
Optimizing Multiple Distributed Stream Queries Using Hierarchical Network
Partitions

Sangeetha Seshadri, Vibhore Kumar, Brian F. Cooper and Ling Liu
College of Computing, Georgia Institute of Technology
{sangeeta,vibhore,cooperb,lingliu}@cc.gatech.edu

Abstract

We consider the problem of query optimization in distrib-
uted data stream systems where multiple continuous queries
may be executing simultaneously. In order to achieve the
best performance, query planning (such as join ordering)
must be considered in conjunction with deployment plan-
ning (e.g., assigning operators to physical nodes with opti-
mal ordering). However, such a combination involves not
only a large number of network nodes but also many query
operators, resulting in an extremely large search space for
optimal solutions. Our paper aims at addressing this prob-
lem by utilizing hierarchical network partitions. We propose
two algorithms - Top-Down and Bottom-Up which utilize
hierarchical network partitions to provide scalable query
optimization. Formal analysis is presented to establish the
bounds on the search-space and to show the sub-optimality
of our algorithms. Through simulations and experiments
using a prototype deployed on Emulab [1] we demonstrate
the effectiveness of our algorithms.

1. Introduction

In many data stream systems, data is produced at multi-
ple, geographically distributed sources. Examples include
enterprise supply chain applications, scientific collabora-
tions, and distributed network monitoring. It is often too
expensive to stream all of the data to a centralized query
processor, both because of the high communication costs,
and the processing load at the central server. Instead, per-
forming distributed processing of stream queries using tech-
niques such as in-network processing [23, 15, 4] and filter-
ing at the source [18] minimizes the communication over-
head on the system and helps spread processing load, sig-
nificantly improving performance. Then, we can think of

Acknowledgment:This work is partially supported by grants from NSF
CSR, NSF IIS, NSF CyberTrust, a grant from AFOSR, an IBM Faculty
Award, an IBM SUR grant and a HP equipment grant.
1-4244-0910-1/07/$20.00 c©2007 IEEE.

Query Planning Deployment Adaptation

(a)
Adaptationand Deployment

Query Planning

(b)

Figure 1. Approaches: (a) Plan, then deploy,
and (b) Our approach.

a continual query as being “deployed” in the network, with
data streams flowing between operators assigned to distrib-
uted physical nodes.

The conventional approach used in distributed data
stream systems [3, 19] is to construct a query plan (e.g.,
the stream query processing should follow a specified join
ordering) at compile time, and deploy this plan at runtime
to improve performance. This approach is shown in Fig-
ure 1(a). One fundamental problem with this static opti-
mization approach is its inability to respond to the unex-
pected data and resource changes occurring at runtime. For
example, the join order chosen at compile time may require
intermediate results to be transported to another network
node over a long distance, even though there exists an al-
ternate join order that would be more efficient. In addition,
the pre-defined join order may prevent us from reusing the
results of an already deployed join from another query at
runtime.

In this paper we argue that one effective way to address
this problem is to consider the query plan and the deploy-
ment simultaneously (Figure 1(b)) and propose techniques
for performing query planning in conjunction with deploy-
ment planning. One of the key ideas is to use hierarchical
network partitions to scalably exploit various opportunities
for operator level reuse in the processing of multiple stream
queries.

Figure 2 compares this approach with two “Plan, then
deploy” approaches with operator reuse enabled - an op-
timal deployment through exhaustive search and the Re-
laxation algorithm [19]. The figure shows that significant
(> 50%) cost savings can be achieved by combining the
planning and deployment phases.

 0

 1000

 2000

 3000

 4000

 5000

 6000

Our ApproachPlan, then deployRelaxation

To
ta

l c
os

t p
er

 u
ni

t t
im

e(
in

 th
ou

sa
nd

s)

Figure 2. Comparison with typical ap-
proaches: The graph shows the total communication cost
incurred by 100 queries over 5 stream sources each, on a 64-node
network. The cost of a deployment is the total data transferred
along each link times the link cost. The network topology was
generated using the standard topology generator GT-ITM. Our ap-
proach that considers query plans and deployments simultaneously
reduces the cost by more than 50% as it was able to exploit op-
timization opportunities such as operator reuse even during plan-
ning. The Relaxation algorithm, a “plan, then deploy” heuristic to
determine an effi cient operator placement was implemented using
a 3-dimensional cost space.

It is well known that, as the size of the network grows,
the number of possible plan and deployment combinations
can grow exponentially. The cost of considering all pos-
sibilities exhaustively is prohibitive. Consider Figure 2.
With a network of 64 nodes, combining query plans and
plan deployments simultaneously required us to examine
2.88× 109 plans for a single query over 5 streams. Clearly,
a key technical challenge for effectively combining query
planning and plan deployment is to reduce the search space
in the presence of large networks and a large number of
query operators. We propose to use hierarchical network
partitions as a heuristic, aiming at trading some optimality
for a much smaller search space. In particular, we organize
the network of physical nodes into a virtual hierarchy and
utilize this hierarchy along with “stream advertisements”
to guide query planning and deployment. We develop two
algorithms to facilitate operator reuse through hierarchical
network partitions. In the Top-Down algorithm, the query
starts at the top of the hierarchy, and is recursively planned
by progressively partitioning the query and assigning sub-
queries to progressively smaller portions of the network. In
the Bottom-Up algorithm, the query starts at the bottom
of the hierarchy, and is propagated up the hierarchy, such
that portions of the query are progressively planned and de-
ployed. Our algorithms are implemented over IFLOW [13],
a distributed data stream system. The IFLOW system facil-
itates adaptivity by monitoring network and load conditions
and re-triggering our optimization algorithms when condi-
tions dictate redeployment of the query.

