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Abstract

Bayesian phylogenetic inference is an important 

alternative to maximum likelihood-based phylogenetic 

method. However, inferring large trees using the Bayesian 
approach is computationally demanding—requiring huge 

amounts of memory and months of computational time. 

With a combination of novel parallel algorithms and latest 
system technology, terascale phylogenetic tools will 

provide biologists the computational power necessary to 
conduct experiments on very large dataset, and thus aid 

construction of the tree of life.  

In this work we evaluate the performance of PBPI, a 
parallel application that reconstructs phylogenetic trees 

using MCMC-based Bayesian methods, on two terascale 

systems, Blue Gene/L at IBM Rochester and System X at 
Virginia Tech. Our results confirm that for a benchmark 

dataset with 218 taxa and 10000 characters, PBPI can 

achieve linear speedup on 1024 or more processors for 
both systems. 

1. Introduction 

Phylogeny, a tree or network-like structure represent-
ing the evolutionary relationship among a group of species, 
serves as an important framework to organize, compare, 
and analyze biological data. Besides its primary role in 
understanding biological evolution and diversity, it has 
also been widely used in many other areas including 
genetics, genomics, drug discovery, plant improvement, 
and disease control. The importance of phylogeny to 
science and society can be best demonstrated by the NSF 
ATOL project [1], whose goal is to provide an overall 
framework for retrieving, comparing, and predicating huge 
amounts of biological data by “assembling a tree of life for 
1.7 million described species on the earth”.  

The fundamental task of most phylogenetic inference is 
to estimate the “correct” phylogenetic trees given one or 
multiple data sets which encode the clues for the 
evolutionary path. Among various phylogenetic inference 
approaches, the Bayesian approach distinguishes itself in 
several aspects. First, it uses explicit models of evolution 
and likelihood functions similar to maximum likelihood 
estimation, another important statistical phylogenetic 
method. The Bayesian approach has the potential to 
incorporate complicated models and existing knowledge 
into the process of phylogenetic inference. Second, it takes 
a probabilistic view of the estimated trees and ranks these 
trees with a quantity called posterior probability. Bayesian 
phylogenetic inference avoids the baffle present in many 
NP-hard optimality methods that output one “best” tree. 

Building large phylogenetic trees using Bayesian 
approach is computationally demanding. For example, 
building a phylogenetic tree with hundreds of taxa and 
thousands of characters may require several gigabytes of 
memory usage and several months of computing time. To 
make Bayesian phylogenetic inference more efficient and 
more practical for large phylogenetic problems, it is 
necessary to run phylogenetic tools on terascale systems.  

The main contributions of this paper are in two folds. 
First, we provide the excellent scaling results of PBPI, a 
parallel Bayesian phylogenetic code, on terascale systems. 
Second, we analyze and compare the performance of PBPI 
on two different terascale system architectures—the Blue 
Gene/L system at IBM Rochester and the System X at 
Virginia Tech. We profile the performance of PBPI on up 
to 1024 processors on System X and up to 4096 processors 
on Blue Gene/L. Our results showed that PBPI achieves 
linear speedup for both fixed-size and increasing 
workloads on both systems. To the best of our knowledge, 
this is the first effort to achieve terascale computing 
capability for Bayesian phylogenetic inference.  

This paper is organized as follows. In the next section 
we review Bayesian phylogenetic inference techniques. 
Then we describe the parallel strategies used by PBPI in 
Section 3. Overviews of the Blue Gene/L and System X 
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are provided in Section 4, following by the experimental 
results and analysis for both systems. We discuss the 
related work in Section 5. Finally, we summarize our 
major conclusions and future work. 

2. Bayesian phylogenetic inference 

2.1. The problem 

Phylogenetic trees reconstruction is one of the grand 
challenge problems in computational biology. As one of 
the standard phylogenetic methods, Bayesian phylogenetic 
inference reconstructs phylogenetic trees from observed 
data based on the notion of posterior distribution of 
phylogenetic trees. This method was first developed by 
several independent research groups (Yang et al at UC 
Berkeley[2], Mau et al at University of Wisconsin [3], and 
Li et al at Ohio State [4]) almost simultaneously, and then 
became widely used after the development of several 
sequential tools such as BABME [5] and MrBayes [6].  

When applied to molecular sequences, the problem of 
Bayesian phylogenetic inference can be stated as follows: 

Given { }
ij N M

D d , a matrix of aligned molecular 

sequences, find a phylogenetic model ( , , )T  that 

best interprets (or fits) the data D  while providing a 
confidence measurement for the estimated models. 

