
Xizhou Feng1, Kirk W. Cameron1, Carlos P. Sosa2, and Brian Smith2

1Virginia Tech
Dept. of Computer Science

Blacksburg, VA 24061, USA
{fengx, cameron}@cs.vt.edu

2IBM Rochester
BlueGene/L Development

Rochester, MN 55901, USA
{cpsosa, smithbr}@us.ibm.com

Abstract

Bayesian phylogenetic inference is an important

alternative to maximum likelihood-based phylogenetic

method. However, inferring large trees using the Bayesian
approach is computationally demanding—requiring huge

amounts of memory and months of computational time.

With a combination of novel parallel algorithms and latest
system technology, terascale phylogenetic tools will

provide biologists the computational power necessary to
conduct experiments on very large dataset, and thus aid

construction of the tree of life.

In this work we evaluate the performance of PBPI, a
parallel application that reconstructs phylogenetic trees

using MCMC-based Bayesian methods, on two terascale

systems, Blue Gene/L at IBM Rochester and System X at
Virginia Tech. Our results confirm that for a benchmark

dataset with 218 taxa and 10000 characters, PBPI can

achieve linear speedup on 1024 or more processors for
both systems.

1. Introduction

Phylogeny, a tree or network-like structure represent-
ing the evolutionary relationship among a group of species,
serves as an important framework to organize, compare,
and analyze biological data. Besides its primary role in
understanding biological evolution and diversity, it has
also been widely used in many other areas including
genetics, genomics, drug discovery, plant improvement,
and disease control. The importance of phylogeny to
science and society can be best demonstrated by the NSF
ATOL project [1], whose goal is to provide an overall
framework for retrieving, comparing, and predicating huge
amounts of biological data by “assembling a tree of life for
1.7 million described species on the earth”.

The fundamental task of most phylogenetic inference is
to estimate the “correct” phylogenetic trees given one or
multiple data sets which encode the clues for the
evolutionary path. Among various phylogenetic inference
approaches, the Bayesian approach distinguishes itself in
several aspects. First, it uses explicit models of evolution
and likelihood functions similar to maximum likelihood
estimation, another important statistical phylogenetic
method. The Bayesian approach has the potential to
incorporate complicated models and existing knowledge
into the process of phylogenetic inference. Second, it takes
a probabilistic view of the estimated trees and ranks these
trees with a quantity called posterior probability. Bayesian
phylogenetic inference avoids the baffle present in many
NP-hard optimality methods that output one “best” tree.

Building large phylogenetic trees using Bayesian
approach is computationally demanding. For example,
building a phylogenetic tree with hundreds of taxa and
thousands of characters may require several gigabytes of
memory usage and several months of computing time. To
make Bayesian phylogenetic inference more efficient and
more practical for large phylogenetic problems, it is
necessary to run phylogenetic tools on terascale systems.

The main contributions of this paper are in two folds.
First, we provide the excellent scaling results of PBPI, a
parallel Bayesian phylogenetic code, on terascale systems.
Second, we analyze and compare the performance of PBPI
on two different terascale system architectures—the Blue
Gene/L system at IBM Rochester and the System X at
Virginia Tech. We profile the performance of PBPI on up
to 1024 processors on System X and up to 4096 processors
on Blue Gene/L. Our results showed that PBPI achieves
linear speedup for both fixed-size and increasing
workloads on both systems. To the best of our knowledge,
this is the first effort to achieve terascale computing
capability for Bayesian phylogenetic inference.

This paper is organized as follows. In the next section
we review Bayesian phylogenetic inference techniques.
Then we describe the parallel strategies used by PBPI in
Section 3. Overviews of the Blue Gene/L and System X

Building the Tree of Life on Terascale Systems

–––––––––––––––––––––
1-4244-0910-1/07/$20.00 ©2007 IEEE

are provided in Section 4, following by the experimental
results and analysis for both systems. We discuss the
related work in Section 5. Finally, we summarize our
major conclusions and future work.

2. Bayesian phylogenetic inference

2.1. The problem

Phylogenetic trees reconstruction is one of the grand
challenge problems in computational biology. As one of
the standard phylogenetic methods, Bayesian phylogenetic
inference reconstructs phylogenetic trees from observed
data based on the notion of posterior distribution of
phylogenetic trees. This method was first developed by
several independent research groups (Yang et al at UC
Berkeley[2], Mau et al at University of Wisconsin [3], and
Li et al at Ohio State [4]) almost simultaneously, and then
became widely used after the development of several
sequential tools such as BABME [5] and MrBayes [6].

When applied to molecular sequences, the problem of
Bayesian phylogenetic inference can be stated as follows:

Given { }
ij N M

D d , a matrix of aligned molecular

sequences, find a phylogenetic model (, ,)T that

best interprets (or fits) the data D while providing a
confidence measurement for the estimated models.

Here N is the number of taxa (or species); M is the

number of site (i.e. characters) in the sequence alignment;

i
d denotes the sequence for

th
i species; and

ij
d denotes

the state of the
th

j site on the
th

i sequence. For a DNA

sequence, the number of possible states for
ij

d is 4; for

sequences of amino acid or codons, the numbers of
possible states are 20 and 60 respectively. A phylogenetic
model describes how the sequences evolve historically.
It consists of three components: a tree structure (T) that
represents the evolutionary patterns for the species under
study, a vector of branch lengths () which maps the

divergence time along different lineages, and a model of
the molecular evolution () that approximates how the

characters at each site evolve over time along the tree.

