
Challenges in Mapping Graph Exploration Algorithms
on Advanced Multi-core Processors

Oreste Villa1,2, Daniele Paolo Scarpazza1, Fabrizio Petrini1 and Juan Fernández Peinador1

1Pacific Northwest National Laboratory 2Politecnico di Milano
Computational & Information Sciences Division Dipartimento di Elettronica e Informazione

Richland, WA 99352 USA Milano I-20133, Italy

Abstract

Multi-core processors are a shift of paradigm in com-
puter architecture that promises a dramatic increase in per-
formance. But multi-core processors also bring an unprece-
dented level of complexity in algorithmic design and soft-
ware development.

In this paper we describe the challenges and design
choices involved in parallelizing a breadth-first search
(BFS) algorithm on a state-of-the-art multi-core processor,
the Cell Broadband Engine (Cell BE).

Our experiments obtained on a pre-production Cell BE
board running at 3.2 GHz show almost linear speedups
when using multiple synergistic processing units, and an
impressive level of performance when compared to other
processors. The Cell BE is typically an order of magni-
tude faster than conventional processors, such as the AMD
Opteron and the Intel Pentium 4 and Woodcrest, an order
of magnitude faster than the MTA-2 multi-threaded proces-
sor, and two orders of magnitude faster than a BlueGene/L
processor.

1 Introduction

Advanced multi-core processors promise a major ad-
vance in performance, coupled with a small form factor,
limited power consumption and the driving force of the
commodity market. The Cell BE processor, jointly de-
signed by IBM, Toshiba and Sony, is an important example
of such architectures, and it is rapidly gaining popularity

The research described in this paper was conducted under the Laboratory
Directed Research and Development Program for the Data Intensive Com-
puting Initiative at Pacific Northwest National Laboratory, a multi-program
national laboratory operated by Battelle for the U.S. Department of Energy
under Contract DEAC0576RL01830.
1-4244-0910-1/07/$20.00 Copyright c© 2007 IEEE.

as a basic building block for high performance clusters and
supercomputers.

In the high performance computing community, graph
exploration algorithms occupy a position of primary impor-
tance. Many areas of science (genomics, astrophysics, ar-
tificial intelligence, national security and information ana-
lytics) demand techniques to explore large-scale data sets
which are, in most cases, represented by graphs. In these
areas, search algorithms are the computational engines to
discover vertices, paths, and groups of vertices with desired
properties. Among graph search algorithms, Breadth-First
Search (BFS) is probably the most common, and a building
block for a wide range of graph analysis applications [2].

A good amount of literature deals with the design of BFS
solutions, either based on commodity processors [11, 1, 8]
or dedicated hardware [3]. Nevertheless, despite the im-
portant role of multi-core architectures in high performance
computing and the relevance of large graph search problems
in this domain, little attention has been devoted to exploring
the potentials of multi-cores when applied to graph search
algorithms. No studies have investigated how effectively
the Cell BE can be employed to perform a BFS search on
large graphs, and how it compares against other commodity
or dedicated solutions in terms of performance.

The problem of searching large graphs alone poses dif-
ficult challenges, mainly due to the vast search space im-
posed by the sheer amount of data, combined with the lack
of spatial and temporal locality in the data access pattern.
Additionally, on the Cell BE the memory hierarchy must be
explicitly managed at software level.

This paper describes the challenges and the design
choices involved in mapping a BFS algorithm on the Cell
BE. The choice of a conceptually simple algorithm such as
the BFS allows for a complete, in-depth analysis.

This paper provides three primary contributions. (1) A
detailed description of the BFS graph exploration algorithm
for multi-core processors. We put emphasis on the peculiar

characteristics of this algorithm, such as the data-flow, the
explicit management of a hierarchy of working sets and the
data orchestration between them. (2) A detailed experimen-
tal evaluation of the algorithm that explains how its different
components are integrated together, and an accurate com-
parison with other architectures. The goal is to provide in-
sight on the performance impact of several architectural and
design choices. (3) Perhaps the most interesting contribu-
tion is the parallelization methodology that we have adopted
to design our algorithm and guide the software development
process. Our work is inspired by the Bulk-Synchronous Par-
allel (BSP) model [9, 5].

Our methodology is based on the following corner-
stones: (1) a high-level algorithmic design where the user
focuses on the essential machine-independent aspects of
the algorithm that we believe can guarantee portability with
performance to other multi-core processors, (2) a machine-
dependent part that refines the initial high-level algorithmic
description to embed the specific optimizations of a par-
ticular multi-core processor, (3) a BSP-style global coordi-
nation, used by both the machine-dependent and machine-
independent parts, that allowed us to implement and tests
the various steps of our algorithm in a modular way, (4)
an accurate analytical performance model, facilitated by the
BSP programming style, that helped us determine upper and
lower bounds on the execution time of each step of the algo-
rithm and (5) the enforcement of a deterministic behavior of
the algorithm that, for a given input set and number of pro-
cessing elements, can be re-played as a sequential program.

Our work provides a valuable contribution for applica-
tion developers, by identifying a software path that can be
followed by other applications. We expect that many of
these hand-crafted techniques described in this paper will
eventually migrate into parallelizing tools and compilers.
Processor designers might also find interesting information
to develop the new generation of streaming processors, that
will likely target from the very beginning the computing
needs of scientific applications.