Here N  is the number of taxa (or species); M  is the 

number of site (i.e. characters) in the sequence alignment;  

i
d  denotes the sequence for 

th
i  species; and 

ij
d  denotes 

the state of the 
th

j  site on the 
th

i sequence. For a DNA 

sequence, the number of possible states for 
ij

d  is 4; for 

sequences of amino acid or codons, the numbers of 
possible states are 20 and 60 respectively. A phylogenetic 
model describes how the sequences evolve historically. 
It consists of three components: a tree structure (T ) that 
represents the evolutionary patterns for the species under 
study, a vector of branch lengths ( ) which maps the 

divergence time along different lineages, and a model of 
the molecular evolution ( ) that approximates how the 

characters at each site evolve over time along the tree.  

2.2. The Bayesian approach 

The Bayesian approach treats both the observed data 
D  and the phylogenetic model as random variables 
and models all random variables using a joint probabilistic 
distribution, i.e.

( , ) ( | ) ( )P D P D P .  (1) 

Once the data is known, Bayesian theory can be used to 
compute the posterior probability for a specific 

phylogenetic model 
i
 using 

|
|

|

i i

i

j j

j

P D P
P D

P D P
 (2) 

Here, ( | )
i

P D  is called the likelihood (the 

probability of the data under the model
i
); ( )

i
P is

called the prior probability of the model (the unconditional 
probability of the model without any knowledge of the 

observed data); and ( ) |
j j

j

P D P D P  is 

the unconditional probability of the data.  
Since phylogenetic models are hypotheses about how 

the data will evolve, both the prior and the posterior of a 
specific phylogenetic model should be interpreted as a 
confidence interval for the model instead of explained as 
frequencies. Thus Bayesian theory reflects how the prior 
belief is updated to posterior belief after having observed 
new evidence (i.e. data). 

In the context of Bayesian phylogenetic inference, the 
likelihood has the same formulation as the one defined in 
the maximum likelihood estimation [7]. Borrowing the 
notation in [8], given a known phylogenetic model 

( , , )T , the probability to observe the 
th

u column 

of the data matrix D  is computed by  

2 1

1 2 2 1

2 1

( ) ( )

1 1

( | , , )

| , , | , ,

N

N N N

u a

a S a S a S

N N

i i i i

u u i u u i

i N i

L x T

p a a p x a

 (3) 

Here 
u ij j u

x d is the 
th

u  column of D ,
i

u
x is the 

state at the 
th

u column on the 
th

i sequence which is mapped 

to the 
th

i leaf node, ( )i  is the index of the parent node of 

node i  and S is the set of possible character states. We 

can augment the data matrix to include the states at each 
site for ancient species represented by the internal node. 

Thus,
i

u
a is the state at the 

th
u column on the 

th
i sequence

which is mapped to the 
th

i internal node, and 
2 1N

a
is the 

frequence of 
2 1N

a at the root node. The conditional 

probability
( )

| , ,
i i

u u i
p x a  and 

( )
| , ,

i i

u u i
p a a

describe the transition probability from the state 
( )i

ua on

the parent node to the state
i

ua or 
i

ux on the child node after 

a divergent time i  (i.e. the branch length from node i  to 

its parent). The conditional probability ( | , , )
i

p a b  is 



computed from i
Q

e  and Q  is specified by . Since the 

states for the internal nodes are unknown, Equation (3) 
summarizes all the possible combinations of the internal 

nodes to get the site likelihood ( | , , )
u

L x T . Assuming 

the observation at each site is identically independent 
distributed, the likelihood to observe the entire sequence is:  

1

( | , , ) ( | , , )
M

u

u

P D T L x T  (5) 

When a proper prior is specified, the posterior 

probability of a given phylogenetic model ( | )
i

P D  can 

be computed by Equations (2)-(4). We also note that this 

distribution of ( | )P D  is the basis of Bayesian 

phylogenetic inference from which a lot of useful 
information can be obtained. For instance, one important 
application is to estimate the posterior probability of a 
specific phylogenetic tree topology by calculating the 
marginal distribution as  

( | ) ( , , | )
i i

P T D P T D d d . (6) 

2.3. The Markov chain Monte Carlo method 

The posterior distribution in Bayesian analysis is 
usually approximated by a class of methods called Markov 
chain Monte Carlo (usually abbreviated as MCMC) which 
simulate random variables from a target distribution, 
known up to a normalizing constant.  

The basic idea of the MCMC methods is first to 
construct a Markov chain that has the space of the 
phylogenetic models to be estimated as its state space and 
the posterior probability distribution of the models as its 

stationary distribution. Next, we simulate the chain and 
treat the realization as a representative sample from the 
posterior probability of the parameters of interest. 