2.2. The Bayesian approach

The Bayesian approach treats both the observed data
D and the phylogenetic model as random variables
and models all random variables using a joint probabilistic
distribution, i.e.

(,) (|) ()P D P D P . (1)

Once the data is known, Bayesian theory can be used to
compute the posterior probability for a specific

phylogenetic model
i
 using

|
|

|

i i

i

j j

j

P D P
P D

P D P
 (2)

Here, (|)
i

P D is called the likelihood (the

probability of the data under the model
i
); ()

i
P is

called the prior probability of the model (the unconditional
probability of the model without any knowledge of the

observed data); and () |
j j

j

P D P D P is

the unconditional probability of the data.
Since phylogenetic models are hypotheses about how

the data will evolve, both the prior and the posterior of a
specific phylogenetic model should be interpreted as a
confidence interval for the model instead of explained as
frequencies. Thus Bayesian theory reflects how the prior
belief is updated to posterior belief after having observed
new evidence (i.e. data).

In the context of Bayesian phylogenetic inference, the
likelihood has the same formulation as the one defined in
the maximum likelihood estimation [7]. Borrowing the
notation in [8], given a known phylogenetic model

(, ,)T , the probability to observe the
th

u column

of the data matrix D is computed by

2 1

1 2 2 1

2 1

() ()

1 1

(| , ,)

| , , | , ,

N

N N N

u a

a S a S a S

N N

i i i i

u u i u u i

i N i

L x T

p a a p x a

 (3)

Here
u ij j u

x d is the
th

u column of D ,
i

u
x is the

state at the
th

u column on the
th

i sequence which is mapped

to the
th

i leaf node, ()i is the index of the parent node of

node i and S is the set of possible character states. We

can augment the data matrix to include the states at each
site for ancient species represented by the internal node.

Thus,
i

u
a is the state at the

th
u column on the

th
i sequence

which is mapped to the
th

i internal node, and
2 1N

a
is the

frequence of
2 1N

a at the root node. The conditional

probability
()

| , ,
i i

u u i
p x a and

()
| , ,

i i

u u i
p a a

describe the transition probability from the state
()i

ua on

the parent node to the state
i

ua or
i

ux on the child node after

a divergent time i (i.e. the branch length from node i to

its parent). The conditional probability (| , ,)
i

p a b is

computed from i
Q

e and Q is specified by . Since the

states for the internal nodes are unknown, Equation (3)
summarizes all the possible combinations of the internal

nodes to get the site likelihood (| , ,)
u

L x T . Assuming

the observation at each site is identically independent
distributed, the likelihood to observe the entire sequence is:

1

(| , ,) (| , ,)
M

u

u

P D T L x T (5)

When a proper prior is specified, the posterior

probability of a given phylogenetic model (|)
i

P D can

be computed by Equations (2)-(4). We also note that this

distribution of (|)P D is the basis of Bayesian

phylogenetic inference from which a lot of useful
information can be obtained. For instance, one important
application is to estimate the posterior probability of a
specific phylogenetic tree topology by calculating the
marginal distribution as

(|) (, , |)
i i

P T D P T D d d . (6)

2.3. The Markov chain Monte Carlo method

The posterior distribution in Bayesian analysis is
usually approximated by a class of methods called Markov
chain Monte Carlo (usually abbreviated as MCMC) which
simulate random variables from a target distribution,
known up to a normalizing constant.

The basic idea of the MCMC methods is first to
construct a Markov chain that has the space of the
phylogenetic models to be estimated as its state space and
the posterior probability distribution of the models as its

stationary distribution. Next, we simulate the chain and
treat the realization as a representative sample from the
posterior probability of the parameters of interest.

In Bayesian phylogenetic inference, the Metropolis-
Hasting algorithm [9, 10] and its variants are usually used
to construct the chains. Figure 1 shows the basic outline of

the Metropolis-Hasting algorithm, in which
()

,
t

 is

called the acceptance probability that is defined as

()

()

() () ()

(,)

||
min 1,

| |

t

t

t t t

qP D P

P D P q

 (7)

Here,
()

(|)
t

q is the proposal probability which can be

in any form that satisfies

(|) 0q . (8)

In theory, a Markov chain constructed with the
Metropolis-Hasting algorithm will converge to a stationary
distribution if the chain is irreducible, aperiodic, and
possesses a stationary distribution given the chain runs
long enough [11]. Thus once we design a Markov chain
that satisfies these requirements in Bayesian phylogenetic
inference, we can approximate the posterior distribution of
phylogenetic models correctly. However, several practical
implementation issues exist. For instance, the chain has to
overcome the stickiness at local optima and maintain a
desired acceptance ratio (the percentage of the proposed
states that are accepted) in order to approximate the
posterior distribution both efficiently and correctly.

3. Parallel Bayesian Phylogenetic Inference

3.1. The computational complexity of Bayesian

phylogenetic inference

We use “Big O” notation (or asymptotic notation) to
describe the computational complexity as the asymptotic
behavior of the functions used in Bayesian phylogenetic
approach. The likelihood calculation using Equation (3)

has
4(1)N

S terms, in which S is the number of character

states in the evolutionary model. This calculation can be

reduced to the order of
3

O N S using the algorithms

proposed by Felsenstein [7]—which is equivalent to fill a
table of conditional probabilities at the given site on each
node in the post-order traversal of the phylogenetic tree.