The remainder of this paper is organized as follows. Sec-
tion 2 defines the BFS exploration problem. Section 3
presents our BFS implementation, especially conceived to
exploit the features of the Cell BE, and Section 4 analyzes
the performance of its components. Section 5 describes
the experiments we have performed to measure the over-
all performance of our algorithm on a real Cell BE system
and compares these results with the ones provided by other,
state-of-the-art processors. Finally, Section 6 concludes the
paper.

2 The Breadth-First Search algorithm

In this Section we present the methodology we used to
parallelize the Breadth-First Search (BFS) algorithm. We

first introduce the notation employed throughout the rest of
this paper and a baseline, sequential version of BFS. We
then describe a simplified parallel algorithm as a collection
of cooperating shared-memory threads. Finally, we refine
the level of detail with a second parallel algorithm that ex-
plicitly manages a hierarchy of working sets.

A graph G = (V, E) is composed by a set of vertices V
and a set of edges E. We define the size of a graph as the
number of vertices |V |. Given a vertex v ∈ V , we indicate
with Ev the set of neighboring vertices of v (or neighbors,
for short), such that Ev = {w ∈ V : (v,w) ∈ E}, and with
av the vertex arity, i.e. the number of elements |Ev|. We
will denote as ā the average arity of the vertices in a graph,
ā =
∑

v∈V |Ev|/|V |.
Given a graph G(V, E) and a root vertex r ∈ V , the BFS

algorithm explores the edges of G to discover all the vertices
reachable from r, and it produces a breadth-first tree, rooted
at r, containing all the vertices reachable from r. Vertices
are visited in levels: when a vertex is visited at level l it is
also said to be at distance l from the root.

In Algorithm 1 we give the pseudo-code description of
a sequential BFS algorithm. Despite its simplicity, this de-
scription is useful to illustrate the fundamentals of the algo-
rithm, which are crucial to understand the parallel versions
of the BFS that we will present later.

At any time, Q is the set of vertices that must be visited
in the current level. Q is initialized with the root r (see
line 4). At level 1, Q will contain the neighbors of r. At
level 2, Q will contain these neighbors’ neighbors (except
those visited in level 0 and 1), and so on.

Algorithm 1 Sequential BFS exploration of a graph.
Input: G(V, E), graph;

r, root vertex;
Variables: level, exploration level;

Q, vertices to be explored in the current level;
Qnext, vertices to be explored in the next level;
marked, array of booleans: markedi ∀i ∈ [1...|V |];

1 ∀i ∈ [1...|V |] : markedi = false
2 markedr = true
3 level← 0
4 Q← {r}
5 repeat
6 Qnext ← {}
7 for all v ∈ Q do
8 for all n ∈ Ev do
9 if markedn = false then

10 markedn ← true
11 Qnext ← Qnext ∪ {n}
12 end if
13 end for
14 end for
15 Q← Qnext
16 level← level + 1
17 until Q = {}

2

During the exploration of each level, the algorithm scans
the content of Q, and for each vertex v ∈ Q it adds the cor-
responding neighbors to Qnext. Qnext is the set of vertices
to visit in the next level. At the end of the exploration of a
level, the content of Qnext is assigned to Q, and Qnext is
emptied. The algorithm terminates when there are no more
neighbors to visit, i.e. Q is empty (line 17).

To algorithm visits a vertex only once. To do so, it main-
tains an array of boolean variables markedv ∀v ∈ V , where
each variable markedv tells whether vertex v has already
been visited. Neighboring vertices are added to Qnext only
when they have not been marked before.

A straightforward way to parallelize the algorithm just
presented is by exploring the vertices in Q concurrently
with all the available processing elements (PEs). The for all
statement of Algorithm 1 (line 7) can be executed in parallel
by different threads. The only constraint is that access to the
array marked must be protected with some synchronization
mechanism, such as a multiple locks [6]. This is the con-
ventional solution in a cache-coherent shared-memory ma-
chine with uniform memory access time and a limited num-
ber of hardware threads, which unfortunately cannot scale
well with a larger number of processing elements [7].

In our algorithm we adopt a different approach, illus-
trated in Algorithm 2. We partition V in disjoint sets Vi,
one per each PE. We say that PE i owns the vertices in its
partition Vi. Each PE i is only allowed to explore and mark
the vertices it owns, and it must forward any other vertices
to the respective owners. As indicated in line 9, all steps are
globally synchronized across the processing elements. We
denote synchronization points with a horizontal line, which
imposes a sequential order between the phases.

The steps of Algorithm 2 are executed in parallel by all
the available PEs. PE i accesses its own private Qi and
Qnexti, and its partition of the marked array, which in-
cludes only the variables associated to the vertices Vi that it
owns.1 Additionally, each PE i has a set of private outgoing
and incoming queues, called Qouti,1,Qouti,2, ...Qouti,N and
Qini,1,Qini,2, ...Qini,N , respectively. Through these queues,
PEs can forward the vertices to their respective owners.

At initialization time, the root vertex r is assigned to its
owner’s Qi. During the exploration, each PE i examines
the vertices v in Qi and dispatches the vertices in Ev which
belong to PE p to Qouti,p. Then, when all the PEs have
completed this phase, an all-to-all personalized exchange
takes place, and the contents of each Qouti,p are transferred
to Qinp,i. Each outgoing queue of PE i having PE p as a
recipient is copied into the incoming queue residing at PE p
and having i as a sender. This exchange delivers the vertices
to their respective owners.

