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Abstract 
Applications such as parallel computing, online games, 

and content distribution networks need to run on a set of 
resources with particular network connection 
characteristics to get good performance. To locate such 
resource sets, we introduce a scalable algorithm to 
compute a hierarchical cluster structure for a large 
number of Internet resources such that resources in a 
cluster have much smaller latency with each other than 
with other resource. Using the hierarchical cluster 
structure, we propose an approximate algorithm to 
answer queries for a resource set with desired network 
connections. We evaluate this method in a large 
distributed Internet environment including 2500 DNS 
servers, and show that our algorithm can locate required 
resources with high accuracy in much shorter time than 
traditional methods.   
 
 

1 Introduction  

Applications such as parallel computing, online games, 
and content distribution networks need to run on a set of 
resources with particular network connection 
characteristics to get good performance. Suppose we have 
a large number of geographically distributed, Internet-
connected resources. We want an algorithm that, for any 
N and L, can provide efficient and accurate answers to a 
query for a set of N resources with the property that the 
network latency between any pair of those resources is 
less than L milliseconds. This is not a trivial problem 
because: 
• It is computationally expensive to locate a set of 

resources with desired network connections among a 
large number of available resources. This problem is 
NP complete because it can easily be transferred to a 
K-clique problem [7].   

 
 
 
 
 

• It is expensive to measure and store the latency 
information among resources. To locate resources 
with desired network connections, the search 
algorithm needs to know the pair-wise latency 
information between resources. Because the number 
of possible latency measurements is N2 with N as the 
number of resources, it becomes difficult to measure 
and store pair-wise latency when dealing with 
thousands of resources.  

• Resources join the resource pool incrementally. A 
resource pool becomes bigger and bigger over time as 
more resources join. For example, the Gnutella [8] 
network has grown to more than one million nodes in 
several years.  

Many schemes, such as landmark [5] and network 
coordinates [3, 4, 11, 12, 13], have been proposed for 
representing resource network locations, and a lot of 
services, such as SWORD [1], XenoSearch [14], and 
Meridian [2], have been built for locating resources based 
on their network locations However, none of them 
combine the representation and location of resources to 
provide a scalable solution for locating a set of resources 
based on their pair-wise network connections.  

These considerations lead us to propose an algorithm 
that first uses a scalable cluster algorithm to partition 
resources into clusters based on end-to-end network 
latency such that resources in a cluster have much smaller 
latency with each other than with other resources, and then 
performs searches within this reduced cluster graph to 
answer queries. We show experimentally that this 
algorithm performs well and generates robust results in 
practical settings. The primary contributions of this paper 
are: 
• A scalable method for determining a hierarchical 

cluster structure for resources. This method works 
without knowledge of resources’ locations or network 
topologies. In addition, this method can modify the 
cluster structure incrementally to reflect changes 
when new resources join the resource pool.  

• A method to organize and store latency measurements 
among resources. This method organizes resources 
into a hierarchical cluster structure. Instead of storing 
pair-wise latency for all resources, we store only the 1-4244-0910-1/07/$20.00 ©2007 IEEE. 



 

average latency for each cluster. We show this 
information is enough to answer queries accurately, 
and needs only O(N) space.   

• An approximate algorithm to answer queries for a set 
of resources with desired network connections.  This 
algorithm uses no pair-wise latency between 
resources but instead the average intra-cluster latency 
to provide approximate answers. We show that this 
algorithm can improve search performance 
remarkably without loss of accuracy and search 
capability.   

The paper is organized as follows. In Section 2, we 
discuss related work. In Section 3, we present an 
algorithm for computing the cluster structure of networked 
hosts based on latency measurements. In Section 4, we 
propose an approximate algorithm for finding resource 
sets with desired network connections, and confirm via 
experiments that this algorithm has fast response time, 
high accuracy, and a strong ability to find query results. In 
Section 5, we summarize our work.  