Assuming a conventional MCMC chain with G

generations, the asymptotic behavior of the likelihood
evaluation in Bayesian phylogenetic inference is

3
()O G M N S . (9)

1. Initialization Phase

1.1 0t ; set starting model
(0)

0

1.2 Compute likelihood
(0)

(|)P D

2. MCMC sampling phase

While (maxt imum generation)

2.1 Propose a new model from
()

|
t

q

2.2 Compute likelihood
(0)

(|)P D

2.3 Decide/Update next chain state

 2.3.1 Compute the acceptance
()

,
t

 2.3.2 Draw random number u ~ (0,1)U

 2.3.3. If
()

(,)
t

u

Then
(1)t

Else
(1) ()t t

 2.4 Move to the next generation: 1t t

Figure 1: the Metropolis-Hasting algorithm for

Bayesian phylogenetic inference

Since in the MCMC implementation, the candidate

phylogenetic model , ,T is only slightly different

from the current phylogenetic model
()

, ,
t

T . On the

condition is unchanged, only the conditional probability

on those nodes appearing in the back tracing path from the
affected nodes to the root nodes needs to be recomputed.
This property (i.e. likelihood local update) can reduce the
number of computations to

3
(log)O G M N S . (10)

Practical phylogenetic inferences often consider rate
variations among sites and use C discrete rate categories

to approximate a continuous rate distribution (such as
Gamma distribution) [12]. Also some population-based
MCMC methods can be used to increase the mixing rate of
the MCMC sampling in order to avoid chains being
trapped at local optima. Assuming Z chains are used, we
can update Equations (9) and (10) to

3
()O G M N S C Z (11)

3
(log)O G M N S C Z (12)

Assuming percentage of likelihood calculation

belongs to local update and ignoring the cost of other
operations such as propose candidate models and decide
chain moves, the overall computational complexity of
Bayesian phylogenetic inference is approximated by

3
log (1)O N N M S C Z G . (13)

Similarly, we can estimate the memory requirement as
a multi-dimensional array of doubles with asymptotic
order of

()O N M S C Z (14)

Though Equation (13) and (14) indicate Bayesian
phylogenetic inference is a polynomial algorithm, as the
problem size increases, its computational complexity will
become extremely demanding. Further, it is still an open
problem to decide the number of generations for a given
problem size such that the MCMC chains can reconstruct
the tree with sufficient accuracy.

3.2. The challenges to parallel Bayesian MCMC

Based on the discussion in previous section, calculating
the likelihood on P processors will have the same order of
the computational complexity as that on a single processor.
However, it will decrease both time and space complexity
by a factor of P if there is enough parallelism to exploit.

Analytically, the likelihood can be parallelized from
three dimensions: across the sequence (i.e., M), across the
rate category (i.e., C), and across the chains (i.e., Z). Thus,
given P M C Z processors, we may reduce the

computational complexity in time and space shown in (13)
and (14) to

3
log (1)O N N S G (15)

and

()O N S . (16)

There are further possibilities to parallel across N and G.
Since such parallelisms require dramatic changes of the
underlying algorithm, we leave them for future research
topic.

The results implied by Equation (15) and (16) appear
promising for developing terascale Bayesian phylogenetic
inference tools to benefit from a vast number of processors.
However, in reality there are several inherent challenges.

As shown in Equation (10) and (12), Bayesian
phylogenetic inference may extensively use likelihood
local update to significant improve performance. But this
technique is not without consequences.

First, local likelihood updates reduce the computation
to communication ratio. It is well known that message
communications are costly in terms of execution time. The
smaller the granularity between two communications, the
more difficult it will be to improve parallel performance.

Second, local likelihood update causes load imbalance
between computing processors for different chains since
the length of the affect path on current proposals differs
across chains. Because of load imbalance, the processors
with less workload must wait for others to finish, thus
reducing efficiency.

Third, the local likelihood updates require memory
storage for the conditional probability table of previous
phylogenetic models. If we want to swap two models
among two processors, we have to exchange this table as a
long message.

Fourth, as stated in the Metropolis-Hasting algorithms
illustrated in Figure 1, the proposed candidate state may be
accepted or rejected. Therefore, we need keep a copy of
the conditional probability table for the phylogenetic
model at the current generation. Frequent copying of large
chunks of memory will decrease the memory access
locality and increase average memory access time.

Finally and most importantly, we have to make the
parallel implementation highly scalable when the size of
the dataset (determined by N and M) increases, or in

other words, the parallel implementations have to support
fine-grain parallelism such as likelihood evaluation for a
given phylogenetic model. However, communicating a
phylogenetic tree with hundreds of nodes may require
large numbers of multi-kilobyte messages. An efficient,
scalable parallel implementation must ensure the incurred
communication overhead to transfer messages of such size
do not exceed the execution time to compute the
likelihood locally.

In the rest of this section, we describe how PBPI will
overcome or bypass these challenges.

3.3. The parallel strategies of PBPI

PBPI (Parallel Bayesian Phylogenetic Inference) is a
scalable Bayesian phylogenetic inference code which
estimates phylogenetic trees from aligned DNA sequences.
The initial goal of PBPI is to build a high performance,
unified statistical framework for large scale phylogenetic
problems [13]. Current PBPI implementation combines
multiple MCMC sampling strategies to tackle problems
observed in conventional MCMC sampling approaches
used in Bayesian phylogenetic inference [14]. PBPI aims
to speedup the Bayesian phylogenetic inference from three
aspects:

1) Improved MCMC strategies to decrease the maxi-
mum number of generations needed in the MCMC
sampling, i.e. decreasing G in Equations (11) and (12);

2) Improved sequential performance by reducing the
memory footprint and removing unnecessary memory
operations to maintain memory access locality; and

3) Exploit multi-level parallelism to make computations
scalable to large problems.