1Also level is a private variable and should be denoted with a subscript
indicating the PE. The subscript can be avoided without ambiguity because
the value of level is kept the same across all PEs.

Algorithm 2 bulk-synchronous parallel version of a breadth
first graph exploration.
Input: G(V, E), graph;

r, root vertex;
N, available processing elements (PE);
V1,V2, ...,Vn :

(⋃
i:1...N Vi

)
= V ,

∀(i, j) ∈ [1...N]2 : Vi ∩ V j = {} if i , j;
Variables: Qi, vertices to be explored in the current level;

Qnexti, vertices to be explored in the next level;
level, exploration level;
markedv, ∀v ∈ Vi;
Qouti,p, ∀p ∈ [1...N], outgoing queues;
Qini,p, ∀p ∈ [1...N], incoming queues;

Processing element i:

1 level← 0
2 Qi ← {}

3 ∀v ∈ Vi : markedv ← false
4 if r ∈ Vi then
5 Qi ← {r}
6 markedr ← true
7 end if
8
9 repeat in lockstep across the processing elements:

10 Qnexti ← {}
11 ∀p ∈ [1...N] : Qouti,p ← {}
12
13 // Gather and Dispatch
14 for all (p, v) ∈ [1...N] × Qi do
15 Qouti,p ← Qouti,p ∪ {(v, Ev ∩ Vp)}
16 end for
17
18 // All-to-All
19 ∀p ∈ [1...N] : Qinp,i ← Qouti,p
20
21 // Bitmap
22 for all n ∈ Ev where (v, Ev) ∈

(⋃
p:1...N Qini,p

)
do

23 if markedn = false then
24 markedn ← true
25 Qnexti ← Qnexti ∪ {n}
26 end if
27 end for
28
29 Qi ← Qnexti
30 level← level + 1
31
32 until ∀p ∈ [1...N] : Qp = {}

Note: horizontal lines indicate barrier-synchronization points.

Next, each PE examines the queues of incoming vertices,
marks them and adds those that have not been visited to
its private Qnexti, as done in the previous algorithm. By
construction Qnexti, which will become Qi during the next
level, consistently contains only vertices owned by PE i.

The parallel algorithm we have just presented (Al-
gorithm 2) does not consider any size limitations of
Q,Qnext,Qin, and Qout. If the private data structures are
entirely allocated in the local storage of each processing el-
ement, Algorithm 2 can quickly overflow the memory avail-
able to each core. Local memories in a multi-core processor

3

are relatively small, and the problem is likely to intensify in
the future: while advances in chip integration promise tens,
perhaps hundreds of cores in a silicon die, it is unlikely that
on-chip memory size will follow the same trend [10]. For
this reason, we believe that application developers should
design their algorithms taking explicitly into account appli-
cation working sets and data orchestration between them.

Algorithm 3 is a refined version of the parallel algorithm
that explicitly distinguishes between variables allocated in
main memory and in the local memory of each single PE.
Local memory variables can be subject to size constraints,
but the algorithm can access their contents at any granular-
ity (element or block). On the other hand, variables allo-
cated in main memory do not have any size constraint, but
they can be accessed only via explicit operations, preferably
at a coarser granularity.

In algorithm 3, the graph G and queues Qi and Qnexti
are allocated in main memory, while marked, Qin and Qout
are now allocated in the local memory. The algorithm does
not access elements in Q directly; rather it fetches blocks
of Qi into a smaller, size-constrained queue named bQi (the
b prefix intuitively identifies local buffers), via an explicit
fetch operation (see line 10). Symmetrically, it does not add
elements directly to Qnexti, but to a small buffer bQnexti,
which is then committed to Qnext via an explicit operation
(see line 39). Adjacency lists Ev are also explicitly loaded
into the local data structure bG during the gather (see line
15).

The algorithm can operate on graphs of arbitrary size
and arity, provided that all the local variables fit in local
memory, that bG is at least as large as the longest adja-
cency list Ev and each Qini,p is at least as large as Qouti,p.
Overflows of bG can be easily managed at graph creation
time by splitting a single adjacency list in multiple lists
having the same father, and incorporating minor algorith-
mic changes to load-balance the exploration of these heavy
vertices across multiple PEs.

Each partition of the marked variables (which are alto-
gether as many as |V |) must fit in the local memory of each
PE. This raises an additional constraint on the maximum
size of graphs explorable with the above algorithm on a
given architecture, which we will discuss later. Except for
the newly-introduced Fetch, Gather and Commit steps, the
new algorithm is only slightly more sophisticated that the
previous one, but incorporates what we believe are the es-
sential features to achieve optimal efficiency on the existing
and future generations of multi-core processors.