2 Related Work 

One approach to answering queries for resource sets 
with desired network connections is by direct computation 
[1, 6], based on experimentally determined pair-wise 
inter-resource latencies. Because the possible number of 
resource pairs is O(N2), this approach not only requires 
much network traffic to measure pair-wise latency, but 
requires a large amount of space to store this information 
when the number of resources is large. Instead of storing 
the pair-wise latency, virtual-coordinates based solutions 
assign a virtual coordinate to each resource such that the 
latency between any resources can be calculated as the 
Euclidian distance based on their coordinates [3, 4, 11, 12, 
13]. Because this approach stores a virtual coordinates for 
each resource, it reduces spaces for storing pair-wise 
latency from O(N2) to O(N). However, Wong [2] shows 
that these virtual coordinates introduce significant errors.  

Second, given a set of nodes and their latency 
measurements, it is a NP-hard problem to find a subset of 
resources with particular connection properties. Therefore, 
direct computation will not scale because the complexity 
of direct computation may be exponential to the number 
of resources in the worse case. In landmark-based 
solutions [6], each landmark keeps track of its distance to 
all resources. This approach can find only the closest 
resource to a given resource by querying all landmarks for 
resources that are roughly the same distance away from 
the landmarks. Choosing the number of landmarks and 
selecting landmarks are non-trivial and have significant 
impact on the accuracy of the approach. Instead of using 
statically configured landmarks, Meridian [2] proposes a 
more general peer-to-peer structure in which each 
resource keeps track of a set of resources with distances 

within given ranges called rings. This approach can 
support queries for one resource satisfying multiple 
constraints. In comparison, we focus on queries for a 
resource set satisfying multiple constraints.    

NICE [15] organizes resources in the Internet into a 
balanced tree structure based on pair-wise latency to 
provide a scalable multicast service. Although the created 
tree structure could help locate resource sets with desired 
network connections, no work has been done to apply this 
technique to solve the resource location problem 
considered in this paper. More importantly, NICE always 
creates a balanced hierarchical cluster structure. However, 
the distribution of resources in an Internet-based test bed 
(like Planetlab [16]) is often unbalanced. Part of Internet 
may contain many resources, while other parts contain 
few resources. We create a hierarchical cluster structure 
that represents the distribution of resources in the Internet, 
and could answer queries for resource sets more 
accurately.    

3 An Incremental Cluster Algorithm 

Intuitively, resources in the Internet form a hierarchical 
cluster structure. For example, the connection latency 
between resources from the same university campus is 
usually less than 1 millisecond; the connection latency 
between resources from different universities in the same 
area (such as computers from different campuses of 
University of California system) may be tens of 
milliseconds; and the connection latency between 
resources on different continents may be hundreds of 
milliseconds. We show an example of such a hierarchical 
structure in Figure 1. In this graph, computers from the 
same city form a tight cluster; clusters from the same state 
forms a looser cluster; and all resources form a top-level 
cluster.  

We introduce an algorithm to find the hierarchical 
cluster structure of resources based on latency 
measurements. Although resource clusters have a strong 
correlation with resources’ geographical locations, as 
shown by the example in Figure 1, we argue that using 
geographical locations to create a hierarchical cluster 
structure is problematic when these computers are 
connected through different networks. For example, 
computers connected to the Internet through different ISPs 
may have large connection latency even though they are 
close to each other geographically, and should be put in 
different clusters.  

A hierarchical structure can be represented as a tree 
with each cluster as an internal node and each resource as 
a leaf, as shown in Figure 1. Each cluster in this structure 
contains several children, which can be resource nodes or 
sub clusters. We call these children direct members. 
Except for the root cluster, each cluster is a direct member 
of its parent cluster in the hierarchical structure.  



 

 
Figure 1 An example of hierarchical 
structure 

We verified in previous work [9] that resources on 
Planetlab have a cluster structure. We will use DNS 
servers in the Internet to show that resources in a larger 
Internet environment also have a cluster structure. We 
admit that resources in a particular test bed may have no 
cluster structure, which means that network connections 
among resources are mostly homogenous. In this case, the 
selection of resource sets is not important because it does 
not make big difference anyway. In this paper, we focus 
on a more general case in which network connections are 
heterogeneous.   