We present analysis and experiments that show the sub-
optimality of our algorithms is bounded. At the same time,
our algorithms can reduce the search space by orders of
magnitude compared to an exhaustive search, even using
dynamic programming. For example, experimentally, the
Top-Down algorithm was able to achieve, on average, solu-

Node available for
processing

Source Sink

FLIGHTS

Sink4

Sink3

Sink5

N2

N3

Sink1

Sink2

CHECK-INS

N1

N5

N4

WEATHER

Figure 3. An example network N

tions that were sub-optimal by only 10% while considering
less than 1% of the search space.

The remainder of this paper is organized as follows. In
Section 2 we present our algorithms and rigorously analyze
their effectiveness. An experimental evaluation of the pro-
posed solutions is presented in Section 3. We discuss related
work in Section 4 and fi nally conclude in Section 5 with a
discussion of possible future directions. We next present an
application scenario that motivates our research.

1.1 Motivating Application Scenario

Our research is primarily motivated by enterprise-level
data streaming systems such as the Operational Information
System (OIS) [17] employed by our collaborators, Delta Air
Lines. An OIS is a large scale distributed system that pro-
vides continuous support for a company or organization’s
daily operations. The OIS run by Delta Air Lines pro-
vides the company with up-to-date information about all of
their flight operations, including crews, passengers, weather
and baggage. Delta’s OIS combines three different types
of functionality: continuous data capture, for information
like crew dispositions, passengers and flight locations; con-
tinuous status updates, for systems ranging from low-end
devices like overhead displays to PCs used by gate agents
and even large enterprise databases; and responses to client
requests which arrive in the form of queries.

In such a system multiple continuous queries may be
executing simultaneously and hundreds of nodes, distrib-
uted across multiple geographic locations are available for
processing. In order to answer these queries data streams
from multiple sources need to be joined based on the flight
or time attribute, perhaps using something like a symmetric
hash join. We next use a small example network and sam-
ple queries to illustrate the optimizations opportunities that
may be available in such a setup.

Let us assume Delta’s OIS to be operating over the small
network N shown in Figure 3. Let WEATHER, FLIGHTS and
CHECK-INS represent sources of data-streams of the same
name and nodes N1 − N5 be available for in-network
processing. Each line in the diagram represents a physi-

cal network link. Also assume that we can estimate the ex-
pected data-rates of the stream sources and the selectivities
of their various attributes, perhaps gathered from historical
observations of the stream-data or measured by special pur-
pose nodes deployed speci cally to gather data statistics.

Assume that the following query Q1 is to be streamed
to a terminal overhead display Sink4. Q1 displays ight,
weather and check-in information for ights departing in
the next 12 hours.

Q1: SELECT FLIGHTS.STATUS, WEATHER.FORECAST,
CHECK-INS.STATUS
FROM FLIGHTS, WEATHER, CHECK-INS
WHERE FLIGHTS.DEPARTING=‘ATLANTA’
AND FLIGHTS.DESTN = WEATHER.CITY
AND FLIGHTS.NUM = CHECK-INS.FLNUM
AND FLIGHTS.DP-TIME - CURRENT TIME < 12:00:00

1. Network-aware join ordering: Based purely on the
size of intermediate results, we may normally choose
the join order (FLIGHTS��WEATHER)��CHECK-INS. Then
we would deploy the join FLIGHTS��WEATHER at node
N2, and the join with stream CHECK-INS at node
N3. However, node N2 may be overloaded, or the
link FLIGHTS→N2 may be congested. In this case,
the network conditions dictate that a more ef cient
join ordering is (FLIGHTS��CHECK-INS)��WEATHER, with
FLIGHTS��CHECK-INS deployed at N1, and the join with
WEATHER at N3.

Now, consider situations where we may be able to reuse
an already deployed operator. This will reduce network us-
age (since the base data only needs to be streamed once) and
processing (since the join only needs to be computed once).
Imagine that query Q2 has already been deployed:

Q2: SELECT FLIGHTS.STATUS, CHECK-INS.STATUS
FROM FLIGHTS, CHECK-INS
WHERE FLIGHTS.DEPARTING=‘ATLANTA’
AND FLIGHTS.NUM = CHECK-INS.FLNUM
AND FLIGHTS.DP-TIME - CURRENT TIME < 12:00:00

with the join FLIGHTS��CHECK-INS deployed at N1. Assume
that the sink for the query Q2 is located at node Sink3.

2. Operator Reuse: Although the optimal operator or-
dering in terms of the size of intermediate results
for query Q1 may be (FLIGHTS��WEATHER)��CHECK-

INS, in order to reuse the already deployed operator
FLIGHTS��CHECK-INS, we must pick the alternate join
ordering (FLIGHTS��CHECK-INS)��WEATHER. Note that,
reuse may require additional columns to be projected.
In contrast, if the sinks for the two queries are far apart
(say, at opposite ends of the network), we may decide
not to reuse Q2’s join; instead, we would duplicate
the FLIGHTS��CHECK-INS operator at different network
nodes, or use a different join-ordering. Thus, having
knowledge of already deployed queries in uences our
query planning.

These examples show that the network conditions and
already deployed operators must often be considered when
choosing a query plan and deployment in order to achieve
the highest performance. Besides enterprise systems, tech-
niques for optimization of stream queries are critical to a va-
riety of applications ranging from network monitoring [14]
to scienti c collaborations [2].

2. Query Optimization Algorithms

Our algorithms are implemented within the IFLOW sys-
tem [13], a toolkit that supports distributed deployment of
continuous queries over data streams. In this paper we
focus on the optimization algorithms implemented specif-
ically for SQL-like queries in the IFLOW system. Self-
adaptivity is incorporated into the system through the Mid-
dleware Layer [13] which re-triggers the query optimization
algorithm when the changes in network, load or data condi-
tions demand recomputing of query plans and deployments.