3 Implementation of the Algorithm

In this section we describe how we parallelized the Al-
gorithm 3 on the Synergistic Processing Elements (SPEs) of

Algorithm 3 bulk-synchronous parallel exploration of a
graph, with limited-storage constraints.
Input: G(V, E), graph (allocated in main memory);

r, root vertex;
N, available processing elements (PE);
V1,V2, ...,Vn :

(⋃
i:1...N Vi

)
= V ,

∀(i, j) ∈ [1...N]2 : Vi ∩ V j = {} if i , j;
Variables allocated in main memory:

Qi, vertices to be explored in the current level;
Qnexti, vertices to be explored in the next level;

Variables allocated in the memory of the ith PE:
level, exploration level;
markedv ∀v ∈ Vi;
Qouti,p ∀p ∈ [1...N], outgoing queues;
Qini,p ∀p ∈ [1...N], incoming queues;
bQi, a size-constrained subset of Q;
bQnexti, a size-constrained subset of Qnext;
bGi, a size-constrained subset of E;

Processing element i:

1 level← 0;
2 Qi ← {};
3 ∀v ∈ Vi : markedv ← false
4 if r ∈ Vi then
5 Qi ← {r}
6 markedr ← true
7 end if
8
9 repeat in lockstep across the processing elements:

10 // 1. Fetch
11 load bQi ⊂ Qi
12 Qi ← Qi − bQi
13 while bQi , {} do
14
15 // 2. Gather
16 determine a subset {v1, v2, ..., vn} ⊂ bQi such that:
17 |Ev1 | + |Ev2 | + ... + |Evn | < max allowed |bGi |

18 bQi ← bQi − {v1, v2, ..., vn}

19 load bGi ← {Ev1 , Ev2 , ..., Evn }

20
21 // 3. Dispatch
22 ∀p ∈ [1...N] : Qouti,p ← {}
23 for all (p, v) ∈ [1...N] × {v1, v2, ..., vn} do
24 Qouti,p ← Qouti,p ∪ {(v, Ev ∩ Vp)}
25 end for
26
27 // 4. All-to-All
28 ∀p ∈ [1...N] : Qinp,i ← Qouti,p
29
30 // 5. Bitmap
31 bQnexti ← {}
32 for all n ∈ Ev where (v, Ev) ∈

(⋃
p:1...N Qini,p

)
do

33 if markedn = false then
34 markedn ← true
35 bQnexti ← bQnexti ∪ {n}
36 end if
37 end for
38
39 // 6. Commit
40 Qnexti ← Qnexti ∪ bQnexti
41 end while
42 Qi ← Qnexti
43 level← level + 1
44
45 until ∀p ∈ [1...N] : Qp = {}

4

Cell BE. At this stage we analyze lower-level details, such
as remote DMAs, double buffering, data alignment, etc.

Figure 1 presents a schematic overview of the steps com-
posing this implementation, and the data structures they op-
erate on. From a software engineering point of view, each
of these steps can be designed, tested and optimized in iso-
lation. A detailed description of each step follows.

Fetch. Step 1 fetches a portion of Q into bQ. The fetch
is implemented by a DMA transfer, in a double buffering
fashion. This means that there are two data structures asso-
ciated with bQ, and Step 1 waits for the previous transfer
(if any) to complete, it swaps the two buffers to make the
newly-arrived data available to the subsequent steps, and it
starts a new transfer for the next block of Q, using the other
buffer as a destination. Because of the much higher latency
associated with the remaining steps in the algorithm, Step
1 never has to actually wait for bQ to arrive, except for the
very first fetch at the beginning of each level of exploration.
In our implementation bQ is a relatively small buffer, only
512 bytes.

Gather. Step 2 explores the vertices in bQ and loads
their respective adjacency lists in bG, until bG is full, using
a DMA list. The Cell BE architecture provides DMA lists as
a low-overhead means to orchestrate a sequence of transfers
(up to 2,048), which are carried out without further inter-
vention of the processor, obtaining almost optimal overlap
with the computation. It is necessary to know the size of a
data structure before loading it with a DMA list, and there
is no obvious way to know the length of an adjacency list
before loading it. For this reason, rather than representing
vertices with their vertex identifiers, we represent them with
vertex codes. A vertex code is 32-bit a word (or a larger bi-
nary representation, if the cardinality of the graph requires
it) where a certain number of bits are reserved for the vertex
identifier, and the others are reserved to encode the length
of its adjacency list, possibly expressed in a quantized form
if there is a limited amount of bits available. In detail, a
vertex code has two fields, the vertex identifier (which is v)
and the vertex length, which is an encoded representation of
|Ev|. With the help of the length field, Step 2 can prepare a
DMA list to transfer as many adjacency lists as possible into
bG, minimizing the amount of space wasted and optimizing
the accesses to main memory. Step 2 operates in a double-
buffering style. Hence, its actual code consists in waiting
for the in-flight bG transfer to complete, swap buffers, pre-
pare another DMA list for the next bG transfer and initiate
it. The same considerations about wait times stated for Step
1 apply here.

Dispatch. The purpose of Step 3 is to split the adjacency
lists previously gathered by Step 2 into the respective Qout
queues. To expedite this step, we adopt an optimized encod-
ing format for the adjacency lists. In detail, at graph gen-
eration time, adjacency lists are encoded in a per-SPE split

G, graph
Q, list of vertices
to visit in this level

3. Dispatch

1. Fetch

2. Gather

4. All to all

5. Bitmap

bG,
adjacency lists

bQ, buffer of list
of vertices to visit

marked

bQnext, buffer of
vertices to visit next

6. Commit

Qnext, list of vertices
to visit at next level

Main Memory

SPE local store

Qout
i,1

Main Memory

Qout
i,2

Qout
i,N...

Qin
i,1

Qin
i,2

Qin
i,N...