In our previous PBPI work, we validated its correctness
and performance at scales less up to 64 nodes [15]. We
showed the sequential version of PBPI is up to 19 times
faster than its best competitor, MrBayes [6], and up to 46
times faster on 64 nodes for a benchmark dataset of 218
taxa and sequence length of 10,000 characters. We also
studied the quality of the phylogenetic trees reconstructed
with PBPI using simulated study. We found that for the
dataset we tested, PBPI can reconstruct the “true” trees at
least as accurate as that reconstructed with MrBayes [13].

In this paper, we attempt to analyze the performance of
PBPI for terascale systems. Our goal is to determine the
inherent limits of PBPI as systems scale beyond 64 nodes
on various types of high-end architectures.

Figure 2 illustrates the basic parallel schema adopted by
PBPI. At the top level, a large dataset is partitioned into
multiple overlapped subsets and each individual subset is
analyzed by one instance of PBPI. In the middle level,
multiple independent runs of PBPI process the same
dataset to detect the anomaly or convergence for each run.
At the bottom level, PBPI implements fine-grain
parallelism at the chain and sequence segment level.

Though it is relatively easier to achieve linear
scalability on terascale systems at the top two layers, we
will limit our discussion to the effects of fine-grain
parallelism. There are two major reasons for this: 1) fine
grain parallelism is common to almost all Bayesian
phylogenetic inferences; 2) fine grain parallelism is
primarily responsible for improving scalability and
reducing execution time per MCMC chain generation for a
fixed-size problem.

PBPI organizes the processors into a multi-dimensional
grid topology and encodes processors in each dimension
as a communication group. Similarly, it decomposes the
computations during each MCMC chain generation. Thus
a one-to-one mapping between each communication group
and each level of parallelism is established. For example,
Figure 2 illustrates how to map 8 chains onto 16
processors where the number of characters (or patterns) is
20. The 16 processors are arranged as a 4×4 two-

dimensional grid where processors at the
thi row are

grouped as the
thi row communication group and

processors at the
thj row are grouped as the

thj row

communication group The 8 chains are divided into 4

groups (each group has 2 chains) and the
thi chain group is

mapped to the
thi row communication group. The 20

characters are split into 4 segments and the
thj sequence

segment is mapped to the
thj row communication group.

Besides the IO-related communications to store and
display the MCMC states samples, PBPI needs to handle
two major kinds of message exchanges: 1) row-wise
communications among processors in each row

data partition

PBPI

PBPI

PBPI

Tree Merge

data set

overlapped sub data set overlapped sub trees

data partition

PBPI

PBPI

PBPI

Tree Merge

data set

overlapped sub data set overlapped sub trees

PBPI

PBPI

PBPI

convergence

monitor

Summary

PBPI

PBPI

PBPI

convergence

monitor

Summary

3,1

4,1

1,1

2,1

3,2

4,2

1,2

2,2

3,3

4,3

1,3

2,3

3,4

4,4

1,4

2,4

taxa 00000

name 01234

A GGACA

B CGACA

C CGACA

D CGACG

E CGACA

F CGCCA

taxa 00000

name 56789

A TCAAG

B TCAAG

C TCCAG

D TCCAG

E TCCAG

F TCCAG

taxa 11111

name 01234

A CTTAA

B CTTAA

C CTAAT

D CTAAA

E CTAAA

F CTAAA

taxa 11111

name 56789

A CTTTA

B CTTGA

C CATTT

D CATAT

E CATAT

F CATAT

Chain 1

Chain 2

Chain 3

Chain 4

Chain 5

Chain 6

Chain 7

Chain 8

Figure 2: illustration of the parallel schema in PBPI

compute using MPI_Allreduce
* *

1

log (|) log (|)
c

i j i

j

L D L D

propose from *

i
()i t

compute *

1log (|)iL D

propose from *

i
()i t

compute *

2log (|)iL D

propose from *

i
()i t

compute *log (|)c iL D

decide (1)
i

t decide (1)
i

tdecide (1)
i

t

processor at ,1i processor at , 2i processor at ,i c

compute using MPI_Allreduce
* *

1

log (|) log (|)
c

i j i

j

L D L D

propose from *

i
()i tpropose from *

i
()i t

compute *

1log (|)iL Dcompute *

1log (|)iL D

propose from *

i
()i tpropose from *

i
()i t

compute *

2log (|)iL Dcompute *

2log (|)iL D

propose from *

i
()i tpropose from *

i
()i t

compute *log (|)c iL Dcompute *log (|)c iL D

decide (1)
i

tdecide (1)
i

t decide (1)
i

tdecide (1)
i

tdecide (1)
i

tdecide (1)
i

t

processor at ,1iprocessor at ,1i processor at , 2iprocessor at , 2i processor at ,i cprocessor at ,i c

Figure 3: the flow chart of data parallelism during

each chain generation. The three different colors

represent sequential, parallel, and communication

part of the overall workload respectively. In this

example, we assume there is only one chain for

each row communication group.

communication group to evaluate, synchronize, and update
the states for each MCMC chain, and 2) column-wise
communications to swap the states among different chains.