In Bayesian phylogenetic inference, the Metropolis-
Hasting algorithm [9, 10] and its variants are usually used 
to construct the chains. Figure 1 shows the basic outline of 

the Metropolis-Hasting algorithm, in which 
( )

,
t

 is 

called the acceptance probability that is defined as  

( )

( )

( ) ( ) ( )

( , )

||
min 1,

| |

t

t

t t t

qP D P

P D P q

 (7) 

Here, 
( )

( | )
t

q is the proposal probability which can be 

in any form that satisfies  

( | ) 0q . (8) 

In theory, a Markov chain constructed with the 
Metropolis-Hasting algorithm will converge to a stationary 
distribution if the chain is irreducible, aperiodic, and 
possesses a stationary distribution given the chain runs 
long enough [11]. Thus once we design a Markov chain 
that satisfies these requirements in Bayesian phylogenetic 
inference, we can approximate the posterior distribution of 
phylogenetic models correctly. However, several practical 
implementation issues exist. For instance, the chain has to 
overcome the stickiness at local optima and maintain a 
desired acceptance ratio (the percentage of the proposed 
states that are accepted) in order to approximate the 
posterior distribution both efficiently and correctly. 

3. Parallel Bayesian Phylogenetic Inference 

3.1. The computational complexity of Bayesian 

phylogenetic inference 

We use “Big O” notation (or asymptotic notation) to 
describe the computational complexity as the asymptotic 
behavior of the functions used in Bayesian phylogenetic 
approach. The likelihood calculation using Equation (3) 

has
4( 1)N

S terms, in which S  is the number of character 

states in the evolutionary model. This calculation can be 

reduced to the order of 
3

O N S  using the algorithms 

proposed by Felsenstein [7]—which is equivalent to fill a 
table of conditional probabilities at the given site on each 
node in the post-order traversal of the phylogenetic tree. 

Assuming a conventional MCMC chain with G

generations, the asymptotic behavior of the likelihood 
evaluation in Bayesian phylogenetic inference is

3
( )O G M N S . (9) 

1. Initialization Phase 

1.1 0t ; set starting model 
( 0 )

0

1.2 Compute likelihood 
( 0 )

( | )P D

2. MCMC sampling phase 

While ( maxt imum generation )

2.1 Propose a new model from
( )

|
t

q

2.2 Compute likelihood 
( 0 )

( | )P D

2.3 Decide/Update next chain state 

 2.3.1 Compute the acceptance
( )

,
t

  2.3.2 Draw random number u ~ (0,1)U

  2.3.3. If 
( )

( , )
t

u

Then
( 1)t

Else
( 1) ( )t t

 2.4 Move to the next generation: 1t t

Figure 1:  the Metropolis-Hasting algorithm for 

Bayesian phylogenetic inference



Since in the MCMC implementation, the candidate 

phylogenetic model , ,T  is only slightly different 

from the current phylogenetic model
( )

, ,
t

T . On the 

condition  is unchanged, only the conditional probability 

on those nodes appearing in the back tracing path from the 
affected nodes to the root nodes needs to be recomputed. 
This property (i.e. likelihood local update) can reduce the 
number of computations to  

3
( log )O G M N S . (10) 

Practical phylogenetic inferences often consider rate 
variations among sites and use C  discrete rate categories 

to approximate a continuous rate distribution (such as 
Gamma distribution) [12]. Also some population-based 
MCMC methods can be used to increase the mixing rate of 
the MCMC sampling in order to avoid chains being 
trapped at local optima. Assuming Z chains are used, we 
can update Equations (9) and (10) to  

3
( )O G M N S C Z   (11) 

3
( log )O G M N S C Z  (12) 

Assuming percentage of likelihood calculation 

belongs to local update and ignoring the cost of other 
operations such as propose candidate models and decide 
chain moves, the overall computational complexity of 
Bayesian phylogenetic inference is approximated by 

3
log (1 )O N N M S C Z G . (13) 

Similarly, we can estimate the memory requirement as 
a multi-dimensional array of doubles with asymptotic 
order of 

( )O N M S C Z  (14) 

Though Equation (13) and (14) indicate Bayesian 
phylogenetic inference is a polynomial algorithm, as the 
problem size increases, its computational complexity will 
become extremely demanding. Further, it is still an open 
problem to decide the number of generations for a given 
problem size such that the MCMC chains can reconstruct 
the tree with sufficient accuracy. 