SPE local store

Figure 1. The data flows involved in the differ-
ent steps of the algorithm.

form. Additionally, each adjacency list comprises a header
which specifies the offset and length of each per-SPE por-
tion of that list. Each portion is padded to a multiple of a 4
words size, in such a way that Step 3 can dispatch adjacency
lists operating one quadword at a time, which is the size of
registers and the width of the loads from local store. To
increase the efficiency of Step 3, multiple iterations can be
unrolled: in this case, the step may load and process more
quadwords at a time, thus requiring adjacency lists to be
padded to larger quantities.

All-to-all. Step 4 is the all-to-all personalized exchange
in which each SPE delivers the Qout queues to their desti-
nations. It is not necessary to transfer the Qouti,i, and Qini,i

is simply an alias of Qouti,i.

5

Step 4 requires an appropriate synchronization mecha-
nism to detect the presence of valid data in a Qin. The most
efficient way to implement this mechanism is through com-
munication guards. A communication guard is a flag that
the receiver resets before the transfer is started, and that
the sender sets when the transfer is complete. At any time
during the transfer, the receiver can determine the status
of the transfer by reading this flag. For the mechanism to
work properly, a guard must be reserved for each outgoing
queue, and appropriate hardware support must be employed
to guarantee that the guards are not transferred before the
payload has completely reached its destination.

To allow maximum efficiency, transfers are organized ac-
cording to a predefined schedule in a circular fashion using
a predefined DMA list. In fact, both the sequence of trans-
fers and their coordinates are known in advance at program
initialization, and the DMA list can be prepared at that time.
Therefore, the actual implementation of Step 4 is a simple
invocation of the mfc_putlb intrinsic, which takes only a
few clock cycles at the source.

Bitmap. In Step 5, each SPE i scans the vertices con-
tained in the incoming Qin queues, and adds them to its pri-
vate bQnexti if they had not been marked before. Despite
the simple description, Step 5 is the most computationally
expensive part of the algorithm, and it was the hardest to
optimize. For sake of space efficiency, we choose to imple-
ment the marked data structure with a bitmap, stored in the
local memory of each SPE. This bitmap is a boolean data
structure where a single bit represents the status (marked
or not marked) of one of the vertices owned by the current
SPE. Given the limited size of the local store in the Cell BE
architecture (256 kbytes), it is hard to allocate more than
160 kbytes for the bitmap. This limits the maximum graph
size to 10 million vertices (i.e. the cumulative number of
bits stored in the bitmaps of 8 SPEs) on one Cell BE pro-
cessor. The algorithm can be simply generalized to larger
graphs by gang-scheduling the graph exploration on subsets
of a larger bitmap, but the discussion of this enhancement is
beyond the scope of this paper.

Commit. Step 6 commits the content of bQnexti ac-
cumulated during the last execution of Step 5 and writes
them to Qnexti. bQnexti buffers are managed with a double-
buffering technique as bQi and bGi, and the same consider-
ations made above apply. The only additional complexity is
due to the fact DMA transfer must be aligned on a 128 byte
boundary, and that the programmer must explicitly guaran-
tee this alignment. Unlike what happens with bQi and bGi,
bQnexti is not naturally aligned. In fact, blocks from Q can
be loaded with arbitrary alignment, so it is not enough to
choose the size of bQ as a multiple of 128 bytes to guaran-
tee the alignment of subsequent load operations. Similarly,
bG loads adjacency lists which can be easily forced to be-
gin at aligned locations at graph generation time. On the

Throughput
(GE/s)

Step 1.
Fetch

Step 2.
Gather

Step 3.
Dispatch

Step 4.
All­to­All

Step 5.
Bitmap

Step 6.
Commit

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

a=16 a=512

Figure 2. Throughput attainable by each step
in the algorithm, per SPE (GE/s).

other hand, bQnext may contain an unpredictable number of
vertices which may be misaligned. Appropriate techniques
are needed to pad blocks of irregular size, and to rewrite
the padding with new data at the subsequent commit steps
avoiding unnecessary loads.

At the end of Step 6, a barrier synchronizes all the pro-
cessing elements. The algorithm terminates when all SPEs
have no vertices left in their Qi queues. The actual imple-
mentation of this check is obtained via an allreduce prim-
itive, which executes a distributed sum of the length of all
the Qi queues ∀i. If this sum is zero, the algorithm can ter-
minate.

4 Performance Analysis and Optimization

Thanks to the modular software design described in the
previous sections, we can easily develop an accurate ana-
lytical performance model of our application. This model
has guided our implementation and various levels of perfor-
mance optimization.

First, we derive lower and upper bounds on the perfor-
mance of each step, on the basis of benchmarks performed

6

on the Cell BE and simple models derived from the experi-
mental results. This preliminary analysis exposes a primary
bottleneck, the bitmap implementation, which is discussed
in more detail later in this section.

Since any BFS implementation must visit all the edges
of the given graph which are connected to the root vertex, a
natural way to express the performance is through the num-
ber of edges visited per unit of time. We call this quantity
throughput, we indicate it with the symbol Th and we mea-
sure it in edges per second (E/s). With ME/s and GE/s we
indicate a million and a billion edges per second respec-
tively.

As a final step of our algorithmic design, we release
some of the strict synchronization bounds imposed by the
BSP design, to fully overlap computation with on-chip and
off-chip communication and achieve almost optimal perfor-
mance. We consider this as a key point of our methodol-
ogy: we allow the concurrent execution of these activities
–arguably the most difficult part to debug and analyze, only
after having a reasonably accurate understanding of all the
components of our algorithm.