Figure 3 provides a flow chart of data parallelism in
PBPI at sequence segment level during each chain
generation. Using a row-wise random number generator
with the same seeds, the processors at each row
communication group duplicate the proposal and decision
steps, compute individual partial likelihood for each local
dataset (i.e. sequence segment) under the proposed
candidate state, and summarize all partial likelihoods to a
global likelihood using one collective communication. No
further communications and synchronizations are needed
to evolve the local Markov chains among processors
within the row communication group. Using this schema,
PBPI achieves data parallelism among distributed memory
systems with minimum communication overhead.

The flow chart of chain level parallelism is shown in
Figure 4. Using a grid-wise random number generator with
the same seed, the processors within the whole grid select
the same pair of chains for swapping. An asynchronous
point-to-point communication is performed on the two row
communication groups which hold the selected chains.
Load imbalance may occur due to different numbers of
computations for the likelihood local update. Such
imbalance causes processors with fewer computations
waiting for data from processors with more computations.

Intuitively, increasing the interval between two chain
swapping steps or the number of row groups will reduce
the ratio of the average waiting time to the total execution
time.

The multi-dimensional domain decomposition leads to
a number of factors that influence the achievable
performance of PBPI. For instance, by dividing the whole
sequence into segments, PBPI is capable of supporting
large data set with more complicated evolutionary models
while maintaining good cache performance. Furthermore,
the average messages exchanged per chain generation is
independent to the problem size. In the next section, we
use our detailed understanding of the internals of PBPI to
analyze performance for PBPI on terascale systems.

4. Experiments and Results

4.1. Comparisons of systems

We compare the performance of PBPI on two tera-scale
systems, the IBM BG/L at IBM Rochester and System X
at Virginia Tech. Both systems are listed among the top
500 most powerful supercomputers in the world with the
performance summarized in Table 1. Since these systems
are different in terms of system scale, node architecture,
and interconnection technology, we describe the major
characteristics below to make the performance comparison
more meaningful.

IBM Rochester BG/L System

The Blue Gene/L system we used was one rack of the
4-rack (total 8192 processors) installation at IBM in
Rochester. One rack consists of 1024 compute nodes.
Each node consists of two PowerPC 440 processor cores,
each with a 64-bit floating point unit. Each core runs at
700MHz and each node has 512MB of memory. For
benchmarks run in coprocessor mode, the primary core
uses the entire 512MB of memory while the secondary
core helps with communications operations. For
benchmarks run in virtual node mode, each core runs
independently, sharing the memory and network resources.
Computationally intensive applications may nearly double
in performance when run in virtual node mode. See
http://www.research.ibm.com/journal/rd/492/moreira.html
for further details.

Nodes are connected with a 3D-torus network for point-
to-point operations, a global combining tree for reduction
operations, and a fast global interrupts network for barrier
operations. The torus network has a bandwidth of 10GB/s
and a latency of approximately 6 us in the MPI layer. The
theoretical peak performance for a rack is 5.6 TFLOPs.
Measured LINPACK performance for the 4-rack
installation is 18.2 TFLOPs, putting the 4-rack system at
number 19 on the Top 500 list.

processor at (r, j)

select a and b

processor at (a, j)

processor at (b, j)

processor at (1, j)

accept?

accept?

select a and b

select a and b

select a and b

send recv

recvsend

Figure 4: the flow chart of chain level parallelism

during each chain generation. In this example, we

assume there is only one chain for each row

communication group. Due to different number of

computations needed by likelihood local update

among different chains, the chains among

different row communication groups may be not

synchronized.

Table 1: the two terascale systems evaluated

System BG/L SystemX

Node Technology
IBM BlueGene/L
PowerPC 440
System-on-chip

Duel 2.3GHz
Apple XServer

of Processors 8,192 2,200

Peak Performance
(in Gflops)

22,938 20,240

LINPACK Perf.
(in Gflops)

18,200 12,250

Virginia Tech System X

System X consists of 1100 Apple XServer G5 cluster
nodes. Each cluster node has dual 2.3 GHz PowerPC
970FX processors with 9.2 Gflops peak processor
performance. The amount of main memory for each node

is 4 GB. Nodes are interconnected with 4× InfiniBand
network. The interconnection has a peak inter-node
bandwidth of 10 GB/s (bidirectional) and an MPI latency
of approximately 7 s.

4.2. Experimental Parameters

We use the 218-taxa backbone tree published by RDP-
II projects [16] as the “true” tree and simulate a dataset
with 10,000 characters using SEQ-GEN [17] under a JC69
model. We use this dataset as the benchmark dataset and
run PBPI on each system then measure the execution time
for various configurations using the wall clock time
provided by MPI_Wtime().

On each system, we investigate both strong scaling and
weak scaling. For strong scaling, we fixed the number of
chains and increase the number of processors from 256, to
512, and 1024. For weak scaling, we fixed the workload
per processor to the size of a row communication group
then increase the number of chains from 4, to 8, 16, 32,
and 64. In each case, we report results for 1,000,000 chain
generations. For each case, we executed 5 runs and report
the average execution time over the 5 runs in our results.

Each system configuration is unique. We use dual
processors on each node of System X. We run in
coprocessor mode on BG/L. We run the code out-of-the-
box without further optimization on each system.

We also note direct comparisons of the two systems can
be misleading since the architectures are so different. For

example, though there are configurations where both
machines use the same number of processors, the
processors are different both architecturally (superscalar
vs. embedded designs) and in operating frequency (700
MHz vs. 2.3 GHz) as well.