3.1 The Algorithm 

Our algorithm allows us to construct the hierarchical 
cluster structure for resource pools whose resources join 
incrementally. The algorithm modifies the existing 
hierarchical cluster structure when a new resource node N 
joins the resource pool. Starting from the root, the 
algorithm recursively asks the new node to measure its 
latency to all direct members in the current cluster. 
Because direct members of a cluster could be subclusters, 
we choose one node in each such subcluster as its 
representative, and use the distance between a node and a 
representative (or between representatives) as the distance 
to the cluster.  

 
Figure 2 Four operations in the hierarchical 
cluster algorithm 

Based on measurements between new node N and 
direct members of the current cluster R, the algorithm 
modifies the cluster structure in the following way. We 
use Avg(R) to represent the average value of known 
distance between direct members of cluster R, and use g to 
represent a configurable constant. 
• If N is closest to a subcluster C and the distance 

between N and C is g-times smaller than Avg(R), the 

algorithm recursively inserts the node N into C, as 
shown in Figure 2 (b). 

• If N is closest to a resource node A and the distance 
between them is g-times smaller than Avg(R), it 
means that N and A form a tighter cluster. The 
algorithm creates a new subcluster G containing N 
and A, and adds this subcluster as a new member in 
cluster R, as shown in Figure 2(c).  

• If the closest distance between N and direct members 
of R is g-times larger than Avg(R), the algorithm 
creates a super cluster G that contains the new node N 
and the cluster R as its two members. If cluster R was 
a member of a super cluster T before the join of node 
N, the algorithm replaces R with G as the member of 
cluster T. The procedure is shown in Figure 2(d). 

• If the closest distance between N and direct members 
of R is between avg(R)/g and avg(R)*g, the algorithm 
considers the distance of this node to direct members 
of R to be similar to Avg(R), and inserts this node as 
a member of this cluster, as shown in Figure 2(e).  

In this way, the algorithm creates a hierarchical 
structure with following characteristics.   
• Avg(A) is g-times smaller than Avg(B) if A is a child 

of B in the hierarchical cluster structure.  
• Direct members in a cluster have similar latencies 

between them. We consider direct members in a 
cluster to have similar latency if their distances are 
between Avg(R)/g and Avg(R)*g. 

By using different values of g, our algorithm can get 
hierarchical cluster structures with different granularities. 
We will study the effect of g in a subsequent section. 

Because resources in a cluster have similar latency, we 
could just store the average latency to represent pair-wise 
latency in a cluster, and use it to answer queries for 
resource sets with desired connections without checking 
pair-wise latency (shown in Section 4). In comparison, 
NICE [15] constructs a hierarchical structure by splitting a 
cluster when this cluster contains too many resources. It 
could create a cluster containing resources with very 
different network connections, which makes it less 
efficient to handle queries for resource sets.    

This hierarchical cluster algorithm enables the 
incremental modification of the cluster structure when 
resources join the resource pool. We will show that this 
algorithm scales to handle large number of resources. 
Other works [15,17] propose techniques to maintain a 
hierarchical cluster structure when resources leave in a 
dynamic distributed environment. Therefore, we will not 
discuss this issue in this paper. Instead, we will focus on 
studying the scalability of the proposed cluster algorithm, 
and its application on the resource selection problem.   



 

3.2 Scalability 

We use two metrics to evaluate the scalability of our 
cluster algorithm: number of latency measurements and 
number of recursions.   

Number of latency measurements. To create the 
hierarchical cluster structure, the algorithm (Figure 2) 
measures the latency between each new node and some 
existing members in the resource pool. Because measuring 
latency among resources causes network traffic, a scalable 
algorithm should construct the cluster structure using only 
a small number of measurements.  