Our focus is on optimizing ‘select-project-join’ queries.
We leave queries involving aggregations and unions to fu-
ture work. We assumed stream joins are performed using
standard techniques (e.g. doubly-pipelined operators and
windows if necessary). Our goal is to nd a combination
of a query plan (e.g. join order) and deployment (e.g. as-
signment of query operators to physical nodes) in order to
optimize some application-provided performance function.
This function might be a low level function, like response
time or communication cost, or some more complex utility
function. Our calculation of the performance metric takes
into account the estimated selectivities of the query opera-
tors, measured online or using gathered statistics over the
stream sources.

In order to choose an optimal execution plan, traditional
query optimizers typically perform an exhaustive search of
the solution space using dynamic programming, estimat-
ing the cost of each plan using pre-computed statistics.
Lemma 1 shows the size of the exhaustive search space for
the query optimization problem in distributed data stream
systems. Note that, a solution refers to any feasible query
plan and deployment combination.

Lemma 1. Let Q be a query over K (> 1) sources to be
deployed on a network with N nodes. Then the size of the
solution space of an exhaustive search is given by:

Oexhaustive =
K(K − 1)(K + 1)

6
× (N)(K−1)

Sketch. The equation is arrived at by enumerating all pos-
sible join orders (including bushy joins) multiplied with the
number of possible placements.

Due to space restrictions the full proof of this and other
theorems in this paper are presented in [20].

Level 3

Level 2

Level 1

Cluster Boundaries

Coordinator Links

Figure 4. Hierarchical network clusters

As shown in the Lemma 1, the search space increases ex-
ponentially with an increase in the query size. Certainly, in
a system with thousands of nodes such an exhaustive search
even with dynamic programming (DP) would be infeasible.
We now present our optimization infrastructure and heuris-
tics for nding good plans and deployments while avoid-
ing the cost of exhaustive search. Note that in the case of
distributed query optimization, DP does not result in any
pruning of the search space without loss of optimality since
the query optimization problem in distributed data stream
systems does not exhibit the property of optimal substruc-
ture [12].

2.1 Optimization infrastructure

In this section we describe the key components of our op-
timization infrastructure - hierarchical network partitions
that guide our planning heuristics and stream advertise-
ments that facilitate operator reuse.

We can tune the hierarchy to trade off between search
space size and sub-optimality by adjusting the maxcs para-
meter, which is the maximum number of nodes allowed per
network partition. This tradeoff is complex, and is analyzed
in detail in our discussion of the Top-Down (Section 2.2)
and Bottom-Up (Section 2.3) algorithms.

2.1.1 Hierarchical Network Clusters

We organize physical network nodes into a virtual cluster-
ing hierarchy, by clustering nodes based on our optimiza-
tion criteria. For example, if the metric is response-time,
we cluster based on inter-node delays. If the metric is com-
munication costs, we cluster based on link costs which rep-
resents the cost of transmitting a unit amount of data across
the link. We refer to this clustering parameter as inter-
node/cluster traversal cost. Nodes that are close to each
other in the sense of this clustering parameter are allocated
to the same cluster. We allow no more than maxcs nodes
per cluster.

Clusters are formed into a hierarchy. At the lowest level,
i.e. Level 1, the physical nodes are organized into clusters of
maxcs or fewer nodes. Each node within a cluster is aware
of the inter-node traversal cost between every pair of nodes
in the cluster. A single node from each cluster is then se-
lected as the coordinator node for that cluster and promoted
to the next level, Level 2. Nodes in Level 2 are again clus-
tered according to average inter-node traversal cost, with
the cluster size again limited by maxcs. This process of
clustering and coordinator selection continues until Level N
where we have just a single cluster. An example hierarchy is
shown in Figure 4. As a result of our clustering approach we
can determine the upper bounds on the cost approximation
at each level, which is described in the following theorem.

Theorem 1. Let di be the maximum intra-cluster traversal
cost at level i in the network hierarchy and cact(vnj , vnk)
be the actual traversal cost between the network nodes vnj

and vnk. Then the estimated cost between network nodes
vnj and vnk at any level l, represented as cl

est(vnj , vnk),
is related to the actual cost as follows: cact(vnj , vnk) ≤
cl
est(vnj , vnk) +

∑i<l
i=1 2di

Sketch. At a particular level l the cost of traversal between
nodes vnj and vnk is given by the inter-node traversal cost
between the nodes representing them at that level. However,
each node will be resolved to some node in the underlying
cluster at level l − 1. Inter-node traversal costs at this level
are bounded by the value dl−1. Thus the inter-node traver-
sal costs between nodes vnj and vnk at level l − 1 is given
by cl−1

est (vnj , vnk) ≤ cl
est(vnj , vnk) + 2dl−1. This process

continues down the hierarchy. At level 1, the estimated cost
is the same as the actual traversal cost. Therefore the esti-
mated traversal cost at level l is at most

∑i<l
i=1 2di less than

the actual cost.

The hierarchical organization is created and maintained
using the following algorithm. When a node joins the in-
frastructure, it contacts an existing node that forwards the
join request to its coordinator. The request is propagated up
the hierarchy and the top level coordinator assigns it to the
top level node that is closest to the new node. This top level
node passes the request down to its child that is closest to
the new node. This child repeats the process, which contin-
ues until the node is assigned to a bottom level cluster. Note
that similar organization strategies appear in other domains
such as hierarchies for internet routing [16], for data aggre-
gation in sensor networks [7] and other related applications.
However, to the best of our knowledge we are the fi rst to use
such hierarchical approximations and clustering techniques
for distributed continual query optimization.