3.2. The challenges to parallel Bayesian MCMC 

Based on the discussion in previous section, calculating 
the likelihood on P processors will have the same order of 
the computational complexity as that on a single processor. 
However, it will decrease both time and space complexity 
by a factor of P if there is enough parallelism to exploit. 

Analytically, the likelihood can be parallelized from 
three dimensions: across the sequence (i.e., M), across the 
rate category (i.e., C), and across the chains (i.e., Z). Thus, 
given P M C Z processors, we may reduce the 

computational complexity in time and space shown in (13) 
and (14) to  

3
log (1 )O N N S G  (15) 

and

( )O N S . (16) 

There are further possibilities to parallel across N and G.
Since such parallelisms require dramatic changes of the 
underlying algorithm, we leave them for future research 
topic.

The results implied by Equation (15) and (16) appear 
promising for developing terascale Bayesian phylogenetic 
inference tools to benefit from a vast number of processors. 
However, in reality there are several inherent challenges.  

As shown in Equation (10) and (12), Bayesian 
phylogenetic inference may extensively use likelihood 
local update to significant improve performance. But this 
technique is not without consequences.  

First, local likelihood updates reduce the computation 
to communication ratio. It is well known that message 
communications are costly in terms of execution time. The 
smaller the granularity between two communications, the 
more difficult it will be to improve parallel performance.  

Second, local likelihood update causes load imbalance 
between computing processors for different chains since 
the length of the affect path on current proposals differs 
across chains. Because of load imbalance, the processors 
with less workload must wait for others to finish, thus 
reducing efficiency. 

Third, the local likelihood updates require memory 
storage for the conditional probability table of previous 
phylogenetic models. If we want to swap two models 
among two processors, we have to exchange this table as a 
long message. 

Fourth, as stated in the Metropolis-Hasting algorithms 
illustrated in Figure 1, the proposed candidate state may be 
accepted or rejected. Therefore, we need keep a copy of 
the conditional probability table for the phylogenetic
model at the current generation. Frequent copying of large 
chunks of memory will decrease the memory access 
locality and increase average memory access time. 

Finally and most importantly, we have to make the 
parallel implementation highly scalable when the size of 
the dataset (determined by N and M ) increases, or in 

other words, the parallel implementations have to support 
fine-grain parallelism such as likelihood evaluation for a 
given phylogenetic model. However, communicating a 
phylogenetic tree with hundreds of nodes may require 
large numbers of multi-kilobyte messages. An efficient, 
scalable parallel implementation must ensure the incurred 
communication overhead to transfer messages of such size 
do not exceed the execution time to compute the 
likelihood locally. 

In the rest of this section, we describe how PBPI will 
overcome or bypass these challenges.  



3.3. The parallel strategies of PBPI 

PBPI (Parallel Bayesian Phylogenetic Inference) is a 
scalable Bayesian phylogenetic inference code which 
estimates phylogenetic trees from aligned DNA sequences. 
The initial goal of PBPI is to build a high performance, 
unified statistical framework for large scale phylogenetic 
problems [13]. Current PBPI implementation combines 
multiple MCMC sampling strategies to tackle problems 
observed in conventional MCMC sampling approaches 
used in Bayesian phylogenetic inference [14]. PBPI aims 
to speedup the Bayesian phylogenetic inference from three 
aspects:

1) Improved MCMC strategies to decrease the maxi-
mum number of generations needed in the MCMC 
sampling, i.e. decreasing G  in Equations (11) and (12);  

2) Improved sequential performance by reducing the 
memory footprint and removing unnecessary memory 
operations to maintain memory access locality; and  

3) Exploit multi-level parallelism to make computations 
scalable to large problems.  

In our previous PBPI work, we validated its correctness 
and performance at scales less up to 64 nodes [15]. We 
showed the sequential version of PBPI is up to 19 times 
faster than its best competitor, MrBayes [6], and up to 46 
times faster on 64 nodes for  a benchmark dataset of 218 
taxa and sequence length of 10,000 characters. We also 
studied the quality of the phylogenetic trees reconstructed 
with PBPI using simulated study. We found that for the 
dataset we tested, PBPI can reconstruct the “true” trees at 
least as accurate as that reconstructed with MrBayes [13].  

In this paper, we attempt to analyze the performance of 
PBPI for terascale systems. Our goal is to determine the 
inherent limits of PBPI as systems scale beyond 64 nodes 
on various types of high-end architectures. 

Figure 2 illustrates the basic parallel schema adopted by 
PBPI. At the top level, a large dataset is partitioned into 
multiple overlapped subsets and each individual subset is 
analyzed by one instance of PBPI. In the middle level, 
multiple independent runs of PBPI process the same 
dataset to detect the anomaly or convergence for each run. 
At the bottom level, PBPI implements fine-grain 
parallelism at the chain and sequence segment level. 