Number of recursions. The algorithm needs to check 
multiple clusters recursively before it finds the right 
cluster for the new node. The number of checked clusters 
determines the execution time of this algorithm. Also, for 
each checked cluster, the algorithm requires the new node 
to measure its latency to direct members in this cluster, 
which will cause network traffic. Therefore, a scalable 
algorithm should have a small number of recursions.  

Results. We use the meridian data collected by Wong [2] 
to evaluate the scalability of our algorithm. The Meridian 
data includes 2500 randomly chosen DNS servers at 
unique IP addresses, spanning 6.25 million node pairs. It 
is the biggest dataset we found, and has been used as a 
benchmark to evaluate Internet-based systems.  

To simulate the process of resources joining the 
resource pool incrementally, we start with an empty 
resource pool, add these resources one by one, and 
measure the number of latency measurements and the 
number of recursive calls caused by each resource. As 
with other incremental cluster algorithms, these values are 
affected by the order in which resources join the resource 
pool. To reduce the effect of resource ordering, we repeat 
the experiment 100 times using different random orders 
for resource joins, and calculate the average numbers of 
latency measurements and recursive calls per resource 
join.  

 

 
Figure 3 Number of latency measurements 
incurred by each resource join with g=2, 5, 
and 10 

Figure 3 shows the average number of latency 
measurements incurred by the cluster algorithm as 
resources are added over 100 experiments. X axis is the 
order of resource joins, and Y axis is the number of 
latency measurements caused by a particular resource join. 
The first resource join is marked as 0 in the X axis, and 
the last resource join is marked as 2499. 

The three curves in this graph compare the number of 
latency measurements incurred by the algorithm with g 
equal to 2, 5, and 10 respectively. We can see that the 
latency measurements incurred by a particular resource 
join increases logarithmically with the number of 
resources in the resource pool.  

 
Figure 4 Number of recursive calls incurred 
by each resource join with g=2, 5, and 10 

Similarly, Figure 4 shows the average value of the 
number of recursive calls incurred by the cluster algorithm 
as resources are added over 100 experiments. We can see 
that the number of recursive calls tends to flatten out as 
the number of resources increases, especially for the 
algorithm with g equal to 5 and 10. Because the average 
latency in a cluster tends to g-times smaller than the 
latency in its parent cluster, the depth of the hierarchical 
tree will not exceed the loggL with L as the maximal 
latency in the Internet. Inserting a new node is a process of 
checking clusters in the path from the root to the cluster 
where the node will be inserted. Therefore, the number of 
recursive calls will not exceed loggL. 

By measuring two metrics, we conclude that our 
algorithm has better scalability than previous approaches 
[1, 6] that require a large number of latency measurements 
O(N2).  

Effect of g value. The parameter g affects scalability of 
the algorithm, and quality of the calculated cluster 
structure.  Figure 3 shows that we incur the fewest latency 
measurements when g=2, while Figure 4 shows that we 
incur the fewest recursive calls when g=10. Therefore, the 
choice of g value is a tradeoff between the number of 
latency measurements and the number of recursive calls.  

We use g equal to 2 in our algorithm for two reasons. 
First, the difference in the number of recursive calls is 
relatively smaller between algorithms with different g, 



 

compared to the the number of latency measurements 
(shown in Figure 4). And the difference in latency 
measurements between algorithms becomes much bigger 
with the increase of the number of resources (shown in 
Figure 3).  

Effect of landmarks. We consider here a variation of the 
cluster algorithm. When a new resource joins the resource 
pool, instead of measuring its latency to all direct 
members in the current cluster, it only measures its 
distance to a given number K of resources called 
landmarks in this cluster. This method has been used to 
reduce the number of latency measurements required to 
create and maintain a topology structure of resources 
(such as ring structure in Meridian [2]). In this paper, we 
randomly choose K resources from a cluster as the 
landmarks. Although a more sophisticated landmark 
selection is possible, we will show that this method work 
reasonably well for locating resource sets.   

