

A Scalable Cluster Algorithm for Internet Resources

Chuang Liu1, Ian Foster2,3
1Microsoft, 2University of Chicago, 3Argonne National Laboratory

1chuangl@microsoft.com, 2foster@cs.uchicago.edu

Abstract
Applications such as parallel computing, online games,

and content distribution networks need to run on a set of
resources with particular network connection
characteristics to get good performance. To locate such
resource sets, we introduce a scalable algorithm to
compute a hierarchical cluster structure for a large
number of Internet resources such that resources in a
cluster have much smaller latency with each other than
with other resource. Using the hierarchical cluster
structure, we propose an approximate algorithm to
answer queries for a resource set with desired network
connections. We evaluate this method in a large
distributed Internet environment including 2500 DNS
servers, and show that our algorithm can locate required
resources with high accuracy in much shorter time than
traditional methods.

1 Introduction

Applications such as parallel computing, online games,
and content distribution networks need to run on a set of
resources with particular network connection
characteristics to get good performance. Suppose we have
a large number of geographically distributed, Internet-
connected resources. We want an algorithm that, for any
N and L, can provide efficient and accurate answers to a
query for a set of N resources with the property that the
network latency between any pair of those resources is
less than L milliseconds. This is not a trivial problem
because:
• It is computationally expensive to locate a set of

resources with desired network connections among a
large number of available resources. This problem is
NP complete because it can easily be transferred to a
K-clique problem [7].

• It is expensive to measure and store the latency
information among resources. To locate resources
with desired network connections, the search
algorithm needs to know the pair-wise latency
information between resources. Because the number
of possible latency measurements is N2 with N as the
number of resources, it becomes difficult to measure
and store pair-wise latency when dealing with
thousands of resources.

• Resources join the resource pool incrementally. A
resource pool becomes bigger and bigger over time as
more resources join. For example, the Gnutella [8]
network has grown to more than one million nodes in
several years.

Many schemes, such as landmark [5] and network
coordinates [3, 4, 11, 12, 13], have been proposed for
representing resource network locations, and a lot of
services, such as SWORD [1], XenoSearch [14], and
Meridian [2], have been built for locating resources based
on their network locations However, none of them
combine the representation and location of resources to
provide a scalable solution for locating a set of resources
based on their pair-wise network connections.

These considerations lead us to propose an algorithm
that first uses a scalable cluster algorithm to partition
resources into clusters based on end-to-end network
latency such that resources in a cluster have much smaller
latency with each other than with other resources, and then
performs searches within this reduced cluster graph to
answer queries. We show experimentally that this
algorithm performs well and generates robust results in
practical settings. The primary contributions of this paper
are:
• A scalable method for determining a hierarchical

cluster structure for resources. This method works
without knowledge of resources’ locations or network
topologies. In addition, this method can modify the
cluster structure incrementally to reflect changes
when new resources join the resource pool.

• A method to organize and store latency measurements
among resources. This method organizes resources
into a hierarchical cluster structure. Instead of storing
pair-wise latency for all resources, we store only the 1-4244-0910-1/07/$20.00 ©2007 IEEE.

average latency for each cluster. We show this
information is enough to answer queries accurately,
and needs only O(N) space.

• An approximate algorithm to answer queries for a set
of resources with desired network connections. This
algorithm uses no pair-wise latency between
resources but instead the average intra-cluster latency
to provide approximate answers. We show that this
algorithm can improve search performance
remarkably without loss of accuracy and search
capability.

The paper is organized as follows. In Section 2, we
discuss related work. In Section 3, we present an
algorithm for computing the cluster structure of networked
hosts based on latency measurements. In Section 4, we
propose an approximate algorithm for finding resource
sets with desired network connections, and confirm via
experiments that this algorithm has fast response time,
high accuracy, and a strong ability to find query results. In
Section 5, we summarize our work.