Though it is relatively easier to achieve linear 
scalability on terascale systems at the top two layers, we 
will limit our discussion to the effects of fine-grain 
parallelism. There are two major reasons for this: 1) fine 
grain parallelism is common to almost all Bayesian 
phylogenetic inferences; 2) fine grain parallelism is 
primarily responsible for improving scalability and 
reducing execution time per MCMC chain generation for a 
fixed-size problem. 

PBPI organizes the processors into a multi-dimensional 
grid topology and encodes processors in each dimension 
as a communication group. Similarly, it decomposes the 
computations during each MCMC chain generation. Thus 
a one-to-one mapping between each communication group 
and each level of parallelism is established. For example, 
Figure 2 illustrates how to map 8 chains onto 16 
processors where the number of characters (or patterns) is 
20. The 16 processors are arranged as a 4×4 two-

dimensional grid where processors at the 
thi  row are 

grouped as the 
thi  row communication group and 

processors at the 
thj  row are grouped as the 

thj  row 

communication group The 8 chains are divided into 4 

groups (each group has 2 chains) and the 
thi chain group is 

mapped to the 
thi row communication group. The 20 

characters are split into 4 segments and the 
thj sequence 

segment is mapped to the 
thj row communication group. 

Besides the IO-related communications to store and 
display the MCMC states samples, PBPI needs to handle 
two major kinds of message exchanges: 1) row-wise 
communications among processors in each row 
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Figure 2: illustration of the parallel schema in PBPI 
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Figure 3: the flow chart of data parallelism during 

each chain generation. The three different colors 

represent sequential, parallel, and communication 

part of the overall workload respectively. In this 

example, we assume there is only one chain for 

each row communication group.  



communication group to evaluate, synchronize, and update 
the states for each MCMC chain, and 2) column-wise 
communications to swap the states among different chains.  

Figure 3 provides a flow chart of data parallelism in 
PBPI at sequence segment level during each chain 
generation. Using a row-wise random number generator 
with the same seeds, the processors at each row 
communication group duplicate the proposal and decision 
steps, compute individual partial likelihood for each local 
dataset (i.e. sequence segment) under the proposed 
candidate state, and summarize all partial likelihoods to a 
global likelihood using one collective communication. No 
further communications and synchronizations are needed 
to evolve the local Markov chains among processors 
within the row communication group. Using this schema, 
PBPI achieves data parallelism among distributed memory 
systems with minimum communication overhead. 

The flow chart of chain level parallelism is shown in 
Figure 4. Using a grid-wise random number generator with 
the same seed, the processors within the whole grid select 
the same pair of chains for swapping. An asynchronous 
point-to-point communication is performed on the two row 
communication groups which hold the selected chains. 
Load imbalance may occur due to different numbers of 
computations for the likelihood local update. Such 
imbalance causes processors with fewer computations 
waiting for data from processors with more computations. 

Intuitively, increasing the interval between two chain 
swapping steps or the number of row groups will reduce 
the ratio of the average waiting time to the total execution 
time. 

The multi-dimensional domain decomposition leads to 
a number of factors that influence the achievable 
performance of PBPI. For instance, by dividing the whole 
sequence into segments, PBPI is capable of supporting 
large data set with more complicated evolutionary models 
while maintaining good cache performance. Furthermore, 
the average messages exchanged per chain generation is 
independent to the problem size. In the next section, we 
use our detailed understanding of the internals of PBPI to 
analyze performance for PBPI on terascale systems. 

4. Experiments and Results 

4.1. Comparisons of systems  

We compare the performance of PBPI on two tera-scale 
systems, the IBM BG/L at IBM Rochester and System X 
at Virginia Tech. Both systems are listed among the top 
500 most powerful supercomputers in the world with the 
performance summarized in Table 1. Since these systems 
are different in terms of system scale, node architecture, 
and interconnection technology, we describe the major 
characteristics below to make the performance comparison 
more meaningful. 

IBM Rochester BG/L System 

The Blue Gene/L system we used was one rack of the 
4-rack (total 8192 processors) installation at IBM in 
Rochester. One rack consists of 1024 compute nodes. 
Each node consists of two PowerPC 440 processor cores, 
each with a 64-bit floating point unit. Each core runs at 
700MHz and each node has 512MB of memory. For 
benchmarks run in coprocessor mode, the primary core 
uses the entire 512MB of memory while the secondary 
core helps with communications operations. For 
benchmarks run in virtual node mode, each core runs 
independently, sharing the memory and network resources. 
Computationally intensive applications may nearly double 
in performance when run in virtual node mode. See 
http://www.research.ibm.com/journal/rd/492/moreira.html 
for further details. 

