
Aggregate Threshold Queries in Sensor Networks

Izchak Sharfman1, Assaf Schuster1, Daniel Keren2

1Technion 2Haifa University
Dept. of Computer Science Dept. of Computer Science

Hafia, Israel Haifa, Israel
{tsachis,assaf}@cs.technion.ac.il dkeren@cs.haifa.ac.il

Abstract

An important class of queries over sensor networks are

network-wide aggregation queries. In this work we study

a class of aggregation queries which we refer to as aggre-

gate threshold queries. The goal of an aggregate threshold

query is to continuously monitor the network and give a no-

tification every time an aggregated value crosses a prede-

termined threshold value. Aggregate threshold queries are

of particular importance in a wireless sensor environment,

since they allow network-wide events to be detected, with a

minimum expenditure of energy. Such network-wide events

might include, for example, the variance in sensor readings

exceeding a certain threshold.

We present an efficient algorithm for implementing ar-

bitrary aggregate threshold queries over sensor networks.

Our algorithm is based on a novel geometric approach by

which an arbitrary aggregate threshold query can be split

into a set of numerical constraints on the readings of the in-

dividual sensors. These constraints are used by the individ-

ual sensors to monitor their readings. The constraints are

constructed so that as long as none of the constraints are

violated, it is guaranteed that the aggregated value has not

crossed the threshold. Experiments we performed on real-

world data indicate that by employing these constraints,

sensors are able to reduce the number of transmissions re-

quired for implementing the query by orders of magnitude,

thus significantly reducing energy consumption.

1 Introduction

Wireless sensor networks are a powerful tool for per-

forming high level monitoring tasks. Sensor networks have

been suggested for a wide variety of applications, includ-

ing military applications (detecting and tracking vehicles

1-4244-0910-1/07/$20.00 c©2007 IEEE.

behind enemy lines), ecological applications (monitoring

an ecological system), civil engineering applications, and

disaster control applications (monitoring the advance of a

hazardous gas cloud).

Many deployments of sensor networks are tiered, i.e., the

network consists of two types of units: many inexpensive

wireless sensing devices, referred to as motes, and fewer,

more powerful control units, referred to as macro-nodes

[6, 10, 17]. Motes are simple wireless units, typically based

on simple 8-bit processors, and are very limited in their pro-

cessing, memory, and energy resources. Macro-nodes, on

the other hand, are more resource rich in terms of process-

ing power, memory, and wireless communications. They

are typically based on more advanced 32-bit processors, en-

abling them to run advanced operating systems. Further-

more, macro-nodes are much less energy constrained.

The network is divided into clusters, each cluster con-

sisting of a group of motes and a single macro-node. The

motes in a cluster are referred to as cluster members, while

the macro-node is referred to as the cluster head. The role

of motes is limited to sensing the environment based on in-

structions received from their cluster head, and reporting

readings to their cluster head. In addition, a mote may

be involved in the multi-hop routing of data from another

mote in the cluster to the cluster head. Macro-nodes are

responsible for performing the application level functional-

ity of the monitoring task at hand. Macro-nodes use their

superior communications capabilities to implement a net-

work wide communications backbone. Routing between

macro-nodes is performed solely by the macro-nodes, i.e.,

the motes do not participate in message passing between the

macro-nodes.

This tiered architecture has several advantages. First, re-

cent work indicates that this tiered model has advantages

in terms of performance over single tiered architectures

[3, 8, 16, 18]. In addition, since application logic is run on

stronger devices that support more advanced development

tools and operating systems, the tiered model significantly

shortens development and deployment cycles [3]. Finally,

since most of the units are inexpensive motes (usually the

number of motes is one or two orders of magnitude greater

than the number of macro-nodes), deploying a tiered net-

work remains relatively inexpensive.

Typically, the purpose of a sensor network is to provide

global insights regarding the state of the monitored environ-

ment, as opposed to providing a set of raw data readings. An

important method for obtaining global insights is calculat-

ing global aggregates over the sensors: for example a sensor

network monitoring an ecological system may be queried in

order to determine the average temperature in the monitored

environment. Aggregates also play an important role in the

maintenance of the sensor network itself. For example, the

network may be queried in order to determine the average

residual energy level of a mote in the network.