The virtual hierarchy is robust enough to adapt as nec-
essary. It can handle both node joins and departures at run-
time. Failure of coordinator and operator nodes can be han-
dled by maintaining active back-ups of those nodes within

each cluster. However, the issue of fault tolerance is beyond
the scope of this paper. Note that, given a network, multiple
virtual clustering hierarchies can be created simultaneously
with different values of the maxcs parameter.

2.1.2 Stream Advertisements

Stream Advertisements are used by nodes in the network to
advertise the stream sources available at that node. A node
may advertise two kinds of stream sources - base stream
sources and derived stream sources. We observe that each
sink and deployed operator is a new stream source for the
data computed by its underlying query or sub-query. We re-
fer to these stream sources as derived stream sources and the
original stream sources as base stream sources. As a result
of the advertisement of derived stream sources, nodes are
now aware of operators that are readily available at multiple
locations in the network and can be reused with no addi-
tional cost involved for transporting input data. The stream
advertisements are aggregated by the coordinator nodes and
propagated up the hierarchy. Thus the coordinator node at
each level is aware of all the stream sources available in
its underlying cluster. Advertisements of derived stream
sources are key to operator reuse in our algorithms. The ad-
vertisements are one-time messages exchanged only at the
initial time of operator instantiation and deployment.

2.2 The Top-Down Algorithm

The Top-Down algorithm bounds sub-optimality by
making deployment decisions using bounded approxima-
tions of the underlying network; specifi cally, each coordi-
nator’s estimate of the distance between its cluster and other
clusters. The algorithm works as follows: The query Q is
submitted as input to the top level (say level t) coordinator.
The coordinator exhaustively constructs the possible query
trees for the query, and then for each such tree constructs a
set of all possible node assignments within its current clus-
ter. The cost for each assignment is calculated and the as-
signment with least cost is chosen. An assignment of oper-
ators to nodes partitions the query into a number of views,
each allocated to a single node at level t. Each node is then
responsible for instantiating such a view using sources (base
or derived) available within its underlying cluster. The al-
located views act as the queries that are again deployed in a
similar manner at level t − 1, with all possible assignments
within the cluster being evaluated exhaustively and the one
with the least cost being chosen. This process continues un-
til level 1, which is the level at which all the physical nodes
reside, and operators are assigned to actual physical nodes.

Since each level has fewer nodes and operators are pro-
gressively partitioned and assigned to different cluster coor-
dinators, the search space is still much smaller compared to
a global exhaustive search (even using DP).

Whenever a coordinator is exhaustively mapping a por-
tion of the query, it considers both base and derived streams
available locally. Thus, operator reuse is automatically con-
sidered in the planning process. In particular, if the coordi-
nator calculates that reuse would result in the best plan, de-
rived streams are used; otherwise, operators are duplicated.

The Top-Down algorithm can be easily extended to per-
form multi-query optimization by constructing a consoli-
dated query at the top-most level of the hierarchy and then
applying the algorithm to this consolidated query.

2.2.1 Bounding Search Space

In a network of N nodes that is organized into a clustering
hierarchy, for a query Q over K (> 1) sources the search
space depends on the clustering parameter maxcs and the
resulting height h(≈logmaxcsN) of the hierarchy. We de-
fi ne the following:

β = h(
maxcs

N
)K−1 (1)

In Theorem 2 we prove that β represents the upper bound
on the ratio of the search space of the Top-Down algo-
rithm to that of the exhaustive search. Note that as the
ratio maxcs

N decreases linearly, β decreases exponentially.
When maxcs << N , β is orders of magnitude less than 1
and thus, the Top-Down algorithm is orders of magnitude
cheaper than exhaustive search. For example, for a query
over 4 streams on a network with 1000 nodes, with a maxcs

value of 100, β ≈ 0.0015.

Theorem 2. Let Q be a query over K (> 1) sources to be
deployed on a network with N nodes. Let the clustering
parameter used to organize the network into a hierarchical
cluster be maxcs and let the height of such a hierarchical
cluster be h. If Otop−down represents the size of the solution
space for the top-down algorithm, then

Otop−down ≤ βOexhaustive

Sketch. Assuming that αi sources are considered at each
level i of the hierarchy, we enumerate the total number of
possible join orders, including bushy joins. The worst case
search space of the Top-Down algorithm results when all
query tree nodes (sources, operators and sink) appear in the
same cluster. The proof then follows from Lemma 1.

2.2.2 Sub-Optimality in the Top-Down Algorithm

The Top-Down algorithm works by propagating a query
down the network hierarchy, described in Section 2.1.1.
Given a query Q, at each level a coordinator chooses a query
plan and a deployment with the least cost for the sub-query
assigned to it. As the network approximations increase at
higher levels of the hierarchy (refer Theorem 1), it follows

that the maximum approximation is incurred at the top most
level of the hierarchy. Therefore the Top-Down algorithm
is most sub-optimal when all the edges of the query plan
are deployed at the top-most level. The following theorem
establishes the relationship between sub-optimality of com-
puted deployments and the hierarchical structure’s proper-
ties - the number of levels and the cluster density.

Theorem 3. A query Q deployed using the Top-
Down algorithm over a network N is no more than∑

ek∈EQ(
∑i<h

i=1 2di)× sk sub-optimal compared to the op-
timal deployment of query Q over the same network N ,
where h is the number of levels in the network hierarchy
of N , EQ represents the set of edges of the tree chosen for
query Q, di is the maximum intra-cluster traversal cost at
level i and sk is the stream rate for the kth edge ek.

Sketch. The maximum sub-optimality of the Top-Down al-
gorithm occurs only when all the edges of the tree chosen
for Q are mapped at the top-most level, i.e. no two nodes
(operators or sources or sinks) lie in the same underlying
cluster. The proof then follows from Theorem 1.