Nodes are connected with a 3D-torus network for point-
to-point operations, a global combining tree for reduction 
operations, and a fast global interrupts network for barrier 
operations. The torus network has a bandwidth of 10GB/s 
and a latency of approximately 6 us in the MPI layer. The 
theoretical peak performance for a rack is 5.6 TFLOPs. 
Measured LINPACK performance for the 4-rack 
installation is 18.2 TFLOPs, putting the 4-rack system at 
number 19 on the Top 500 list.  

processor at (r, j)

select a and b

processor at (a, j)

processor at (b, j)

processor at (1, j)

accept?

accept?

select a and b

select a and b

select a and b

send recv

recvsend

Figure 4: the flow chart of chain level parallelism 

during each chain generation. In this example, we 

assume there is only one chain for each row 

communication group. Due to different number of 

computations needed by likelihood local update 

among different chains, the chains among 

different row communication groups may be not 

synchronized. 

Table 1: the two terascale systems evaluated 

System BG/L SystemX

Node Technology 
IBM BlueGene/L 
PowerPC 440 
System-on-chip 

Duel 2.3GHz 
Apple XServer 

# of  Processors 8,192 2,200

Peak Performance 
(in Gflops) 

22,938 20,240

LINPACK Perf.  
(in Gflops) 

18,200 12,250



Virginia Tech System X 

System X consists of 1100 Apple XServer G5 cluster 
nodes. Each cluster node has dual 2.3 GHz PowerPC 
970FX processors with 9.2 Gflops peak processor 
performance. The amount of main memory for each node 

is 4 GB. Nodes are interconnected with 4× InfiniBand 
network. The interconnection has a peak inter-node 
bandwidth of 10 GB/s (bidirectional) and an MPI latency 
of approximately 7 s.

4.2. Experimental Parameters 

We use the 218-taxa backbone tree published by RDP-
II projects [16] as the “true” tree and simulate a dataset 
with 10,000 characters using SEQ-GEN [17] under a JC69 
model. We use this dataset as the benchmark dataset and 
run PBPI on each system then measure the execution time 
for various configurations using the wall clock time 
provided by MPI_Wtime( ). 

On each system, we investigate both strong scaling and 
weak scaling. For strong scaling, we fixed the number of 
chains and increase the number of processors from 256, to 
512, and 1024. For weak scaling, we fixed the workload 
per processor to the size of a row communication group 
then increase the number of chains from 4, to 8, 16, 32, 
and 64. In each case, we report results for 1,000,000 chain 
generations. For each case, we executed 5 runs and report 
the average execution time over the 5 runs in our results. 

Each system configuration is unique. We use dual 
processors on each node of System X. We run in 
coprocessor mode on BG/L. We run the code out-of-the-
box without further optimization on each system.  

We also note direct comparisons of the two systems can 
be misleading since the architectures are so different. For 

example, though there are configurations where both 
machines use the same number of processors, the 
processors are different both architecturally (superscalar 
vs. embedded designs) and in operating frequency (700 
MHz vs. 2.3 GHz) as well. 

4.3. Summary on the results 

Table 2 and Table 3 show the raw execution times 
measured for PBPI on each system for 1,000,000 
generations and various chain configurations. For each 
table, rows correspond to the number of processors used 
for each machine. Columns reflect the number of chains so 
that the size of the problem data set increases by a power 
of two for each column from left to right. As expected, 
larger problems take longer periods of time. For example 
on BG/L, 8 chains on 256 processors take about twice as 
long as 4 chains on 256 processors. 

Strong scaling occurs when we fix the workload size 
and scale the number of processors. Each group of 3 bars 
in Figure 5 corresponds to a strong scaling study for PBPI 
on BG/L. In every case, the performance of PBPI 
improves with an increase in the number of processors. 
This is also apparent in the raw execution times listed for 
any single column in Table 3. PBPI was designed to 
distribute the computational workload evenly across the 
processors while minimizing the communication overhead. 
For fixed-size problems, the data distribution improves 
both local cache and memory performance. This means for 
the same workload, the local working set is more likely to 
fit in cache as the number of processors scale. This 
explains the superlinear performance increases for some of 
the larger chain configurations on BG/L. 