In recent years several schemes have been proposed for

aggregating data in a sensor network [5, 9]. While these

schemes enable the efficient computation of aggregates,

they are “one-shot” schemes, i.e., the aggregate is calcu-

lated using the data held by the sensors at a specific point

in time. The algorithm proposed in [19] allows continuous

queries over sensor networks, i.e., the algorithm constantly

updates the calculated aggregate to reflect the aggregate of

the current values held by the sensors, while minimizing the

amount of data transmitted by the sensors. While continu-

ously providing an updated global aggregate can be useful

in some cases, in other cases we may require the network

only to report alert conditions, characterized by a global ag-

gregate crossing a threshold value. We refer to this type of

continuous query as an aggregate threshold query.

Consider, for example, a tiered sensor network, deployed

in a large server room or conference room, where each mote

is equipped with a temperature meter. The purpose of the

sensor network is to monitor the temperature in the room

and control the air conditioning system to maintain constant

and uniform temperature. In order to regulate the amount of

cold air produced by the air conditioning system, we would

like the sensor network to alert us when the average tem-

perature in the room exceeds a maximum value or drops be-

low a minimum value. We also would like to eliminate any

“hot spots” that may be caused by a rack of active servers

in a server room or an intensely lit stage in a conference

room. In order to ensure uniform temperature throughout

the room, we would like the sensor network to alert us when

the variance in the temperature readings exceeds a certain

threshold value. Upon receiving a variance alert, the sys-

tem will gather detailed readings from the sensors and re-

distribute the flow of air from the system to eliminate these

“hot spots”.

Note that detecting a high variance in the temperature is

much more difficult than detecting a high average temper-

ature. When the average temperature reading taken by the

motes exceeds a certain threshold, the temperature reading

taken by at least one of the motes in the room is necessarily

above the threshold, therefore a high average temperature

always has a local indication. On the other hand, a high

variance in the temperature may not have a local indication.

Consider, for example, a network comprising of 5 evenly

sized clusters. The cluster head of the ith cluster can com-

municate with the cluster head of clusters i−1 and i+1. Say

that all the motes in a given cluster read the same temper-

ature, but the temperature read by motes in the first cluster

is 20 degrees, and the temperature read by motes in the fifth

cluster is 24 degrees. Furthermore, say that the difference in

the readings of two adjacent clusters is 1 degree. Say we are

interested in detecting when the variance in the temperature

readings exceeds 1.8 deg2. The variance inside each cluster

is 0 (all the motes read the same temperature). The variance

in the temperature read by motes in three consecutive clus-

ters is 2
3 deg2. But the variance in the temperature in the

entire network is 2 deg2. This example demonstrates that

in some cases, a variance in the readings of motes may not

have a local indication, or in other words, detecting that the

variance in the readings of motes exceeds a given threshold

may require collecting data from the entire network.

More formally, a continuous aggregate threshold query

can is defined as follows: we assume that every mote takes

a set of measurements represented as a vector of real values.

Let the aggregation function be an arbitrary function taking

a measurement vector and returning a real value. We are in-

terested in determining at any given time whether the value

of the aggregation function on the average of the measure-

ment vectors taken by the individual motes has crossed a

predetermined threshold.

In many cases determining whether an aggregate has

crossed a threshold does not require knowing the exact

value of the aggregate, therefore, providing an alert when an

aggregate (the average or variance in temperature in the ex-

ample given above) crosses a threshold should require less

communication than continuously providing an estimate of

the aggregate. Current solutions for monitoring aggregates

in sensor networks do not exploit this fact in order to reduce

communication for thresholded aggregate queries.

The main contribution of this paper is a communication

efficient algorithm (and therefore it is also a power efficient

algorithm) for performing aggregate threshold queries. The

algorithm is based on a method for decomposing the query

into a set of constraints on the values held by each mote.

As long as none of these constraints has been violated, no

communication is required.