We now derive performance bounds of the maximum
throughput achievable by each step of the algorithm. The
entire algorithm can only be as fast as the slowest stage of
the performance pipeline. The result of this analysis is the
performance diagram described in Figure 2.

All the values have been either measured or analytically
derived for a Cell processor with a clock running at 3.2
GHz. Whenever the throughput depends on the available
bandwidth of a data-transfer operations, we have assumed
the worst traffic conditions: i.e., all the 8 SPE are used, and
they are all contending for the communication resources at
the same time. When the bandwidth varies significantly
depending on which block size is transferred, we have re-
ported a meaningful minimum and maximum estimates.

Fetch. Step 1 is a transfer of a single, contiguous block
from main memory to the local store. The available band-
width depends on the size of this block. Figure 3 shows
this dependence. The size of bQ in our implementation
is always larger than 1024 bytes, which guarantees high
bandwidth, and in steady-state conditions bQ is always
full. Therefore, the available aggregate bandwidth is 22.06
Gbyte/s, i.e. 2.76 Gbyte/s per each SPE.

Step 1 is different from the others because it transfers
vertex identifiers rather than adjacency lists. For each ver-
tex identifier transferred in Step 1, the remaining steps will
transfer an entire adjacency list, which will be arity times
larger, on average. Therefore, Step 1 can transfer 689.38 M
vertices/s. In the worst case, when the average arity ā = 1,
this yields a throughput Th = 689.38 ME/s.

Gather. Step 2 is another get from main memory. Since
it transfers a sparse set of adjacency lists, the most effi-
cient way to perform the step is via a DMA list. Setting

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8

A
g
g
re

g
a
te

 M
e
m

o
ry

 B
a
n
d
w

id
th

 (
G

b
y
te

s
/s

)

Synergistic Processing Elements

64 bytes
128 bytes
256 bytes
512 bytes and larger

Figure 3. Aggregate bandwidth available
when loading from main memory.

up the DMA list requires a negligible amount of compu-
tation. DMA lists can specify up to 2,048 transfers and,
once set up, are handled by the Cell BE architecture with-
out any additional operation or overhead. When the arity is
large enough to transfer blocks of more than 512 bytes (i.e.
ā > 128), the available bandwidth is 2.76 Gbyte/s (see Fig-
ure 3) with a sustained throughput of 689.38 ME/s. In the
worst case, with blocks of 64 bytes, the bandwidth is 1.36
Gbyte/s, which yields Th = 341.76 ME/s.

Dispatch. Step 3 is a computational step. Appropriate
design of the data structures reduces this step to a minor
control portion, plus a local data transfer. Studied in iso-
lation, this phase is able to process 42.34 ME/s with small
graph arity (ā = 16), and 984.23 ME/s with larger arity
(ā = 512).

All-to-all. Step 4 transfers each Qoutp,i inside each SPE
p into queue Qini,p inside SPE i. Unnecessary transfers are
avoided, i.e. when p = i. We prepare a DMA list where
a communication guard appears after each queue, and we
transfer it with the mfc_putlb intrinsic (put DMA list with
barrier). This makes sure that the guard transfer is initiated
only after the queue transfer is completed. To minimize
the computational cost associated with this step, we set up
this DMA list at initialization time, which is possible be-
cause the addresses of the Qin and Qout queues in memory
do not vary during execution. Assuming a queue cumula-
tive size of 36 kbyte, and that queues are, on the average,
exploited between 75% and 99.2% of their available capac-
ity depending on the chosen arity (100% is not reachable
because of the space occupied by data headers), the corre-
sponding throughput is between 853.3 ME/s and 1.13 GE/s
per SPE.

7

Bitmap. Step 5 is a computational step. This is the pri-
mary bottleneck of our implementation. Since the bitmap
is the performance bottleneck of the entire algorithm, its
optimization is crucial. Starting from a baseline implemen-
tation we explored 8 gradual refinements. Each refinement
aims at improving the throughput by either removing over-
head or exploiting potential sources of instruction-level or
data-level parallelism provided by the Cell BE architecture.
Thanks to these optimization, we have been able to lower
the edge processing time from 96 to 26 clock cycles. Our
best implementation is able to ensure a throughput between
35.17 ME/s (with ā = 16) and 113.73 ME/s (with ā = 512)
per SPE. This version has been obtained using a combina-
tion of function inlining, selective SIMDization, loop un-
rolling, branch elimination through speculation and the use
of restricted pointers.

Commit. Step 6 is a main memory communication. This
results in a single transfer of a large block (> 512 byte) to
main memory. This always allows for the maximum band-
width, which is 2.76 Gbyte/s, leading to a throughput Th =
689.38 ME/s per SPE.

To summarize the results of this analysis, the maximum
performance achievable by the algorithm is upper bounded
by Step 5 between 35.17 and 113.73 ME/s per each SPE. A
more realistic upper bound on the throughput can be ob-
tained by considering not only Step 5, but Step 3 and 5
jointly, because these two computational phases cannot be
overlapped. Their joint throughput Th3,5 is

Th3,5 =
Th3 · Th5

Th3 + Th5
.

The above formula yields new performance bounds for the
overall algorithm between 19.21 ME/s (for ā = 16) and
101.95 ME/s (for ā = 512) per SPEs.