 
Figure 5 Number of latency measurements 
incurred by each resource join with K=4, 8, 
12, 16, 20 

 
Figure 6 Number of recursive calls incurred 
by each resource join with K=4, 8, 12, 16, 20 

To study the effect of K (the number of landmarks) on 
the cluster algorithm, we vary the value of K, and measure 
the performance of the algorithm.  

Figure 5 shows the number of latency measurements 
incurred by each resource join with K=4, 8, 12, 16, and 20 
respectively. For comparison, we also show results of the 

original algorithm that uses all direct members as 
landmarks (marked as all in the figure). Similar to the 
previous section, we repeat the experiment 100 times and 
show the average value. We can see that using a smaller 
number of landmarks reduces the number of latency 
measurements, and shows better scalability than the 
original method.  

Figure 6 shows the number of recursive calls does not 
change much with various K values. Because the number 
of recursive calls is related to the length of the path from 
root to a cluster where a new resource will be inserted, it 
shows that the depth of the hierarchical structure does not 
change much.  

Although these algorithms show good scalability, a 
remaining problem is whether they create good cluster 
structures. We will evaluate the quality of created cluster 
structures by their capability to handle considered queries 
in Section 4.2.  
// R is the root of the cluster structure 
// Q represents a query  
Search(R, Q) 
1. Add R into a queue S 
2. While(S is not empty)   
3.   C is the first cluster in queue S 
4.   If (Avg(C) satisfies Q) 
5.     Construct a result R by randomly 

picking N members from C 
6.   End If  
7.   Remove C from queue S 
8.   Get sub-clusters in C and add them 

to S 
9. End While 

Figure 7 An approximate search algorithm 

4 An Approximate Search Algorithm 

We use the cluster structure to develop an efficient 
approximate algorithm searching for a resource set with 
desired network connections. As mentioned in Section 3, 
instead of storing pair-wise latency between resources, we 
store only the average latency between direct members for 
each cluster. We show in this section that this average 
value can be used to answer queries with high accuracy.   

4.1 An Approximate Algorithm 

In the hierarchical cluster structure created by the 
algorithm, members in each cluster have similar latency. 
Therefore, if the average latency satisfies the requirements 
in a query, it is likely that all pair-wise latencies in this 
cluster satisfy this query. Therefore, instead of checking 
pair-wise latency in a cluster, we propose an approximate 
algorithm (shown in Figure 7) that checks the average 
latency of clusters.       

The search algorithm takes the root of a hierarchical 
cluster structure and a query as inputs. Starting from the 



 

root (line 2), this algorithm checks every cluster in the 
hierarchical cluster structure in preorder (line 1, 2, and 8). 
If average latency of a cluster satisfies the requirements in 
a query (line 4), the algorithm randomly picks the required 
number of resources from the cluster as a query result. 
The algorithm returns a set of query results after all 
clusters have been checked.  

Comparing with the tree search algorithm [6] whose 
complexity is O(2N), our algorithm has complexity O(N). 
The main operation in our algorithm is to check the 
average latency of each cluster. Because the number of 
clusters is less than the number of resources, the 
complexity of this algorithm is O(N) with N as the number 
of resources in the worse case.  

The reduced complexity comes at the cost of search 
capability and accuracy. First, our algorithm can only find 
a resource set consisting of resources from the same 
cluster. However, although our approach may miss many 
results, it can locate some results in a very short time, 
which it is important in a practical setting where users 
require their queries to be answered in real time, and they 
usually are not interested in finding all results. We show 
in the next section that our approach can find more results 
than other approaches within a short deadline.  

Because our algorithm considers only the average 
latency value when deciding if all pair-wise latencies in a 
cluster satisfy the query condition, it might return results 
that do not satisfy the requirements. We call these results 
false positives. We show in Section 4.2 that false positives 
are only a small fraction of all results returned by our 
approach.  

For applications requiring higher accuracy, we could 
maintain the maximal latency for a cluster and return 
results from clusters whose maximal latency value 
satisfies query requirements. Although this method could 
remove false positives, it is overly conservative. Part of 
resources in a cluster may satisfy a query. If only 
considering the maximum latency, this method could not 
find these query results.  