4.3. Summary on the results

Table 2 and Table 3 show the raw execution times
measured for PBPI on each system for 1,000,000
generations and various chain configurations. For each
table, rows correspond to the number of processors used
for each machine. Columns reflect the number of chains so
that the size of the problem data set increases by a power
of two for each column from left to right. As expected,
larger problems take longer periods of time. For example
on BG/L, 8 chains on 256 processors take about twice as
long as 4 chains on 256 processors.

Strong scaling occurs when we fix the workload size
and scale the number of processors. Each group of 3 bars
in Figure 5 corresponds to a strong scaling study for PBPI
on BG/L. In every case, the performance of PBPI
improves with an increase in the number of processors.
This is also apparent in the raw execution times listed for
any single column in Table 3. PBPI was designed to
distribute the computational workload evenly across the
processors while minimizing the communication overhead.
For fixed-size problems, the data distribution improves
both local cache and memory performance. This means for
the same workload, the local working set is more likely to
fit in cache as the number of processors scale. This
explains the superlinear performance increases for some of
the larger chain configurations on BG/L.

Each group of 3 bars in Figure 6 corresponds to a
strong scaling study for PBPI on System X. In every case,

0

1

2

3

4

5

6

4 chain 8 chain 16 chain 32 chain 64 chain

R
e

la
ti

v
e

 S
p

e
e

d
u

p

256 processors 512 processors 1024 processors

Figure 5: Strong scaling on Blue Gene/L

Table 3: the average execution time in seconds

for10
6
 generations on System X

Number of chains
Processors

4 8 16 32 64

256 550 908 1532 2723 5602
512 479 615 903 1554 2759

1024 440 531 713 961 1572

Table 2: the average execution time in seconds for

10
6
 generations on BG/L

Number of chains
Processors

4 8 16 32 64

256 1099 2098 4876 10462 22156
512 729 1253 2114 4995 10885
1024 558 869 1173 2164 5124

0

1

2

3

4

5

6

4 chain 8 chain 16 chain 32 chain 64 chain

R
e

la
ti

v
e

 S
p

e
e

d
u

p

256 processors 512 processors 1024 processors

Figure 6: Strong scaling on System X

the performance of PBPI improves with an increase in the
number of processors. This is also apparent in the raw
execution times listed for any single column in Table 3.
Speedups on System X are also encouraging for reasons
similar to those discussed for BG/L. However, the speedup
effects observed on BG/L are dampened somewhat on
System X due to differences in interconnect performance
and communication/computation ratio between the two
machines. The System X interconnect has larger
observable latencies that contribute to increased
communication overhead. This overhead lessens the
effects of the cache on execution time and speedup.

Weak scaling occurs when we vary the workload size
while we scale the number of processors. In our
experiments, we fix the workload per processor and then
vary the processor configuration. For example, using P as
the workload per processor, for 256 processors we scale
the workload to 256P; for 1024 processors we scale the
workload to 1024P; etc. An optimal result for weak
scaling is to maintain a constant execution time as the
workload scales. Figures 7 and 8 show PBPI maintains
nearly constant execution time for our weak scaling
studies. Again this is primarily due to our algorithm design
and the effects of workload distribution and small memory
working set for large system configurations.

Speedup results can be misleading. Only total execution
time for the various workload configurations can

determine the best measured performance. As Table 2 and
Table 3 show System X results in faster execution time in
all cases primarily due to the speed of its G5 processor
(2.4 GHz) verse the BG/L IBM processor (700MHz) since
PBPI is a computationally intensive code with a relatively
small memory working set for large node configurations.

Following common practices, we calculate the average
number of floating point operations per second (FLOPS)
on both systems by dividing the average execution time in
seconds by the total number of floating point operations
completed for each run. Though we use GFLOPS to report
achieved performance, this metric is not ideally suited to
reflect PBPI performance. PBPI performs a significant
number of integer operations including generating random
numbers and proposing candidate trees. Thus poor or
exceptional integer performance on a system may
influence results not reflected in GFLOPS.

Tables 4 and 5 provide the sustained performance in
GFLOPS for PBPI on various system and workload
configurations. For 1024 processors, BG/L sustains 156
GFLOPS while System X sustains 507 GFLOPS (or 0.5
TFLOPS). These results explain some of the observations
made in execution time and speedup trends. The higher
GFLOP throughput on System X corresponds to its
reduced execution time. For both systems, the GFLOP
throughput increases with number of nodes for a fixed
problem size. For larger system configurations on both

Table 4: Average GFLOPS on BG/L

Number of chains
Processors

4 8 16 32 64

256 45 48 41 38 36

512 68 80 94 80 73

BG/L

1024 89 115 170 184 156

Table 5: Average GFLOPS on System X

Number of chains
Processors

4 8 16 32 64

256 91 110 130 146 142

512 104 162 221 257 289

SystemX

1024 113 188 280 415 507

0

1000

2000

3000

4000

5000

6000

4 chains/256

processor

8 chains/256

processor

16 chains/256

processor

E
x

e
c

u
ti

o
n

 T
im

e

256 processors 512 processors 1024 processors

Figure 7: Weak scaling on Blue Gene/L

Table 6: The execution time in seconds for 10
6

generations on BG/L (up to 4096 processors)

Number of chains
Processors

32 -CO 32-VN 64-CO 64-VN

1024 2491 2457 5023 5239
2048 1379 1314 2662 2498
4096 765 1359

Table 7: Average GFLOPS on BG/L (up to 4096

processors)

Number of chains
Processors

32 -CO 32-VN 64-CO 64-VN

1024 160 162 159 152
2048 289 303 300 319
4096 521 587

0

200

400

600

800

1000

1200

1400

1600

1800

4 chains/256

processor

8 chains/256

processor

16 chains/256

processor

E
x
e
c
u

ti
o

n
 T

im
e

256 processors 512 processors 1024 processors

Figure 8: Weak scaling on System X

systems, the GFLOP throughput increases with increases
in the problem size. This supports the conjecture that the
memory working set is more likely to fit in cache for
larger system configurations. This effectively reduces the
average memory latency per FLOP, thus increasing the
measured GFLOPS.