In the final step of our implementation we release some
of the constraints of the BSP scheduling to fully overlap
computation with on-chip and off-chip communication, as
shown in Figure 4. It is worth noting that even this uncon-
strained version of the algorithm is completely determin-
istic, for a given input graph, root vertex and number of
processing elements. This proved to be a major advantage
during the functional and performance debugging.

In Figure 5, we can see that for every combination of
problem parameters (e.g., arity and size of the graph) all
the transfer latencies of the Gather and Commit phases to-
gether are less than the sum of the computational phases.
Moreover the time required to transfer a single queue in the
All-to-All phase is less than the time required to process it
in the Bitmap phase.

Computation EIB Memory

S
cheduling P

eriod: 47.07 us

0 us

10 us

20 us

30 us

40 us

Dispatch
10.65 us

Gather
0.97 us

All­to­all
0.02 us

Bitmap
32.82 us

Barrier

Commit
0.06 us

All­to­all
8.34 us

Commit
0.13 us

Dispatch

Gather
0.97 us

All­to­all

Bitmap

Barrier

Commit

All­to­all

Commit

0 us

10 us

20 us

30 us

40 us

Time

2.55 us

Gather
6.74 us

Gather

S
cheduling P

eriod: 47.07 us

Figure 4. An iteration of the main loop (Steps
2–6) spans two scheduling periods.

 0

 20

 40

 60

 80

 100
16 32 64 128 256 512

R
e
la

ti
v
e
 e

x
e
c
u
ti
o
n
 t
im

e
 (

%
)

Arity

Computation

Barrier

5. Bitmap

3. Dispatch

2. Gather

 0

 20

 40

 60

 80

 100
16 32 64 128 256 512

R
e
la

ti
v
e
 e

x
e
c
u
ti
o
n
 t
im

e
 (

%
)

Arity

Transfer

6. Commit

4. All-to-All

2. Gather

Figure 5. Time spent in computation (above)
and data-transfer (below).

8

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1 2 3 4 5 6 7 8

T
h
ro

u
g
h
p
u
t
(M

E
/s

)

Number of SPEs

Arity
512

400

256

200

128

100

64

50

32

16

Figure 6. Throughput scaling for graph arity
ā varying from 16 to 512.

5 Experimental Results

This section describes the experimental results and com-
pares these results with other architectures. We have im-
plemented the algorithm in C language using the Cell BE,
and compiled it with GNU GCC 4.0.2. We have run the ex-
periments on an IBM DD3 blade with 2 Cell BE processors
running at 3.2 GHz, 1 Gbyte of RAM and a Linux kernel
version 2.6.16.

In the experiments we have measured the average
throughput that our BFS exploration can deliver with dif-
ferent graph arities ā, and a variable number of SPEs N. To
do that, we have executed our algorithm on randomly gen-
erated graphs. The arities of the vertices are independent,
identically distributed random variables, taken from a uni-
form distribution in the range [0...2ā]. For each given ā, we
have empirically determined the maximum graph size |V |
that can be allocated in main memory, without swapping to
disk. It is worth noting that the performance of our imple-
mentation is insensitive to the size of the random graphs,
as shown in Figures 5 and 4, because all on- and off-chip
communication can be fully overlapped with computation.
The only limits are the TLB addressability of the SPEs, 32
Gbytes using huge page tables, and the amount of physical
memory available.

Figure 6 reports the results of these tests when ā varies
from 16 to 512, and N from 1 to 8. For each value of ā, the
aggregate throughput is plotted as a function of N. Our im-
plementation shows a good scaling behavior, which is virtu-
ally linear at high arities, and with a limited saturation effect
at small ones.

Finally, in Figure 7 we compare our BFS implementa-
tion with other implementations, running on different archi-

 0

 200

 400

 600

 800

 1000

10 50 100 200

T
h

ro
u

g
h

p
u

t
(M

E
/s

)
Arity

Woodcrest, 1 thread
Woodcrest, 2 threads
Pentium IV, 1 thread
Opteron, 1 thread
BlueGene/L, 128 CPUs
BlueGene/L, 256 CPUs
MTA-2, 1 CPU
MTA-2, 40 CPU
Cell Broadband Engine

Figure 7. Performance comparison of our Cell
BE implementation with other processors.

tectures. For the BlueGene/L, we derive throughput values
from Yoo et al. [11]. The results for the MTA-2 are taken
from a personal communication with Feo [4] (Figure 7 re-
ports data coming from John Feo). We also compare our
implementation with an in-house single-processor BFS im-
plementation running on the AMD Opteron and the Intel
Pentium 4, and a scalable pthread implementation on the
Intel Woodcrest.

When the graphs have low average arity (ā=10 in our
experiments) the Cell BE shows a throughput equal to only
101.6 ME/s. This reduced performance is due to the exten-
sive padding of the data structures, which need to be filled
to quadwords.

Also, the smaller adjacency lists are, the less efficient is
their transfer via DMA. In fact, with ā=10 adjacency lists
occupy blocks around 64 bytes in size, which drops the ag-
gregate memory bandwidth from 22 to 10 Gbps (see Fig-
ure 3). Nevertheless, we can still achieve complete overlap-
ping of data transfers and computation. Conventional pro-
cessors have little cache locality, and they are, on average,
9 times slower then the Cell BE. The best performance in
this class is obtained by the 2 cores of the Intel Woodcrest
which are between 5 and 12 times slower.