2 Related Work

One approach to answering queries for resource sets
with desired network connections is by direct computation
[1, 6], based on experimentally determined pair-wise
inter-resource latencies. Because the possible number of
resource pairs is O(N2), this approach not only requires
much network traffic to measure pair-wise latency, but
requires a large amount of space to store this information
when the number of resources is large. Instead of storing
the pair-wise latency, virtual-coordinates based solutions
assign a virtual coordinate to each resource such that the
latency between any resources can be calculated as the
Euclidian distance based on their coordinates [3, 4, 11, 12,
13]. Because this approach stores a virtual coordinates for
each resource, it reduces spaces for storing pair-wise
latency from O(N2) to O(N). However, Wong [2] shows
that these virtual coordinates introduce significant errors.

Second, given a set of nodes and their latency
measurements, it is a NP-hard problem to find a subset of
resources with particular connection properties. Therefore,
direct computation will not scale because the complexity
of direct computation may be exponential to the number
of resources in the worse case. In landmark-based
solutions [6], each landmark keeps track of its distance to
all resources. This approach can find only the closest
resource to a given resource by querying all landmarks for
resources that are roughly the same distance away from
the landmarks. Choosing the number of landmarks and
selecting landmarks are non-trivial and have significant
impact on the accuracy of the approach. Instead of using
statically configured landmarks, Meridian [2] proposes a
more general peer-to-peer structure in which each
resource keeps track of a set of resources with distances

within given ranges called rings. This approach can
support queries for one resource satisfying multiple
constraints. In comparison, we focus on queries for a
resource set satisfying multiple constraints.

NICE [15] organizes resources in the Internet into a
balanced tree structure based on pair-wise latency to
provide a scalable multicast service. Although the created
tree structure could help locate resource sets with desired
network connections, no work has been done to apply this
technique to solve the resource location problem
considered in this paper. More importantly, NICE always
creates a balanced hierarchical cluster structure. However,
the distribution of resources in an Internet-based test bed
(like Planetlab [16]) is often unbalanced. Part of Internet
may contain many resources, while other parts contain
few resources. We create a hierarchical cluster structure
that represents the distribution of resources in the Internet,
and could answer queries for resource sets more
accurately.

3 An Incremental Cluster Algorithm

Intuitively, resources in the Internet form a hierarchical
cluster structure. For example, the connection latency
between resources from the same university campus is
usually less than 1 millisecond; the connection latency
between resources from different universities in the same
area (such as computers from different campuses of
University of California system) may be tens of
milliseconds; and the connection latency between
resources on different continents may be hundreds of
milliseconds. We show an example of such a hierarchical
structure in Figure 1. In this graph, computers from the
same city form a tight cluster; clusters from the same state
forms a looser cluster; and all resources form a top-level
cluster.

We introduce an algorithm to find the hierarchical
cluster structure of resources based on latency
measurements. Although resource clusters have a strong
correlation with resources’ geographical locations, as
shown by the example in Figure 1, we argue that using
geographical locations to create a hierarchical cluster
structure is problematic when these computers are
connected through different networks. For example,
computers connected to the Internet through different ISPs
may have large connection latency even though they are
close to each other geographically, and should be put in
different clusters.

A hierarchical structure can be represented as a tree
with each cluster as an internal node and each resource as
a leaf, as shown in Figure 1. Each cluster in this structure
contains several children, which can be resource nodes or
sub clusters. We call these children direct members.
Except for the root cluster, each cluster is a direct member
of its parent cluster in the hierarchical structure.

Figure 1 An example of hierarchical
structure

We verified in previous work [9] that resources on
Planetlab have a cluster structure. We will use DNS
servers in the Internet to show that resources in a larger
Internet environment also have a cluster structure. We
admit that resources in a particular test bed may have no
cluster structure, which means that network connections
among resources are mostly homogenous. In this case, the
selection of resource sets is not important because it does
not make big difference anyway. In this paper, we focus
on a more general case in which network connections are
heterogeneous.

3.1 The Algorithm

Our algorithm allows us to construct the hierarchical
cluster structure for resource pools whose resources join
incrementally. The algorithm modifies the existing
hierarchical cluster structure when a new resource node N
joins the resource pool. Starting from the root, the
algorithm recursively asks the new node to measure its
latency to all direct members in the current cluster.
Because direct members of a cluster could be subclusters,
we choose one node in each such subcluster as its
representative, and use the distance between a node and a
representative (or between representatives) as the distance
to the cluster.