As we mentioned, direct machine comparisons across
architectures are not particularly fair. For example, in our
experiments thus far, System X outperformed BG/L for
raw execution time. Yet these experiments assume
processors are of similar performance. Of course, BG/L
was designed to employ larger processor configurations.
To this end, we performed an additional study to see how
well PBPI scales to extreme processor counts – limited
only by our ability to secure time on large configurations
of BG/L.

Table 6 and Table 7 show data for various additional
configurations of BG/L up to 4096 processors. This time,
we ran in both coprocessor (CO) and virtual node mode
(VN) for 32 and 64 chains. PBPI achieves roughly same
performance on both modes for the same run configuration.
As VN mode doubles the number of processors, VN mode
provides PBPI about 1.7~2.0 times performance gain than
CO mode on the same number of nodes. Figure 9 shows
the results for strong scaling up to 4096 processors (256,
512, and 1024 are in coprocessor mode; 2048 and 4096 are
in virtual node mode). This figure indicates that the
scaling effects observed continue beyond 1024 processors.
The 32 chain workload appears to be losing some
scalability since linear speedup (not superlinear as before)
is observed from 2048 to 4096 processors. For the larger
data set of 64 chains, super linear speedup continues
through 4096 processors. We also note that for both 32
and 64 chains, the 4096 processor configuration is able to
sustain more than 500 GFLOPS (0.5 TFLOPS).

In summary, our results indicate the PBPI scales
superlinearly for larger processor configurations and
workloads on two distinct terascale architectures. This is
primarily due to an efficient algorithm that distributes
workloads evenly and results in smaller working sets that
fit in cache on large system configurations. Additionally,
the performance of PBPI is particularly sensitive to
processor frequency. We also observed superlinear

speedup continues (albeit for large workloads only) on
extreme processor counts.

5. Related work

Several scalable parallel programs for maximum
likelihood-based phylogenetic methods, have been
developed recently, among them are parallel fastDNAml
[18, 19], PAxML [20], parallel genetic algorithm for ML
[21], and parallel TREE-PUZZLE [22]. Bader et al
discussed GRAPPA, a highly scalable implementation for
breakpoint phylogenetic analysis using gene order data
[23]. Most of these codes are targeted at searching the tree
space and there is no dependency in the time dimension.
Thus by carefully dividing the search space into multiple
subspaces, the parallel code can achieve coarse granularity
parallelisms and use the master-slave parallel schema in
the implementation. Comparing with this code, Bayesian
phylogenetic inference uses different criterion to define
the “optimal” trees for given datasets and samples trees
from the tree space according to the probabilities
distribution of the trees. There is a strong time dependency
between two adjacent samples. Therefore to achieve
strong scaling we have to parallel at much finer granularity.

MrBayes also provided a parallel code for Bayesian
phylogenetic inference (see Altekar et al [24]). Its major
issue lies in the fact that the code can only parallel at chain
level. The implication is that given a fixed problem and
fixed number of chains (for example 4 chains), it can not
run more than 4 nodes. Another issue is the code may fail
when the memory requirement for one chain is larger than
that can be supported by a single node. PBPI overcomes
this limitation by combining sequence level parallelism
and chain level parallelism. Another key difference
between PBPI and MrBayes is that PBPI implemented
several improved MCMC strategies to overcome a danger
of Metropolis-coupled MCMC chains may be trapped to a
set of local optima and fail to explore the space properly.
Further, PBPI achieved significant improvements in
sequential code due to reduced memory footprint and a
reduced amount of memory copy operations.

6. Summary and future work

Exploiting the power of terascale systems to tackle the
computational challenges in Bayesian phylogenetic tree
reconstruction is necessary for various reasons. For
instance, it allows biologists to analyze large data sets to
gain further insight into evolution and biological diversity
with improved accuracy. We also described the asymptotic
behavior of PBPI and the analytical impact of various
design decisions on performance. We demonstrated the
effects of these optimizations on two representative
terascale systems, IBM Blue Gene/L and Virginia Tech
System X. The experimental results demonstrate PBPI can

0

2

4

6

8

10

12

14

16

18

32 chains 64 chains

R
e

la
ti

v
e

 S
p

e
e

d
u

p

256 512 1024 2048 4096

Figure 9: Strong scaling on Blue Gene/L up to

4096 processors

achieve excellent strong and weak scaling up to thousands
of processors on both systems we tested. We also noted
some interesting similarities and differences specific to the
two systems.

As future work, we hope to continually improve the
PBPI framework. Future versions will include additionally
supported models of evolution and more advanced MCMC
algorithms. We also plan to optimize the code for better
cache efficiency and better floating point performance.
Furthermore, since the performance results for PBPI are
exceptional, we are working with biologists to identify
challenging data sets for analyses where identification of
phylogenetic trees can lead to important biological insights
as to the origin of species.