2.3 The Bottom-Up Algorithm

We now describe the Bottom-Up algorithm which prop-
agates queries up the hierarchy, progressively constructing
complete query execution plans. Unlike the Top-Down ap-
proach, the Bottom-Up algorithm does not provide a good
bound on the sub-optimality of the solution. However, in
return, the Bottom-Up approach is usually able to further
reduce the search space compared to the Top-Down algo-
rithm. Thus, in situations where quick planning is needed,
the Bottom-Up algorithm may be appropriate, perhaps to be
replaced later with a Top-Down deployment.

Queries are registered at their sink. When a new query
Q over base stream sources arrives at a sink at Level 1, the
sink informs its coordinator at Level 2. The coordinator
rewrites the query Q as Q′ with respect to two views - VQ

local

and VQ
remote where VQ

local is composed of base and derived
sources available locally within the cluster and VQ

remote is
composed of base sources not available locally. The coor-
dinator deploys VQ

local within the current cluster, and then
advertises VQ

local as a derived stream at the next level. The
above rewriting causes any joins between local streams to
be deployed within the current cluster, leaving the joins of
local streams with remote streams or joins between remote
streams to be deployed further up in the hierarchy. The co-
ordinator then requests Q′ from its next level coordinator.

This process continues up the hierarchy, with the query
Q′ progressively decomposed into locally available views
and remote views and the re-written query being requested
from the current cluster’s coordinator. The coordinator per-
forms an exhaustive search, only within its underlying clus-

ter, to determine an optimal execution plan for VQ
local. The

search space is limited to a single network partition and the
local sub-query.

Operator reuse is taken into consideration by coordina-
tors by taking into account all possible constructions of
VQ

local that utilize derived sources within the cluster. When
using a derived stream source, communication costs for
transporting input data to the node that is the source of the
derived stream, and processing costs for computing the re-
sult of the operator are incurred only once. Note that if it
is cheaper to duplicate operators rather than reuse existing
ones, the coordinator will do so.

The Bottom-Up algorithm can also be extended to per-
form multi-query optimization. When a coordinator re-
ceives multiple requests from different sinks in its under-
lying cluster, it composes consolidated queries. The coordi-
nator, thereafter applies the Bottom-Up algorithm to these
consolidated queries.

2.3.1 Bounding Search Space

Recall our defi nition ofβ in Section 2.2.1. We now show in
Theorem 4 that β also represents the the upper bound on the
ratio of the search space of the Bottom-Up algorithm to that
of the exhaustive search. Although the worst case bounds
are the same for the two algorithms, in Section 3 we show
experimentally that the Bottom-Up algorithm examines a
smaller search space in the average case. As before, when
maxcs << N , β is orders of magnitude less than 1. Thus,
the search space of the Bottom-Up algorithm is orders of
magnitude less than the exhaustive search space.

Theorem 4. Let Obottom−up represent the size of the solu-
tion space for the bottom-up algorithm. Then,

Obottom−up ≤ βOexhaustive

Sketch. As in the case of Theorem 2 we compute this search
space by considering all possible query trees and all possi-
ble placements of operators within a single cluster at each
level. The proof then follows from Lemma 1.

2.3.2 Sub-Optimality in the Bottom-Up Algorithm

The Bottom-Up algorithm partitions queries into locally
and remotely available views as the result of which all local
sources are now represented as a single source deployed at
the coordinator. This results in a pruning of the plan search
space since only join orderings between streams available
within a single cluster are considered. While the Bottom-
Up algorithm can fi nd optimal join orderings among local
sources, the resulting overall execution plan may be sub-
optimal. As an example, consider a high volume stream
Sr that is in a remote cluster, and which we want to join
with two low volume, local streams S1 and S2. An overall

optimal plan might be to perform a selective join between
Sr and S1 in the remote cluster, and then stream the re-
sulting (low-volume) intermediate results to the local clus-
ter for joining with S2. The Bottom-Up algorithm will not
consider this plan. However, note that the Bottom-Up al-
gorithm may instead stream the results of S1 �� S2 to the
remote cluster for joining with Sr.

In the worst case the resulting deployment may be arbi-
trarily bad making it impossible to bound the sub-optimality
of the algorithm. However, note that the situations under
which this algorithm performs badly can be well charac-
terized: it performs badly when streams available remotely
have signifi cantly higher data rates than those available
close to the sink. Therefore, it is possible to identify these
scenarios a priori through static analysis of stream rates and
selectivities and use the Top-Down algorithm in those cases.

We show in [20], that the sub-optimality of the plan cho-
sen by Bottom-Up is bounded with respect to the most opti-
mal deployment of the same join-ordering. This proves that
Bottom-Up can offer better bounds than a random place-
ment of the same query tree. Thus, Bottom-Up is ideal in
situations where the network placement of operators is a
more dominant factor than join-ordering and when quick
deployments are needed, for possibly short-lived queries.

3. Experiments

We present both simulation based experiments and ex-
periments conducted on Emulab [1] using IFLOW [13]. We
show that in the average case Top-Down is only 10% sub-
optimal, while Bottom-Up is 34% sub-optimal. However,
the deployment time of the Bottom-Up is 70% less than that
of the Top-Down.

Our simulation experiments were conducted over transit-
stub topology networks generated using the standard tool,
the GT-ITM internetwork topology generator [24]. Most
experiments were conducted using a 128 node network,
with a standard Internet-style topology: 1 transit (e.g.
“backbone”) domain of 4 nodes, and 4 “stub” domains
(each of 8 nodes) connected to each transit domain node.
Link costs (per byte transferred) were assigned such that
the links in the stub domains had lower costs than those in
the transit domain, corresponding to transmission within an
intranet being far cheaper than long-haul links. The cost of
a deployment is the total data transferred along each link
times the link cost.