Figure 2 Four operations in the hierarchical
cluster algorithm

Based on measurements between new node N and
direct members of the current cluster R, the algorithm
modifies the cluster structure in the following way. We
use Avg(R) to represent the average value of known
distance between direct members of cluster R, and use g to
represent a configurable constant.
• If N is closest to a subcluster C and the distance

between N and C is g-times smaller than Avg(R), the

algorithm recursively inserts the node N into C, as
shown in Figure 2 (b).

• If N is closest to a resource node A and the distance
between them is g-times smaller than Avg(R), it
means that N and A form a tighter cluster. The
algorithm creates a new subcluster G containing N
and A, and adds this subcluster as a new member in
cluster R, as shown in Figure 2(c).

• If the closest distance between N and direct members
of R is g-times larger than Avg(R), the algorithm
creates a super cluster G that contains the new node N
and the cluster R as its two members. If cluster R was
a member of a super cluster T before the join of node
N, the algorithm replaces R with G as the member of
cluster T. The procedure is shown in Figure 2(d).

• If the closest distance between N and direct members
of R is between avg(R)/g and avg(R)*g, the algorithm
considers the distance of this node to direct members
of R to be similar to Avg(R), and inserts this node as
a member of this cluster, as shown in Figure 2(e).

In this way, the algorithm creates a hierarchical
structure with following characteristics.
• Avg(A) is g-times smaller than Avg(B) if A is a child

of B in the hierarchical cluster structure.
• Direct members in a cluster have similar latencies

between them. We consider direct members in a
cluster to have similar latency if their distances are
between Avg(R)/g and Avg(R)*g.

By using different values of g, our algorithm can get
hierarchical cluster structures with different granularities.
We will study the effect of g in a subsequent section.

Because resources in a cluster have similar latency, we
could just store the average latency to represent pair-wise
latency in a cluster, and use it to answer queries for
resource sets with desired connections without checking
pair-wise latency (shown in Section 4). In comparison,
NICE [15] constructs a hierarchical structure by splitting a
cluster when this cluster contains too many resources. It
could create a cluster containing resources with very
different network connections, which makes it less
efficient to handle queries for resource sets.

This hierarchical cluster algorithm enables the
incremental modification of the cluster structure when
resources join the resource pool. We will show that this
algorithm scales to handle large number of resources.
Other works [15,17] propose techniques to maintain a
hierarchical cluster structure when resources leave in a
dynamic distributed environment. Therefore, we will not
discuss this issue in this paper. Instead, we will focus on
studying the scalability of the proposed cluster algorithm,
and its application on the resource selection problem.

3.2 Scalability

We use two metrics to evaluate the scalability of our
cluster algorithm: number of latency measurements and
number of recursions.

Number of latency measurements. To create the
hierarchical cluster structure, the algorithm (Figure 2)
measures the latency between each new node and some
existing members in the resource pool. Because measuring
latency among resources causes network traffic, a scalable
algorithm should construct the cluster structure using only
a small number of measurements.

Number of recursions. The algorithm needs to check
multiple clusters recursively before it finds the right
cluster for the new node. The number of checked clusters
determines the execution time of this algorithm. Also, for
each checked cluster, the algorithm requires the new node
to measure its latency to direct members in this cluster,
which will cause network traffic. Therefore, a scalable
algorithm should have a small number of recursions.

Results. We use the meridian data collected by Wong [2]
to evaluate the scalability of our algorithm. The Meridian
data includes 2500 randomly chosen DNS servers at
unique IP addresses, spanning 6.25 million node pairs. It
is the biggest dataset we found, and has been used as a
benchmark to evaluate Internet-based systems.

To simulate the process of resources joining the
resource pool incrementally, we start with an empty
resource pool, add these resources one by one, and
measure the number of latency measurements and the
number of recursive calls caused by each resource. As
with other incremental cluster algorithms, these values are
affected by the order in which resources join the resource
pool. To reduce the effect of resource ordering, we repeat
the experiment 100 times using different random orders
for resource joins, and calculate the average numbers of
latency measurements and recursive calls per resource
join.