References

[1] U.S. National Science Foundation, "Assembling the Tree
of Life (ATOL): To construct a phylogeny for the 1.7
million described species of life," National Science
Foundation, Program Solicitation, NSF 04-526, 2004.

[2] Z. H. Yang and B. Rannala, "Bayesian phylogenetic
inference using DNA sequences: A Markov Chain Monte
Carlo method," Molecular Biology and Evolution, vol. 14,
pp. 717-724, 1997.

[3] B. Mau, M. A. Newton, and B. Larget, "Bayesian
phylogenetic inference via Markov chain Monte Carlo
methods," Biometrics, vol. 55, pp. 1-12, 1999.

[4] S. Y. Li, D. K. Pearl, and H. Doss, "Phylogenetic tree
construction using Markov chain Monte Carlo," Journal of

the American Statistical Association, vol. 95, pp. 493-508,
2000.

[5] D. L. Simon and B. Larget, "Bayesian analysis in
molecular biology and evolution (BAMBE)," Department
of Mathematics and Computer Science, Dequesne
University, 1998.

[6] J. P. Huelsenbeck and F. Ronquist, "MRBAYES: Bayesian
inference of phylogenetic trees," Bioinformatics, vol. 17,
pp. 754-755, 2001.

[7] J. Felsenstein, "Evolutionary trees from DNA sequences: a
maximum likelihood approach," Journal of Molecular
Evolution, vol. 17, pp. 368-76, 1981.

[8] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison,
Biological Sequence Analysis: Probabilistic Models of

Proteins and Nucleic Acids: Cambridge University Press,
1998.

[9] N. Metropolis, A. N. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller, "Equations of state calculations by
fast computing machine," J. Chem. Phys., vol. 21, pp.
1087-1091, 1953.

[10] W. K. Hastings, "Monte Carlo sampling methods using
Markov chains and their application," Biometrika, vol. 57,
pp. 97-109, 1970.

[11] L. Tierney, "Markov-Chains for Exploring Posterior
Distributions," Annals of Statistics, vol. 22, pp. 1701-1728,
1994.

[12] Z. Yang and S. Kumar, "Approximate methods for
estimating the pattern of nucleotide substitution and the

variation of substitution rates among sites," Molecular
Biology and Evolution, vol. 13, pp. 650-659, 1996.

[13] X. Feng, "High Performance, Bayesian-based Phylogenetic
Inference Framework," Ph.D. Dissertation, Department of
Computer Science and Engineering, University of South
Carolina, 2006.

[14] X. Feng, D. A. Buell, J. R. Rose, and P. J. Waddell,
"Parallel algorithms for Bayesian phylogenetic inference,"
Journal of Parallel and Distributed Computing, vol. 63, pp.
707-718, 2003.

[15] X. Feng, K. W. Cameron, and D. A. Buell, "PBPI: a High
Performance Implementation of Bayesian Phylogenetic
Inference," in The ACM/IEEE SC2006 Conference on High
Performance, Networking and Computing, Tampa, FL,
2006.

[16] J. R. Cole, B. Chai, R. J. Farris, Q. Wang, S. A. Kulam, D.
M. McGarrell, G. M. Garrity, and J. M. Tiedje, "The
Ribosomal Database Project (RDP-II): sequences and tools
for high-throughput rRNA analysis," Nucl. Acids Res., vol.
33, pp. D294-296, 2005.

[17] A. Rambaut and N. C. Grassly, "Seq-Gen: An application
for the Monte Carlo simulation of DNA sequence evolution
along phylogenetic frees," Computer Applications in the
Biosciences, vol. 13, pp. 235-238, 1997.

[18] C. A. Stewart, D. Hart, D. K. Berry, G. J. Olsen, E.
Wernert, and W. Fischer, "Parallel implementation and
performance of fastDNAml - a program for maximum
likelihood phylogenetic inference," in The ACM/IEEE

SC2001, Denver, 2001.
[19] G. J. Olsen, H. Matsuda, R. Hagstrom, and R. Overbeek,

"fastDNAmL: a tool for construction of phylogenetic trees
of DNA sequences using maximum likelihood," Comput.

Appl. Biosci., vol. 10, pp. 41-48, 1994.
[20] A. Stamatakis, T. Ludwig, and H. Meier, "RAxML-III: a

fast program for maximum likelihood-based inference of
large phylogenetic trees," Bioinformatics, vol. 21, pp. 456-
463, 2005.

[21] M. J. Brauer, M. T. Holder, L. A. Dries, D. J. Zwickl, P. O.
Lewis, and D. M. Hillis, "Genetic algorithms and parallel
processing in maximum-likelihood phylogeny inference,"
Molecular Biology and Evolution, vol. 19, pp. 1717-1726,
2002.

[22] H. A. Schmidt, K. Strimmer, M. Vingron, and A. von
Haeseler, "TREE-PUZZLE: maximum likelihood
phylogenetic analysis using quartets and parallel
computing," Bioinformatics, vol. 18, pp. 502-504, 2002.

[23] B. M. E. Moret, D. A. Bader, and T. Warnow, "High-
performance algorithm engineering for computational
phylogenetics," Journal of Supercomputing, vol. 22, pp.
99-110, 2002.

[24] G. Altekar, S. Dwarkadas, J. P. Huelsenbeck, and F.
Ronquist, "Parallel metropolis coupled Markov chain
Monte Carlo for Bayesian phylogenetic inference,"
Bioinformatics, vol. 20, pp. 407-415, 2004.