We used a synthetic workload so that we could experi-
ment with a large variety of stream rates, query complex-
ities, and operator selectivities. Our workload was gener-
ated using a uniformly random workload generator. The
workload generator generated stream rates, selectivities and
source placements for a specifi ed number of streams ac-
cording to a uniform distribution. It also generated queries

with the number of joins per query varying within a spec-
ifi ed range (2-5 joins per query) with random sink place-
ments. In our experiments we use a cost formulation that
tries to minimize the communication cost incurred per unit
time by the deployed query plan. Therefore, as described in
Section 2.1.1 our network is organized into a virtual cluster-
ing hierarchy based on link costs which represent the cost of
transmitting a unit amount of data across the link. We used
the K-Means [11] algorithm in order to create the clustering
hierarchy.

3.1 Tuning Cluster Size: Sub-Optimality
- Search Space Tradeoff

In this section we demonstrate how the maxcs parameter
can be used to tune the tradeoff between the sub-optimality
of the heuristic and minimizing the search space. The exper-
iments were conducted on the 128 node topology described
in Section 3, with 10 source streams. We averaged our re-
sults over 10 workloads generated using our random work-
load generator, each with a different set of placements for
sources and sinks. Each workload consisted of 200 queries
with 2-5 joins per query. Due to space constraints, addi-
tional experiments that study the variation of search space
with maxcs are presented in [20].

Figure 5 shows the cumulative deployed cost per unit
time of queries deployed incrementally using the Bottom-
Up algorithm for different values of the maxcs parameter.
It can be noticed that cost decreases as the maxcs value
is increased. For example, a maxcs value of 64 results in a
21% decrease in cost compared to a maxcs value of 8. With
smaller cluster sizes, the number of levels in the hierarchy
increases. As a result, more deployments are computed at
higher levels resulting in greater approximations. To sum-
marize, in terms of sub-optimality, fewer levels and more
nodes per level is best. In terms of search space, fewer
nodes per level is best. A useful guideline for choosing
maxcs for the Bottom-Up algorithm is:

• Choose the largest value of maxcs that results in a
search space (using Theorem 4) that is acceptable.

Next, Figure 6 shows the effect of the cluster size para-
meter maxcs on the cost in the Top-Down algorithm. Note
that large values of maxcs (> 4) result in deployed costs
that are close to each other. The Top-Down algorithm con-
siders all possible operator orderings at the top-most level
(regardless of maxcs). This results in a good and mostly
‘similar’ choice of operator ordering for a range of maxcs

values. However, if maxcs is too small, there are many lev-
els in the hierarchy and each level adds more inaccuracy to
the approximation. Therefore, the algorithm makes poorer
planning decisions. To limit sub-optimality, we need a rea-
sonably large maxcs. To bound search space, we need a
small maxcs. Hence, a useful guideline for the Top-Down

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 20 40 60 80 100 120 140 160 180 200

To
ta

l c
os

t p
er

 u
ni

t t
im

e
(in

 th
ou

sa
nd

s)

Number of queries

cluster size=2
cluster size=4
cluster size=8

cluster size=16
cluster size=32
cluster size=64

Figure 5. Bottom-Up: Cost

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 20 40 60 80 100 120 140 160 180 200

To
ta

l c
os

t p
er

 u
ni

t t
im

e
(in

 th
ou

sa
nd

s)

Number of queries

cluster size=2
cluster size=4
cluster size=8

cluster size=16
cluster size=32
cluster size=64

Figure 6. Top-Down: Cost

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 20 40 60 80 100 120 140 160 180 200

To
ta

l c
os

t p
er

 u
ni

t t
im

e
(in

 th
ou

sa
nd

s)

Number of queries

Top-Down without reuse
Top-Down with reuse
Bottom-Up without reuse
Bottom-Up with reuse
Optimal

Figure 7. Sub-optimality

algorithm is:

• Choose the smallest value of maxcs that is large enough
so that the height of the hierarchy results in reasonable
sub-optimality (based on Theorem 3).

3.2 Sub-optimality and Effect of Reuse

We now examine the effect of operator reuse in our al-
gorithms. Figure 7 shows the cumulative cost of the op-
timal deployment computed using dynamic programming
(DP) and the two algorithms both with and without op-
erator reuse. The maxcs parameter was set to 32. We
chose this value of maxcs based on the above guideline
for the Bottom-Up algorithm; and we used the same value
for the Top-Down to provide an apples-to-apples compar-
ison. Operator reuse was implemented through stream-
advertisements. The communication cost of advertisements
was negligible compared to the data streams themselves.
The fi gure shows that Bottom-Up benefi ts by nearly a
30% decrease in cost per unit time through operator reuse,
while Top-Down achieves cost saving of 27% per unit time
through operator reuse.

Figure 7 also allows us to compare the deployed costs
of the two algorithms with the optimal solution computed
using DP. As can be seen, Top-Down with reuse performs
nearly 19% better than Bottom-Up with reuse. This is be-
cause Bottom-Up may choose a sub-optimal plan since it
does not consider an ordering of all operators at any level,
unlike Top-Down. When compared to the optimal, Bottom-
Up with reuse, performs sub-optimally by 34% and Top-
Down by only 10%. This shows that the sub-optimality of
Top-Down is minimal. The performance of Bottom-Up may
be “good-enough” for short-lived queries which primarily
require fast time-to-deployments.

3.3 Comparison with existing approaches

In this experiment we compare our algorithms with ex-
isting approaches - the Relaxation algorithm [19] and In-
network [4], a network-aware query processing algorithm.
Both [4, 19] are phased deployment approaches that fi rst
plan and then deploy (see Figure 1(a)).