Figure 3 Number of latency measurements
incurred by each resource join with g=2, 5,
and 10

Figure 3 shows the average number of latency
measurements incurred by the cluster algorithm as
resources are added over 100 experiments. X axis is the
order of resource joins, and Y axis is the number of
latency measurements caused by a particular resource join.
The first resource join is marked as 0 in the X axis, and
the last resource join is marked as 2499.

The three curves in this graph compare the number of
latency measurements incurred by the algorithm with g
equal to 2, 5, and 10 respectively. We can see that the
latency measurements incurred by a particular resource
join increases logarithmically with the number of
resources in the resource pool.

Figure 4 Number of recursive calls incurred
by each resource join with g=2, 5, and 10

Similarly, Figure 4 shows the average value of the
number of recursive calls incurred by the cluster algorithm
as resources are added over 100 experiments. We can see
that the number of recursive calls tends to flatten out as
the number of resources increases, especially for the
algorithm with g equal to 5 and 10. Because the average
latency in a cluster tends to g-times smaller than the
latency in its parent cluster, the depth of the hierarchical
tree will not exceed the loggL with L as the maximal
latency in the Internet. Inserting a new node is a process of
checking clusters in the path from the root to the cluster
where the node will be inserted. Therefore, the number of
recursive calls will not exceed loggL.

By measuring two metrics, we conclude that our
algorithm has better scalability than previous approaches
[1, 6] that require a large number of latency measurements
O(N2).

Effect of g value. The parameter g affects scalability of
the algorithm, and quality of the calculated cluster
structure. Figure 3 shows that we incur the fewest latency
measurements when g=2, while Figure 4 shows that we
incur the fewest recursive calls when g=10. Therefore, the
choice of g value is a tradeoff between the number of
latency measurements and the number of recursive calls.

We use g equal to 2 in our algorithm for two reasons.
First, the difference in the number of recursive calls is
relatively smaller between algorithms with different g,

compared to the the number of latency measurements
(shown in Figure 4). And the difference in latency
measurements between algorithms becomes much bigger
with the increase of the number of resources (shown in
Figure 3).

Effect of landmarks. We consider here a variation of the
cluster algorithm. When a new resource joins the resource
pool, instead of measuring its latency to all direct
members in the current cluster, it only measures its
distance to a given number K of resources called
landmarks in this cluster. This method has been used to
reduce the number of latency measurements required to
create and maintain a topology structure of resources
(such as ring structure in Meridian [2]). In this paper, we
randomly choose K resources from a cluster as the
landmarks. Although a more sophisticated landmark
selection is possible, we will show that this method work
reasonably well for locating resource sets.

Figure 5 Number of latency measurements
incurred by each resource join with K=4, 8,
12, 16, 20

Figure 6 Number of recursive calls incurred
by each resource join with K=4, 8, 12, 16, 20

To study the effect of K (the number of landmarks) on
the cluster algorithm, we vary the value of K, and measure
the performance of the algorithm.

Figure 5 shows the number of latency measurements
incurred by each resource join with K=4, 8, 12, 16, and 20
respectively. For comparison, we also show results of the

original algorithm that uses all direct members as
landmarks (marked as all in the figure). Similar to the
previous section, we repeat the experiment 100 times and
show the average value. We can see that using a smaller
number of landmarks reduces the number of latency
measurements, and shows better scalability than the
original method.

Figure 6 shows the number of recursive calls does not
change much with various K values. Because the number
of recursive calls is related to the length of the path from
root to a cluster where a new resource will be inserted, it
shows that the depth of the hierarchical structure does not
change much.

Although these algorithms show good scalability, a
remaining problem is whether they create good cluster
structures. We will evaluate the quality of created cluster
structures by their capability to handle considered queries
in Section 4.2.
// R is the root of the cluster structure
// Q represents a query
Search(R, Q)
1. Add R into a queue S
2. While(S is not empty)
3. C is the first cluster in queue S
4. If (Avg(C) satisfies Q)
5. Construct a result R by randomly

picking N members from C
6. End If
7. Remove C from queue S
8. Get sub-clusters in C and add them

to S
9. End While

Figure 7 An approximate search algorithm

4 An Approximate Search Algorithm

We use the cluster structure to develop an efficient
approximate algorithm searching for a resource set with
desired network connections. As mentioned in Section 3,
instead of storing pair-wise latency between resources, we
store only the average latency between direct members for
each cluster. We show in this section that this average
value can be used to answer queries with high accuracy.