Each group of 3 bars in Figure 6 corresponds to a 
strong scaling study for PBPI on System X. In every case, 

0

1

2

3

4

5

6

4 chain 8 chain 16 chain 32 chain 64 chain

R
e

la
ti

v
e

 S
p

e
e

d
u

p

256 processors 512 processors 1024 processors

Figure 5: Strong scaling on Blue Gene/L 

Table 3: the average execution time in seconds 

for10
6
 generations on System X 

Number of chains 
Processors

4 8 16 32 64 

256 550 908 1532 2723 5602 
512 479 615 903 1554 2759 

1024 440 531 713 961 1572 

Table 2: the average execution time in seconds for 

10
6
 generations on BG/L 

Number of chains 
Processors

4 8 16 32 64 

256 1099 2098 4876 10462 22156 
512 729 1253 2114 4995 10885 
1024 558 869 1173 2164 5124 
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Figure 6: Strong scaling on System X



the performance of PBPI improves with an increase in the 
number of processors. This is also apparent in the raw 
execution times listed for any single column in Table 3. 
Speedups on System X are also encouraging for reasons 
similar to those discussed for BG/L. However, the speedup 
effects observed on BG/L are dampened somewhat on 
System X due to differences in interconnect performance 
and communication/computation ratio between the two 
machines. The System X interconnect has larger 
observable latencies that contribute to increased 
communication overhead. This overhead lessens the 
effects of the cache on execution time and speedup. 

Weak scaling occurs when we vary the workload size 
while we scale the number of processors. In our 
experiments, we fix the workload per processor and then 
vary the processor configuration. For example, using P as 
the workload per processor, for 256 processors we scale 
the workload to 256P; for 1024 processors we scale the 
workload to 1024P; etc. An optimal result for weak 
scaling is to maintain a constant execution time as the 
workload scales. Figures 7 and 8 show PBPI maintains 
nearly constant execution time for our weak scaling 
studies. Again this is primarily due to our algorithm design 
and the effects of workload distribution and small memory 
working set for large system configurations. 

Speedup results can be misleading. Only total execution 
time for the various workload configurations can 

determine the best measured performance. As Table 2 and 
Table 3 show System X results in faster execution time in 
all cases primarily due to the speed of its G5 processor 
(2.4 GHz) verse the BG/L IBM processor (700MHz) since 
PBPI is a computationally intensive code with a relatively 
small memory working set for large node configurations. 

Following common practices, we calculate the average 
number of floating point operations per second (FLOPS) 
on both systems by dividing the average execution time in 
seconds by the total number of floating point operations 
completed for each run. Though we use GFLOPS to report 
achieved performance, this metric is not ideally suited to 
reflect PBPI performance. PBPI performs a significant 
number of integer operations including generating random 
numbers and proposing candidate trees. Thus poor or 
exceptional integer performance on a system may 
influence results not reflected in GFLOPS. 

Tables 4 and 5 provide the sustained performance in 
GFLOPS for PBPI on various system and workload 
configurations. For 1024 processors, BG/L sustains 156 
GFLOPS while System X sustains 507 GFLOPS (or 0.5 
TFLOPS). These results explain some of the observations 
made in execution time and speedup trends. The higher 
GFLOP throughput on System X corresponds to its 
reduced execution time. For both systems, the GFLOP 
throughput increases with number of nodes for a fixed 
problem size. For larger system configurations on both 

Table 4: Average GFLOPS on BG/L  

Number of chains 
Processors

4 8 16 32 64 

256 45 48 41 38 36 

512 68 80 94 80 73 

BG/L

1024 89 115 170 184 156 

Table 5: Average GFLOPS on System X  

Number of chains 
Processors 

4 8 16 32 64 

256 91 110 130 146 142 

512 104 162 221 257 289 

SystemX 

1024 113 188 280 415 507 
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Table 6: The execution time in seconds for 10
6

generations on BG/L (up to 4096 processors) 

Number of chains 
Processors

32 -CO 32-VN 64-CO 64-VN 

1024 2491 2457 5023 5239 
2048 1379 1314 2662 2498 
4096 765 1359 

Table 7: Average GFLOPS on BG/L (up to 4096 

processors) 

Number of chains 
Processors

32 -CO 32-VN 64-CO 64-VN 

1024 160 162 159 152 
2048 289 303 300 319 
4096 521 587 
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systems, the GFLOP throughput increases with increases 
in the problem size. This supports the conjecture that the 
memory working set is more likely to fit in cache for 
larger system configurations. This effectively reduces the 
average memory latency per FLOP, thus increasing the 
measured GFLOPS. 

As we mentioned, direct machine comparisons across 
architectures are not particularly fair. For example, in our 
experiments thus far, System X outperformed BG/L for 
raw execution time. Yet these experiments assume 
processors are of similar performance. Of course, BG/L 
was designed to employ larger processor configurations. 
To this end, we performed an additional study to see how 
well PBPI scales to extreme processor counts – limited 
only by our ability to secure time on large configurations 
of BG/L.  

