Chloroplast

m Chloroplasts and mitochondria have such
genomes: around 120 genes for the
chloroplasts of higher plants and typically
37 genes for the mitochondria of
multicellular animals, in both cases packed 7 %
onto a single chromosome. g i

membraneas

» The gene content of these genomes is fairly
constant across a wide phylogenetic range,
differences are mostly in the ordering of the
genes.
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GRAPPA: Genome
Rearrangements Analysis

Genome Rearrangements Analysis under Parsimony and
other Phylogenetic Algorithms

o http://www.cc.gatech.edu/~bader/code.html
o Freely-available, open-source, GNU GPL

o already used by other computational phylogeny groups, Caprara,
Pevzner LANL FBI, Smithsonian Institute, Aventis,
GlaxoSmlthKhne PharmCos.

Gene-order Phylogeny Reconstruction
o Breakpoint Median
o Inversion Median

over one-billion fold speedup from previous codes
Parallelism scales linearly with the number of processors
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Using GRAPPA to solve
Campanulaceae Phylogeny

i,
‘\.HJ‘N
’f{"r b~ ,
Los
SUPERCLUST

IPDPS’07 Tutorial

On the 512-processor IBM Linux
cluster, we ran the full analysis (all 14
billion trees) in under 1.5 hours —a
1,000,000-fold speedup (and using true
inversion distance) compared with the

best previous code BPanalysis

o 256 IBM Netfinity 4500R nodes of dual 733MHz Intel
Pentium III processors, interconnected with Myrinet

2000

Current release of GRAPPA (v. 1.6)
now takes minutes to solve the same
problem on several processors
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‘ Campanulaceae

Tobacco

= Bob Jansen, UT-Austin;
= Linda Raubeson, Central Washington U
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Gene Order Phylogeny

Many organelles appear to evolve mostly through
processes that simply rearrange gene ordering
(inversion, transposition) and perhaps alter gene
content (duplication, loss).

Chloroplast have a single, typically circular,
chromosome and appear to evolve mostly through
Inversion:

The sequence of genes 1, 1+1, ..., is inverted and every gene 1s flipped.
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Breakpoint Analysis
(Sankoff & Blanchette 1998)

( For each tree topology do

2 0 somehow assign initial genomes to the internal nodes
. /0O repeat
n | .Q

| g |
= |2 for each internal node do
& E - O compute a new genome that minimizes the distances to its three
= 5| S neighbors
g é QZ: O replace old genome by new if distance is reduced

I S
- § .
& | £ U 0 until no change

=)
Q\

-~

Sankoff & Blanchette implemented this in a C++ package
This is NP-hard, even for just three taxa!
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Algorithm Engineering Works!

We reimplemented everything —

o the original code is too slow and not as flexible as we wanted.

Our main dataset is a collection of chloroplast data from the flowering plant
family Campanulaceae (bluebells):

o 13 genomes of 105 gene segments each

On a Pentium III Linux PC:

o BPAnalysis processes 10-12 trees/minute

o Our implementation processes over 50,000 trees/minute
Speedup ratio 1s over 5,000!!

On synthetic datasets, we see speedups from 300 to over 50,000...
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High-Performance Computing Techniques

Availability of hundreds of powerful processors

Standard parallel programming interfaces

0 Message passing interface (MPI)
2 OpenMP or POSIX threads

Algorithmic libraries for SMP clusters
o SIMPLE

Goal: make efficient use of parallelism for
o exploring candidate tree topologies
o sharing of improved bounds
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Parallelization of the Phylogeny Algorithm

Enumerating tree topologies 1s pleasantly parallel and
allows multiple processors to independently search the
tree space with little or no overhead

Improved bounds can be broadcast to other processors
without interrupting work

Load 1s evenly balanced when trees are cyclically
assigned (e.g. in a round-robin fashion) to the processors

Linear speedup
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‘How Bill Gates’s Only Journal Paper Relates to
Computational Biology

Discrete Mathematics 27 (1979) 47-57.
@ North-Holland Publishing Company

BOUNDS FOR SORTING BY PREFIX REVERSAL

TETI NI e LH 3 A "TIZC
V¥ LLIlaAill KR, “J5% L EaD

Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*T
Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978
Revised 28 August 1973