4.1 An Approximate Algorithm

In the hierarchical cluster structure created by the
algorithm, members in each cluster have similar latency.
Therefore, if the average latency satisfies the requirements
in a query, it is likely that all pair-wise latencies in this
cluster satisfy this query. Therefore, instead of checking
pair-wise latency in a cluster, we propose an approximate
algorithm (shown in Figure 7) that checks the average
latency of clusters.

The search algorithm takes the root of a hierarchical
cluster structure and a query as inputs. Starting from the

root (line 2), this algorithm checks every cluster in the
hierarchical cluster structure in preorder (line 1, 2, and 8).
If average latency of a cluster satisfies the requirements in
a query (line 4), the algorithm randomly picks the required
number of resources from the cluster as a query result.
The algorithm returns a set of query results after all
clusters have been checked.

Comparing with the tree search algorithm [6] whose
complexity is O(2N), our algorithm has complexity O(N).
The main operation in our algorithm is to check the
average latency of each cluster. Because the number of
clusters is less than the number of resources, the
complexity of this algorithm is O(N) with N as the number
of resources in the worse case.

The reduced complexity comes at the cost of search
capability and accuracy. First, our algorithm can only find
a resource set consisting of resources from the same
cluster. However, although our approach may miss many
results, it can locate some results in a very short time,
which it is important in a practical setting where users
require their queries to be answered in real time, and they
usually are not interested in finding all results. We show
in the next section that our approach can find more results
than other approaches within a short deadline.

Because our algorithm considers only the average
latency value when deciding if all pair-wise latencies in a
cluster satisfy the query condition, it might return results
that do not satisfy the requirements. We call these results
false positives. We show in Section 4.2 that false positives
are only a small fraction of all results returned by our
approach.

For applications requiring higher accuracy, we could
maintain the maximal latency for a cluster and return
results from clusters whose maximal latency value
satisfies query requirements. Although this method could
remove false positives, it is overly conservative. Part of
resources in a cluster may satisfy a query. If only
considering the maximum latency, this method could not
find these query results.

Instead, we propose a configurable conservative way to
use the average latency to answer queries. The algorithm
considers a cluster a query result if its average latency is
better by a factor of a parameter S than a query’s
requirements. We call S secure factor. For example, for a
query for resources with pair-wise latency smaller than
50ms, the algorithm with S=5 only returns resources from
clusters with average latency less than 10ms. By adjusting
the value of S, We can get a balance between accuracy
and search capability of the algorithm. We study this
tradeoff in the next section.

4.2 Performance Evaluation

In this section, we use experimental results to illustrate
that our approximate algorithm can find query results

quickly without sacrificing either accuracy or the ability to
find results. We compare our algorithm with the tree
search algorithm [6] that has been widely used to answer
queries for a set of resources with desired network
connections [1].

Experimental settings. We implement our search
algorithm and the tree search algorithms [6] in C++ and
run the benchmark queries on a computer with an AMD
Athlon 2 GHz CPU, 512 Mbytes memory, and Linux
version 2.4.27-2-k6.

We create a set of benchmark queries to evaluate the
performance of our approach. The query considered in this
paper is a search for R resources with latency between
each possible pair smaller than L. By varying the value of
R and L, we have a set of different queries. We argue that
most queries in practice are for a small set of resources
with small latency. To simulate these queries, we build
1,000 queries with R as a random positive value smaller
than 10% of the total number of resources, and L as a
random positive value smaller than the median value of
the latency among all resources.

We run the benchmark queries on Meridian data
collected by Wong [2], which is one of the largest dataset
available on the network latency of Internet resources.
This data consists of 2500 randomly chosen DNS servers
in the Internet. We run the original cluster algorithm (seen
Section 3.1) with g=2 to create a hierarchical cluster
structure, and use it in the approximate algorithm to
answer queries. We will also study the effect of landmarks
at the end of this section.

We use three metrics to evaluate the performance of an
algorithm.
• Response time is the time needed by an algorithm to

find results for a query. We use this metric to evaluate
the speed of an algorithm.