Figure 8 shows the cumulative cost of deployments com-
puted using the Top-Down, Bottom-Up algorithms as com-
pared with the Relaxation and In-network algorithms. The
graph also shows the costs of optimal deployments com-
puted using an exhaustive search. Operator reuse was
taken into consideration for all algorithms. We used a 3-
dimensional cost space [19] for the Relaxation algorithm
and considered a virtual hierarchy with maxcs 32 for the
Top-Down, Bottom-Up algorithms. In order to correspond
with this maxcs value, we divided the network into 5 zones
for the In-network algorithm.

The graph shows that, when compared to the In-network
algorithm, the Top-Down algorithm can provide nearly 40%
additional cost savings per unit time, and the Bottom-Up al-
gorithm, savings of 27%. Also, note that, the search space
of this algorithm was nearly 70% that of the Top-Down al-
gorithm and 200% that of the Bottom-Up algorithm.

When compared to Relaxation, Top-Down reduces cost
by nearly 59% and Bottom-Up by nearly 49%. The search
space of the Relaxation algorithm is not directly compara-
ble with that of the Top-Down and Bottom-Up algorithms,
due to the variable number of iterations that may be per-
formed for each step of the algorithm. In our experiment,
the 3-dimensional cost space was calculated using 4000 it-
erations and we used as many iterations for the Relaxation
algorithm. The running time of the Relaxation algorithm
was comparable to that of the Bottom-Up algorithm.

3.4 Scalability with Network Size

In this experiment we study the scalability of the al-
gorithms with respect to the number of deployments con-
sidered as network size increases. We generated a work-
load of 100 queries using 10 stream sources with each
query performing joins over 4 streams. We measured the
average number of deployments considered over 4 differ-
ent transit-stub topologies of different sizes generated us-
ing GT-ITM. Again, sinks were placed at random nodes in
the network. Figure 9 shows the deployments considered
for a single query with Bottom-Up and Top-Down algo-
rithms with maxcs 32 and exhaustive search. The fi gure
also shows how the average case (experimental) compares

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 20 40 60 80 100 120 140 160 180 200

To
ta

l c
os

t p
er

 u
ni

t t
im

e
(in

 th
ou

sa
nd

s)

Number of queries

Top-Down with reuse
Bottom-Up with reuse
Exhaustive
Relaxation with reuse
’In-Network’ with reuse

Figure 8. Comparison with
other approaches

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

1024512256128

N
um

be
r o

f p
la

ns

Network size

Top-Down
Bottom-Up
Exhaustive

AnalyticalBounds

Figure 9. Scalability with
Network Size

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

432

Ti
m

e
(in

 se
co

nd
s)

Size of query (number of streams)

Bottom-Up (cluster size=4)
Bottom-Up (cluster size=8)
Top-Down (cluster size=4)
Top-Down (cluster size=8)

Figure 10. Query deploy-
ment time

with the worst case (theoretical) analytical bounds. Again,
the value of maxcs was set to 32 to produce the largest fea-
sible search space. (An exhaustive search on a 128 node
network for the deployment of a single query took nearly
3 hours to complete on our system.) Note that the increase
in Oexhaustive is offset by the decrease in β such that the
worst case bounds are nearly identical across the different
networks. Note that the y-axis has a log scale.

The values for exhaustive search were calculated us-
ing Lemma 1 and the analytical bounds using Theorems 2
and 4. Clearly, performing exhaustive searches in such sys-
tems is infeasible. Both the Top-Down and Bottom-Up al-
gorithms decrease the search space by at least 99%. We
also see that the search space per query with Bottom-Up is
nearly 45% less than that of Top-Down. This can be at-
tributed to the early splitting of queries between levels in
the Bottom-Up algorithm resulting in fewer operators be-
ing considered for placement at each level. Meanwhile,
the Top-Down algorithm must consider all operator deploy-
ments at all levels in the hierarchy.

Although the search space of Top-Down and Bottom-Up
algorithms seems to fi rst decrease with network size and
then increase, note that this is only a particular characteris-
tic of our sample networks. For example, clustering using
maxcs 32 resulted in an average Level 1 cluster size of 26
with a 128-node network, and 15 with a 510-node network.
Thus the search space for a 510-node network is less than
that of the 128 node network. Note that the search space,
while being limited by the maxcs parameter, is affected by
the average cluster size too, which depends on the particular
network topology.

3.5 Prototype Experiments

The next set of experiments was conducted on Emulab
using IFLOW [13]. IFLOW supports hierarchies and adver-
tisements as described earlier. The testbed on Emulab con-
sisted of 32 nodes (Intel XEON, 2.8 GHz, 512MB RAM,
RedHat Linux 9), organized into a topology that was again
generated with GT-ITM. Links were 100Mbps and the inter-

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25

To
ta

l c
os

t p
er

 u
ni

t t
im

e
(in

 th
ou

sa
nd

s)

Number of queries

Bottom-Up (cluster size=4)
Bottom-Up (cluster size=8)
Top-Down (cluster size=4)
Top-Down (cluster size=8)

Figure 11. Cumulative deployed cost

node delays were set between 1msec and 6msec. The work-
load for the following experiments consisted of 25 queries
over 8 stream sources and sinks distributed across the sys-
tem. The number of joins per query varied from 1 to 3.

3.5.1 Deployment Time and Cost

The fi rst experiment conducted on Emulab validates our
claim about the stricter search space bounds offered by the
Bottom-Up algorithm. Figure 10 shows the average deploy-
ment time in seconds for different query sizes. We observe
that the deployment times of the Bottom-Up algorithm is
almost 70% less than that of the Top-Down algorithm. This
can be attributed to two factors: (1) the smaller search space
in the Bottom-Up algorithm, and (2) the fact that the Top-
Down algorithm must always traverse the entire depth of
the network hierarchy. We also observe that the deployment
time of the Top-Down algorithm decreases with increasing
maxcs value. With lower maxcs, there are more hierarchy
levels to be traversed, resulting in higher deployment times.