Table 6 and Table 7 show data for various additional 
configurations of BG/L up to 4096 processors. This time, 
we ran in both coprocessor (CO) and virtual node mode 
(VN) for 32 and 64 chains. PBPI achieves roughly same 
performance on both modes for the same run configuration. 
As VN mode doubles the number of processors, VN mode 
provides PBPI about 1.7~2.0 times performance gain than 
CO mode on the same number of nodes. Figure 9 shows 
the results for strong scaling up to 4096 processors (256, 
512, and 1024 are in coprocessor mode; 2048 and 4096 are 
in virtual node mode). This figure indicates that the 
scaling effects observed continue beyond 1024 processors. 
The 32 chain workload appears to be losing some 
scalability since linear speedup (not superlinear as before) 
is observed from 2048 to 4096 processors. For the larger 
data set of 64 chains, super linear speedup continues 
through 4096 processors. We also note that for both 32 
and 64 chains, the 4096 processor configuration is able to 
sustain more than 500 GFLOPS (0.5 TFLOPS). 

In summary, our results indicate the PBPI scales 
superlinearly for larger processor configurations and 
workloads on two distinct terascale architectures. This is 
primarily due to an efficient algorithm that distributes 
workloads evenly and results in smaller working sets that 
fit in cache on large system configurations. Additionally, 
the performance of PBPI is particularly sensitive to 
processor frequency. We also observed superlinear 

speedup continues (albeit for large workloads only) on 
extreme processor counts. 

5. Related work 

Several scalable parallel programs for maximum 
likelihood-based phylogenetic methods, have been 
developed recently, among them are parallel fastDNAml 
[18, 19], PAxML [20], parallel genetic algorithm for ML 
[21], and parallel TREE-PUZZLE [22]. Bader et al 
discussed GRAPPA, a highly scalable implementation for 
breakpoint phylogenetic analysis using gene order data 
[23]. Most of these codes are targeted at searching the tree 
space and there is no dependency in the time dimension. 
Thus by carefully dividing the search space into multiple 
subspaces, the parallel code can achieve coarse granularity 
parallelisms and use the master-slave parallel schema in 
the implementation. Comparing with this code, Bayesian 
phylogenetic inference uses different criterion to define 
the “optimal” trees for given datasets and samples trees 
from the tree space according to the probabilities 
distribution of the trees. There is a strong time dependency 
between two adjacent samples. Therefore to achieve 
strong scaling we have to parallel at much finer granularity.  

MrBayes also provided a parallel code for Bayesian 
phylogenetic inference (see Altekar et al [24]). Its major 
issue lies in the fact that the code can only parallel at chain 
level. The implication is that given a fixed problem and 
fixed number of chains (for example 4 chains), it can not 
run more than 4 nodes. Another issue is the code may fail 
when the memory requirement for one chain is larger than 
that can be supported by a single node. PBPI overcomes 
this limitation by combining sequence level parallelism 
and chain level parallelism. Another key difference 
between PBPI and MrBayes is that PBPI implemented 
several improved MCMC strategies to overcome a danger 
of Metropolis-coupled MCMC chains may be trapped to a 
set of local optima and fail to explore the space properly. 
Further, PBPI achieved significant improvements in 
sequential code due to reduced memory footprint and a 
reduced amount of memory copy operations.  

6. Summary and future work 

Exploiting the power of terascale systems to tackle the 
computational challenges in Bayesian phylogenetic tree 
reconstruction is necessary for various reasons. For 
instance, it allows biologists to analyze large data sets to 
gain further insight into evolution and biological diversity 
with improved accuracy. We also described the asymptotic 
behavior of PBPI and the analytical impact of various 
design decisions on performance. We demonstrated the 
effects of these optimizations on two representative 
terascale systems, IBM Blue Gene/L and Virginia Tech 
System X. The experimental results demonstrate PBPI can 
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achieve excellent strong and weak scaling up to thousands 
of processors on both systems we tested. We also noted 
some interesting similarities and differences specific to the 
two systems. 

As future work, we hope to continually improve the 
PBPI framework. Future versions will include additionally 
supported models of evolution and more advanced MCMC 
algorithms. We also plan to optimize the code for better 
cache efficiency and better floating point performance. 
Furthermore, since the performance results for PBPI are 
exceptional, we are working with biologists to identify 
challenging data sets for analyses where identification of 
phylogenetic trees can lead to important biological insights 
as to the origin of species. 
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