• Return Ratio (RR) is the number of queries whose
results are found by an algorithm. We use this metric
to evaluate the search capability of an algorithm.

• False positive rate (FPR) is the percentage of results
returned by an algorithm that actually do not satisfy a
query. We use this metric to evaluate the accuracy of
an algorithm.

Response time. We run the benchmark queries on
Meridian data and measure the response time of both our
approximate algorithm (with S=1) and the tree-based
algorithm for one result. Because it might take the tree
search algorithm a long time to return results, we set a
deadline at three minutes.

We show the cumulative distribution of the execution
time in Figure 8. The X axis is time, and the Y axis is the
fraction of queries returned before that particular time.
From this graph, we can see that our approximate
algorithm responds to 80% of queries in less than 30 ms,

and responds to all queries in less than 200 ms. In
comparison, the tree search algorithm needs much more
time, and responds to only 59% of queries before the
deadline.

Figure 8 Cumulative distribution of query
processing time for 1,000 benchmark
queries

Return ratio (RR). Because our algorithm searches for
results only in clusters, it may fail to find certain results,
namely those that span two or more clusters. To evaluate
our algorithm’s ability to find query results, we measure
the percentage of benchmark queries whose results are
found by an algorithm (see Table 1).

Table 1 Return ratio as function of secure
factor

S 1 1.5 2 2.5 3 Tree

RR 0.80 0.72 0.63 0.56 0.49 0.59

Among all 1000 benchmark queries, our algorithm can
find results for 85% of queries with S=1. The ratio drops
as the value of S increases. For comparison, the tree
search algorithm returns only 59% of all queries before
the deadline. Thus, we find that even though the tree
search algorithm can, in theory, find results for all queries,
in practice it finds results for fewer queries when subject
to a deadline. For S equal to 1, 1.5, 2, our algorithm finds
results for more queries than the tree algorithm.

Table 2 FPR as function of secure factor S

S 1 1.5 2 2.5 3

FPR 0.32 0.21 0.15 0.1 0.06

False positive rates (FPR). Because our algorithm uses
average latency to answer queries, it might return false
results due to individual pair-wise latencies being more
than the average value. To evaluate the accuracy of our
algorithm, we use the approximate algorithm to return all
results that it can find, and measure the fraction of false
positives among those results. Table 2 shows the false
positive ratio for all results returned by our algorithm with

different values of S. For the results returned by our
algorithm with S=1, 32% of results violate the query. This
number drops rapidly as the secure factor increases.

Table 3 RR & FPR of the ranking-based
algorithm

RR FPR

0.85 0.06

From Table 2, we can see that choosing the secure
factor involves a tradeoff between accuracy and search
capacity. For queries asking for just a few results, we can
balance the algorithm’s accuracy and search capacity by
ranking all found results based on their accuracy. For each
cluster, instead of testing the satisfiability using a
particular S value, we check if it is 3-time better, 2-time
better, or 1-time better than query requirements, and
associate the S value (1, 2, or 3) with the results. For a
query for K results, this algorithm returns the K results
with highest S value.

We call this modified algorithm the ranking-based
algorithm, and use the benchmark queries to evaluate its
performance. Assuming that each query asks for just one
result, the accuracy and number of results returned by
ranking-based algorithm is shown in Table 3. We see this
algorithm achieves a high return ratio and low false
positive ration.

Effect of landmarks. As mentioned in Section 3, using a
given number of landmarks can reduce the cost to create a
hierarchical cluster structure. To measure the quality of
created cluster structures, we run the approximate
algorithm on these structures based on benchmark queries.
We use a security factor 1, and search for all results. To
avoid the effect of randomly chosen landmarks, we run
each experiment 50 times, and show the median value, 10
and 90 percentile value for each measured metric.

Figure 9 Effect of the number of landmarks
on the search algorithm

Figure 9 shows the experimental results. X axis is the
number of landmarks K; Y axis is the return ratio (RR),
the false positive rate (FPR), the total number of results
for all benchmark queries, and the aggregated response
time for all benchmark queries respectively. For each
graph in the figure, the first five points represent values
produced by landmark-based cluster algorithms with K=4,
8, 12, 16, and 20; and the last one is the value produced by
the original cluster algorithm.