Instead, we propose a configurable conservative way to 
use the average latency to answer queries. The algorithm 
considers a cluster a query result if its average latency is 
better by a factor of a parameter S than a query’s 
requirements. We call S secure factor. For example, for a 
query for resources with pair-wise latency smaller than 
50ms, the algorithm with S=5 only returns resources from 
clusters with average latency less than 10ms. By adjusting 
the value of S, We can get a balance between accuracy 
and search capability of the algorithm. We study this 
tradeoff in the next section. 

4.2 Performance Evaluation 

In this section, we use experimental results to illustrate 
that our approximate algorithm can find query results 

quickly without sacrificing either accuracy or the ability to 
find results. We compare our algorithm with the tree 
search algorithm [6] that has been widely used to answer 
queries for a set of resources with desired network 
connections [1].  

Experimental settings. We implement our search 
algorithm and the tree search algorithms [6] in C++ and 
run the benchmark queries on a computer with an AMD 
Athlon 2 GHz CPU, 512 Mbytes memory, and Linux 
version 2.4.27-2-k6.  

We create a set of benchmark queries to evaluate the 
performance of our approach. The query considered in this 
paper is a search for R resources with latency between 
each possible pair smaller than L. By varying the value of 
R and L, we have a set of different queries. We argue that 
most queries in practice are for a small set of resources 
with small latency. To simulate these queries, we build 
1,000 queries with R as a random positive value smaller 
than 10% of the total number of resources, and L as a 
random positive value smaller than the median value of 
the latency among all resources.  

We run the benchmark queries on Meridian data 
collected by Wong [2], which is one of the largest dataset 
available on the network latency of Internet resources. 
This data consists of 2500 randomly chosen DNS servers 
in the Internet. We run the original cluster algorithm (seen 
Section 3.1) with g=2 to create a hierarchical cluster 
structure, and use it in the approximate algorithm to 
answer queries. We will also study the effect of landmarks 
at the end of this section. 

We use three metrics to evaluate the performance of an 
algorithm.  
• Response time is the time needed by an algorithm to 

find results for a query. We use this metric to evaluate 
the speed of an algorithm.  

• Return Ratio (RR) is the number of queries whose 
results are found by an algorithm. We use this metric 
to evaluate the search capability of an algorithm. 

• False positive rate (FPR) is the percentage of results 
returned by an algorithm that actually do not satisfy a 
query. We use this metric to evaluate the accuracy of 
an algorithm.  

Response time. We run the benchmark queries on 
Meridian data and measure the response time of both our 
approximate algorithm (with S=1) and the tree-based 
algorithm for one result. Because it might take the tree 
search algorithm a long time to return results, we set a 
deadline at three minutes.  

We show the cumulative distribution of the execution 
time in Figure 8. The X axis is time, and the Y axis is the 
fraction of queries returned before that particular time. 
From this graph, we can see that our approximate 
algorithm responds to 80% of queries in less than 30 ms, 



 

and responds to all queries in less than 200 ms. In 
comparison, the tree search algorithm needs much more 
time, and responds to only 59% of queries before the 
deadline.    

 
Figure 8 Cumulative distribution of query 
processing time for 1,000 benchmark 
queries 

Return ratio (RR). Because our algorithm searches for 
results only in clusters, it may fail to find certain results, 
namely those that span two or more clusters. To evaluate 
our algorithm’s ability to find query results, we measure 
the percentage of benchmark queries whose results are 
found by an algorithm (see Table 1).  

Table 1 Return ratio as function of secure 
factor  

S 1 1.5 2 2.5 3 Tree 

RR 0.80  0.72  0.63 0.56  0.49 0.59 

Among all 1000 benchmark queries, our algorithm can 
find results for 85% of queries with S=1. The ratio drops 
as the value of S increases. For comparison, the tree 
search algorithm returns only 59% of all queries before 
the deadline. Thus, we find that even though the tree 
search algorithm can, in theory, find results for all queries, 
in practice it finds results for fewer queries when subject 
to a deadline. For S equal to 1, 1.5, 2, our algorithm finds 
results for more queries than the tree algorithm.  