For a permutation o of the integers from 1 to n. let f{o) be the smallest number of prefix
reversals that will transform o to the identity permutation, and let f(n) be the largest such f(o)
for all o in (the symmetric group) S,.. We show that f(n)=(5n+5)/3, and that f(n)= 17n/16 far
n a multiple of 16. If, furthermore, each integer is required to participate in an even number of
reversed prefixes, the corresponding function g(n) is shown to obey 3r/2-1=gn)=2n+3.
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Inversion Distance
(Hannenhalli-Pevzner Theory)

NP-hard for unsigned permutations [Caprara 97]

Polynomial for signed permutations [Hannenhalli & Pevzner 95]

o Compute combinatorial terms from the cycle graph
o d=b-c+h+f [Bafna & Pevzner 93, Setubal & Meidanis 97]

b = number of breakpoints
¢ = number of cycles

h = number of hurdles
f=(0/1) Is there a fortress?

o O(n o(n)) time, [Berman and Hannenhalli 96]

where o(n) is the inverse Ackerman function (practically a constant no greater than 4)

New result: O(n) inversion distance, [Bader, Moret, Yan 01]

o faster and simpler algorithm, both in theory and in practice

High Impact work: already cited over 125 times!
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GRAPPA Remarks

Our reimplementation led to numerous extensions as well as to new
theoretical results

0 GRAPPA has been extended to inversion phylogeny, with linear-time
algorithms for inversion distance and a new approach to exact inversion
median-of-three.

High-performance implementations enable:
o better approximations for difficult problems (MP, ML)
0 true optimization for larger instances

o realistic data exploration (e.g., testing evolutionary scenarios, assessing
answers obtained through other means, etc.)

Our analysis of the Campanulaceae dataset confirmed the conjecture
of Robert Jansen et al. — that inversion is the principal process of
genome evolution in cpDNA for this group.
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Reconstruction Software: single chromosome,
organellar size (< 200 genes)

= 1998 BP Analysis
o Sankoff
o 8taxa > 1 day
o 13 taxa =2 250 years
= 2000 GRAPPA
o 13 taxa = 1 day (512 proc. cluster)
o (200 serial, 100,000 parallel)
= 2001 GRAPPA
o 13 taxa = 1 hour (laptop)
o (2,000,000 serial)
o 20 taxa = 3 million years
= 2003 DCM-GRAPPA
o 1,000 taxa = 2 days
o (effectively unbounded speedup)
= 2004 DCM-GRAPPA
o Handles unequal gene content
o (first method with this capability)
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Challenges 1n Phylogeny

Network evolution

0 Recombination events

Large-scale phylogeny reconstruction
0 Scalability and Accuracy

Comparison and accuracy of techniques and
heuristics
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Cyberinfrastructure Challenges

Current HPC systems are designed for
physics-based simulations that use

o Floating-point, linear algebra
Top 500 List measures Linpack!

o Regular operations (high-degrees of locality)

e.g., Matrices, FFT, CG
o Low-order polynomial-time algorithms

Focus of current HPC systems:

Dense linear algebra

Sparse linear algebra

FFT or multi-grid

Global scatter-gather operations
Dynamically evolving coordinate grids
Dynamic load-balancing
Particle-based or lattice-gas algorithms
Continuum equation solvers

U 000D 0D OO0

IPDPS’07 Tutorial

Computational biology and

bioinformatics often require

0 Integer performance
Strings, trees, graphs

o Combinatorics
Optimization, LP
Computational geometry

o Irregular data accesses

0 Heuristics and solutions to NP-hard
problems

Next-generation
cyberinfrastructure must take
Biology into consideration
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Parsimony Codes

Phylip (Felsenstein)

o http://evolution.genetics.washington.edu/phylip.html
Hennig86 (Farris)

o http://www.cladistics.org/

Nona (Goloboff) and TNT (Goloboff, Farris, Nixon)
o http://www.cladistics.com/

PAUP* (Swofford)
o http://paup.csit.fsu.edu/

MEGA (Kumar, Tamura, Jakobsen, Ne1)

o http://www.megasoftware.net/

GRAPPA (Bader, Moret, Warnow)
o http:// www.phylo.unm.edu/
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[Likelihood Codes

Phylip (Felsenstein)
o http://evolution.genetics.washington.edu/phylip.html

PAUP* (Swofford)
o http://paup.csit.fsu.edu/

PAML (Yang)

o http://abacus.gene.ucl.ac.uk/software/paml.html

FastDNAmlI (Olsen, Matsuda, Hagstrom, Overbeek)
o http://geta.life.uiuc.edu/~gary/programs/fastDNAml.html

Felsenstein’s List of Software:
o http://evolution.genetics.washington.edu/phylip/software.html
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