First, from the graph on the left bottom and the graph
on the right top, we can see that algorithms with more
landmarks find more results and provide more accurate
answers. It shows that more landmarks help build a better
hierarchical structure. At the same time, we could see that
algorithms with fewer landmarks have similar RR and
responds queries quicker.

From these graphs, we could also see that algorithms
with K= 12, 16, and 20 have very similar query
performance as the original algorithm. Because they have
better scalability (shown in Section 3), the landmark-based
cluster algorithm is a better choice to answer considered
queries. We will do more research on this issue in the
future.

5 Summary

We have introduced an algorithm to compute a
hierarchical cluster structure for a large and dynamic
resource pool. This algorithm can modify the cluster
structure incrementally as resources join. The number of
latency measurements required by this algorithm is
O(N.log(N)). In addition, our algorithm stores only the
average latency for each created cluster, and thus requires
only O(N) space. This average value can be used to
answer queries for a resource set with desired network
latency with high accuracy.

We have also proposed an approximate algorithm to
answer queries for a resource set with desired network
connections by using the hierarchical cluster structure.
Experimental results show that our algorithm not only
improves the search performance remarkably, it also finds
results within a given deadline with high accuracy.

6 Acknowledgements

We are grateful to Anne Rogers and Lingyun Yang for
comments on a draft of this paper.

References

[1] D. Oppenheimer, J. Albrecht, D. Patterson, and A.Vahdat,
“Distributed resource discovery on planetlab with
SWORD”, In WORLDS, San Francisco, 2004.

[2] B.Wong, A.Slivkins, E.G.Sirer, “Meridian: a lightweight
network location service without virtual coordinates”, in
SIGCOMM, Philadelphia, 2005.

[3] T. S. E. Ng and H. Zhang, "Predicting Internet distance with
coordinates-based approaches," in IEEE Infocom, 2002.

[4] M. Pias, J. Crowcroft, S. Wilbur, T. Harris, and S. Bhatti,
"Lighthouses for scalable distributed location," in IPDPS,
2003.

[5] L. Tang and M. E. Crovella, "Virtual landmarks for the
internet," in Internet Measurement Conference, 2003.

[6] R. M. Haralick and G. L. Elliott, "Increasing tree search
efficiency for constraint satisfaction problems," Artificial
Intelligence, vol. 14, pp. 263-313, 1980.

[7] T. Cormen, C. Leiserson, and R. Rivest, Introduction to
Algorithms: The MIT Press, 1989.

[8] Gnutella, "The Gnutella web site:
http://gnutella.wego.com," 2003.

[9] C. Liu, I. Foster, Robust Computation of Resource Clusters
in the Internet, Chuang Liu, Ian Foster, in Cluster, Boston,
2005.

[10] H. Burch and B. Cheswick, "Mapping the Internet," IEEE
Computer, 1997.

[11] R. Cox, F. Dabek, F. Kaahoek, J. Li, and R. Morris,
Practical, distributed network coordinates, in HotNets-II,
Cambridge, Massachusetts, 2003.

[12] P. Pietzuch, J. Ledlie, and M. Seltzer, “Supporting Network
Coordinates on PlanetLab”, In WORLDS, San Francisco,
2005.

[13] F. Dabek, R. Cox, F. Kaahoek, R. Morris, “Vivaldi: A
Decentralized Network Coordinate System”, In SIGCOMM,
Portland, 2004.

[14] D. Spence and T. Harris, "XenoSearch: distributed resource
discovery in the XenoServer open plantform," in HPDC,
2003.

[15] S. Banerjee, B. Bhattacharjee, C. Kommareddy, “Scalable
Application Layer Multicast”, In SIGCOMM, Pittsburgh,
2002

[16] L. Peterson, S. Muir, T. Roscoe, A. Klingaman, “Planetlab
Architecture: An Overview”, in PDN-06-031, 2006

[17] H. Yamaguchi, A. Hiromori, T. Higashino, K. Taniguchi,
“An Autonomous and Decentralized Protocol for Delay
Sensitive Overlay Multicast Tree”, in ICDCS, 2004