Table 2 FPR as function of secure factor S 

S 1 1.5 2 2.5 3 

FPR 0.32  0.21  0.15  0.1 0.06 

False positive rates (FPR). Because our algorithm uses 
average latency to answer queries, it might return false 
results due to individual pair-wise latencies being more 
than the average value. To evaluate the accuracy of our 
algorithm, we use the approximate algorithm to return all 
results that it can find, and measure the fraction of false 
positives among those results. Table 2 shows the false 
positive ratio for all results returned by our algorithm with 

different values of S. For the results returned by our 
algorithm with S=1, 32% of results violate the query. This 
number drops rapidly as the secure factor increases.   

Table 3 RR & FPR of the ranking-based 
algorithm 

RR FPR 

0.85 0.06 

From Table 2, we can see that choosing the secure 
factor involves a tradeoff between accuracy and search 
capacity. For queries asking for just a few results, we can 
balance the algorithm’s accuracy and search capacity by 
ranking all found results based on their accuracy. For each 
cluster, instead of testing the satisfiability using a 
particular S value, we check if it is 3-time better, 2-time 
better, or 1-time better than query requirements, and 
associate the S value (1, 2, or 3) with the results. For a 
query for K results, this algorithm returns the K results 
with highest S value.  

We call this modified algorithm the ranking-based 
algorithm, and use the benchmark queries to evaluate its 
performance. Assuming that each query asks for just one 
result, the accuracy and number of results returned by 
ranking-based algorithm is shown in Table 3. We see this 
algorithm achieves a high return ratio and low false 
positive ration.  

Effect of landmarks. As mentioned in Section 3, using a 
given number of landmarks can reduce the cost to create a 
hierarchical cluster structure. To measure the quality of 
created cluster structures, we run the approximate 
algorithm on these structures based on benchmark queries.  
We use a security factor 1, and search for all results. To 
avoid the effect of randomly chosen landmarks, we run 
each experiment 50 times, and show the median value, 10 
and 90 percentile value for each measured metric.  

 
Figure 9 Effect of the number of landmarks 
on the search algorithm 



 

Figure 9 shows the experimental results. X axis is the 
number of landmarks K; Y axis is the return ratio (RR), 
the false positive rate (FPR), the total number of results 
for all benchmark queries, and the aggregated response 
time for all benchmark queries respectively. For each 
graph in the figure, the first five points represent values 
produced by landmark-based cluster algorithms with K=4, 
8, 12, 16, and 20; and the last one is the value produced by 
the original cluster algorithm.    

First, from the graph on the left bottom and the graph 
on the right top, we can see that algorithms with more 
landmarks find more results and provide more accurate 
answers. It shows that more landmarks help build a better 
hierarchical structure. At the same time, we could see that 
algorithms with fewer landmarks have similar RR and 
responds queries quicker. 

From these graphs, we could also see that algorithms 
with K= 12, 16, and 20 have very similar query 
performance as the original algorithm. Because they have 
better scalability (shown in Section 3), the landmark-based 
cluster algorithm is a better choice to answer considered 
queries. We will do more research on this issue in the 
future.  

5 Summary 

We have introduced an algorithm to compute a 
hierarchical cluster structure for a large and dynamic 
resource pool. This algorithm can modify the cluster 
structure incrementally as resources join. The number of 
latency measurements required by this algorithm is 
O(N.log(N)). In addition, our algorithm stores only the 
average latency for each created cluster, and thus requires 
only O(N) space. This average value can be used to 
answer queries for a resource set with desired network 
latency with high accuracy.  

We have also proposed an approximate algorithm to 
answer queries for a resource set with desired network 
connections by using the hierarchical cluster structure. 
Experimental results show that our algorithm not only 
improves the search performance remarkably, it also finds 
results within a given deadline with high accuracy.  
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