In this experiment, we studied the cost of deployments
with the Bottom-Up and Top-Down algorithms for different
values of maxcs. Figure 11 shows the cumulative cost in-
curred per unit time over 25 queries. We observe that the
Top-Down algorithm offers a lower deployed cost than the
Bottom-Up algorithm. This is in alignment with our simu-
lation results. Since the Top-Down algorithm considers all
operator orderings at the top-most level this algorithm leads
to the selection of a better execution plan.

4. Related Work

Distributed query optimization has received a great deal
of attention from researchers since the 1980s [12]. How-
ever, since our system may consist of thousands of nodes, it
is infeasible to maintain all network information at a single
node or perform exhaustive searches for an optimal deploy-
ment like these systems.

A number of stream processing systems, both central-
ized and distributed, such as STREAM [6], Borealis [3],
TelegraphCQ [8, 5] and NiagaraCQ [9, 22], have been de-
veloped to process queries over continuous streams of data.
Our work is in the context of distributed stream processing
systems. The use of in-network query processing [15, 23] in
such systems to decide operator placement when the query
tree is already known is described in [4, 19]. The network-
aware algorithms in [4] fi rstly perform phased deployments
which we have shown to be sub-optimal. Secondly, they do
not address the important question of how the query should
be divided and assigned to different portions of the network.
Clearly, as seen from our experiments on varying cluster
sizes, this decision can impact the effi ciency of the result-
ing deployments. Also, no analysis is provided on the im-
pact of the number of zones and the placement heuristics on
the computational complexity of the algorithms.

The Relaxation algorithm [19] is a novel heuristic for
operator placements in distributed stream processing sys-
tems. However, the approach does not take into consid-
eration planning and deployment simultaneously resulting
in increased sub-optimality, both due to lost reuse oppor-
tunities and the subsequent approximate placement deci-
sions. Optimal placement of fi lter operators is discussed
in [21]. However, the selection or placement of joins is
not addressed. Note that although our problem bears some
resemblance to the task scheduling problem [10], our al-
gorithms are designed to deal with distribution at a much
larger scale.

5. Conclusion & Future Work

We described the query-optimization problem in distrib-
uted data-stream systems and demonstrated that selection
of an optimal execution plan in such systems must consider
operator ordering, network placement and operator reuse.
We presented a query optimization infrastructure that has
two key components: a virtual hierarchical network struc-
ture and stream advertisements that enable operator reuse.
We described algorithms Top-Down and Bottom-Up that
fi nd effi cient execution plans while examining a very small
search space. Experimental and analytical results showed
that both algorithms offer costs that are comparable to op-
timal while exploring much fewer plans. In on-going work
we are exploring run-time query plan migrations, and other

optimization opportunities achievable through query con-
tainment.

References

[1] Emulab network testbed. http://www.emulab.net/.
[2] Terascale supernova initiative. http://www.phy.

ornl.gov/tsi/,2005.
[3] D. J. Abadi et al. The Design of the Borealis Stream Process-

ing Engine. In CIDR, 2005.
[4] Y. Ahmad and U. Cetintemel. Network-aware query

processing for stream-based applications. In VLDB, 2004.
[5] R. Avnur and J. M. Hellerstein. Eddies: continuously adap-

tive query processing. In SIGMOD, 2000.
[6] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.

Models and issues in data stream systems. In PODS, 2002.
[7] J. Beaver and M. A. Sharaf. Location-aware routing for data

aggregation for sensor networks. In Geo Sensor Networks
Workshop, 2003.

[8] S. Chandrasekaran et al. TELEGRAPHCQ: Continuous
dataflow processing for an uncertain world. In CIDR, 2003.

[9] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NIAGARACQ:
A scalable continuous query system for internet databases.
In SIGMOD, 2000.

[10] R. Chow and T. Johnson. Distributed Operating Systems
and Algorithms. Addison-Wesley Longman, 1997.

[11] A. K. Jain and R. C. Dubes. Algorithms for clustering data.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1988.

[12] D. Kossmann. The state of the art in distributed query
processing. ACM Comput. Surv., 2000.

[13] V. Kumar et al. Implementing diverse messaging mod-
els with self-managing properties using IFLOW. In IEEE
ICAC, 2006.

[14] X. Li et al. Mind: A distributed multi-dimensional indexing
system for network diagnosis. In IEEE Infocom, 2006.

[15] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
TAG: a tiny aggregation service for ad-hoc sensor networks.
In OSDI, 2002.

[16] J. Moy. OSPF version 2, request for comments 2328. 1998.
[17] V. Oleson et al. Operational information systems - an exam-

ple from the airline industry. In WIESS, 2000.
[18] C. Olston, J. Jiang, and J. Widom. Adaptive fi lters for con-

tinuous queries over distributed data streams. In SIGMOD,
2003.

[19] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos,
M. Welsh, and M. Seltzer. Network-aware operator place-
ment for stream-processing systems. In ICDE, 2006.

[20] S. Seshadri et al. Optimizing distributed stream queries
using hierarchical network partitions(extended version).
http://www.cc.gatech.edu/˜sangeeta/SMQ.pdf.

[21] U. Srivastava, K. Munagala, and J. Widom. Operator place-
ment for in-network stream query processing. In PODS,
2005.

[22] S. D. Viglas and J. F. Naughton. Rate-based query optimiza-
tion for streaming information sources. In SIGMOD, 2002.

[23] Y. Yao and J. Gehrke. The cougar approach to in-network
query processing in sensor networks. SIGMOD Rec., 2002.

[24] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee. How to
model an internetwork. In Infocom, 1996.