The comparison between the Cell BE and the MTA-2
and BlueGene/L is not an apple-to-apple one because of the
limited amount of memory available on the Cell blade, only
1 Gbyte versus several Gbytes. This is mostly a technolog-

9

ical limitation that will be addressed by future generations
of Cell blades.

With fine arity, BlueGene/L combines the lack of cache
locality with the communication overhead of small packets,
and a single Cell is two orders of magnitude faster, reaching
the same scaled performance of 325 BlueGene/L processors
with arity ā=50.

The performance of our algorithm is also compared with
a BFS implementation on the Cray MTA-2 provided by
John Feo [4]. With ā=10 a Cell BE is approximately equiv-
alent to 7 MTA-2 processors. Larger arities enhance the
effectiveness of the SIMD-ized bitmap manipulations in the
Cell BE. With ā = 200, the Cell BE is 22 times faster than
the Pentium and the Woodcrest (12 times faster than two
Woodcrest cores), 26 times faster than the AMD Opteron,
and at the same level of performance of 128 BlueGene/L
processors and an MTA-2 system with 23 processors.

6 Conclusions

Together with an unprecedented level of performance,
multi-core processors are also bringing an unprecedented
level of complexity in software development. We see a clear
shift of paradigm from classical parallel computing, where
parallelism is typically expressed in a single dimension (i.e,
local vs. remote communication, or scalar vs. vector code),
to the complex, multi-dimensional parallelization space of
multi-core processors, where several levels of control and
data parallelism must be exploited in order to gain the ex-
pected performance.

This paper describes a figurative journey we took to ob-
tain the highest level of performance of the BFS graph ex-
ploration on the Cell Broadband Engine Processor (Cell
BE). On this journey, we discovered many important prop-
erties of the Cell BE, such as the importance of a careful
algorithmic design that takes in explicit consideration a hi-
erarchy of working sets and the data orchestration between
these levels.

The experimental evaluation has shown that the Cell BE
can obtain impressive performance in this class of algo-
rithms: a performance speedup of one order of magnitude
when compared to other commodity and special-purpose
processors, reaching two orders of magnitude with Blue-
Gene/L.

We believe that the key to achieve this level of perfor-
mance is a clear understanding of the characteristics of each
component of the algorithm. Our task has been simplified
by the adoption of a Bulk-Synchronous model that has al-
lowed us to implement and test the various steps of the al-
gorithm in a modular fashion, and to develop an accurate
performance model to determine upper and lower bounds
on the run time of each part of the algorithm.

The work presented in this paper shows that it is possi-
ble to achieve high performance and ease of programming
by attacking the real problem first –the unmanageable com-
plexity derived by many concurrent activities.

Acknowledgments

We would like to thank Deborah Gracio, Troy Thomp-
son, Dave Thurman, Mike Kistler, John Feo, David A.
Bader, Karen L. Karavanic and Samuel W. Williams for
their help and fruitful suggestions.

References

[1] D. A. Bader and K. Madduri. Designing Multithreaded Al-
gorithms for Breadth-First Search and st-connectivity on the
Cray MTA-2. In Proc. Intl. Conf. on Parallel Processing
(ICPP’06), Columbus, OH, August 2006.

[2] A. Clauset, M. E. J. Newman, and C. Moore. Finding Com-
munity Structure in Very Large Networks. Physical Review
E, 6(70), December 2004.

[3] M. deLorimier, N. Kapre, N. Mehta, D. Rizzo, I. Eslick,
R. Rubin, T. E. Uribe, T. F. J. Knight, and A. DeHon.
GraphStep: A System Architecture for Sparse-Graph Algo-
rithms. In Proc. Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM’06), Los Alamitos, CA,
USA, 2006. IEEE Computer Society.

[4] J. Feo. Optimized BFS Algorithm on the MTA-2 Architec-
ture. Personal Communication, November 2006.

[5] J. Fernández, E. Frachtenberg, and F. Petrini. BCS MPI: A
New Approach in the System Software Design for Large-
Scale Parallel Computers. In Proc. Intl. Conf. for High
Performance Computing, Networking, Storage and Analysis
(SuperComputing’03), Phoenix, AZ, November 2003.

[6] J. Mellor-Crummey and M. Scott. Algorithms for Scal-
able Synchronization on Shared-memory Multiprocessors.
ACM Transactions on Computer Systems (TOCS), 9(1):21–
64, February 1991.

[7] D. S. Nikolopoulos and T. S. Papatheodorou. The Archi-
tectural and Operating System Implications on the Perfor-
mance of Synchronization on ccNUMA Multiprocessors.
Intl. Journal of Parallel Programming, 29(3), October 2001.
249–282.

[8] V. Subramaniam and P.-H. Cheng. A Fast Graph Search
Multiprocessor Algorithm. In Proc. of the Aerospace and
Electronics Conf. (NAECON’97), Dayton, OH, July 1997.

[9] L. G. Valiant. A Bridging Model for Parallel Computation.
Communications of the ACM, 33(8):103–111, 1990.

[10] W. A. Wuld and S. A. McKee. Hitting the Memory Wall:
Implications of the Obvious. ACM Computer Architecture
News, 23(1), March 1995.

[11] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hen-
drickson, and U. Catalyurek. A Scalable Distributed Paral-
lel Breadth-First Search Algorithm on BlueGene/L. In Proc.
Intl. Conf. for High Performance Computing, Networking,
Storage and Analysis (SuperComputing’05), Seattle, WA,
November 2005.

10