2 Related Work

Aggregation queries over sensor networks have received

considerable attention in recent years [2, 4, 5, 7, 8, 9, 11, 12,

15, 19]. Madden et al. [9] propose a tree based algorithm for

performing aggregation queries. The algorithm consists of

two phases: in the first phase, the query is propagated down

a spanning tree which is constructed over the network. Once

the query has reached the leaves of the spanning tree, they

send their readings to their parents. Once a sensor has re-

ceived readings from all its children, it aggregates its local

reading with the ones sent by its children, and sends the ag-

gregated value to its parent. Greenwald et al. [4] present an

algorithm for calculating quantiles where in a network with

n sensors, each sensor transmits O(log3 n) bits. Shrivastava

et al. [15] present an algorithm for approximating quantiles

over sensor networks where each sensor transmits a fixed

number of bits. Tree-based algorithms are “one-shot”, i.e.

calculate an aggregate on a “snapshot” of the data.

An alternative to the tree approach is the multi-path ap-

proach [2, 12]. In the multi-path approach, the sensors are

partitioned into a set of rings. The ith ring consists of all the

sensors that are i hops from the base station. Aggregation

is performed from the most distant ring, towards the base

station. In contrast to the tree approach where each sensor

sends its intermediate aggregate to a designated parent sen-

sor, in multi-path approach each sensor broadcasts its inter-

mediate aggregate, which is processed by all the sensors in

the subsequent ring that have received the broadcast. Inter-

mediate aggregates are represented by special sketch struc-

tures, that are resilient to double counting of values that may

occur due to an intermediate aggregate being processed by

multiple sensors in the subsequent ring. The advantage of

the multi-path approach is that it is more resilient to packet

loss, but on the other hand, since the aggregation is per-

formed on sketches of the values rather than on the values

themselves, the multi-path approach provides approximated

aggregates, whereas tree-based approaches can provide ac-

curate aggregates in case data delivery is reliable.

Manjhi et al. [11] proposed an algorithm that combines

the advantages of both approaches. The algorithm uses the

tree-based approach for aggregating data from sensors that

are far from the base station, a multi-path approach for ag-

gregating data from sensors that are close to the base station,

and dynamically determines where to switch from the tree-

based approach to the multi-path approach according to net-

work conditions. As tree-based algorithms, multi-path algo-

rithms are “one-shot” algorithms, whereas our algorithm is

specifically designed to handle continuous queries.

Zhao et al. [19] present an algorithm for continuously

evaluating simple aggregated values, such as sums, counts

and averages, over a sensor network. Our work also deals

with continuous queries, but it differs from their work in

two respects. First, the algorithm presented in [19] continu-

ously provides an estimate of the aggregated value, whereas

our algorithm handles thresholded aggregate queries. Sec-

ond, while the work in [19] focuses on simple aggregates,

our algorithm supports aggregates that can be expressed by

arbitrary functions.

Our algorithm is designed for a tiered sensor network.

While most algorithms for sensor network consider a single

tier network (i.e. all the sensors in the network are iden-

tical), in practice most real world deployments of sensor

networks are tiered. Examples include [6, 10, 17]. Previous

studies of tiered sensor networks include [16, 3, 8, 14, 18].

Finally, algorithms for monitoring arbitrary threshold

functions over distributed streams have been presented in

[13]. [13] presents two monitoring algorithms, for two dif-

ferent computational environments. The first algorithm, re-

ferred to as the decentralized algorithm, assumes that all

nodes share a broadcast domain, i.e. any message sent by

one of the nodes is received by all other nodes. The second

algorithm, referred to as the coordinator based algorithm,

designates one of the nodes as a coordinator, and assumes

that all the nodes communicate solely with the coordinator.

Both algorithms are based on a geometric interpretation of

the monitoring problem.

Neither of the algorithms presented in [13] are suitable

for sensor networks, since implementing the primitives they

assume in a sensor network (either a single broadcast do-

main or global communications with a single node) is very

costly in terms of energy expenditure. This work adopts

the geometric interpretation presented in [13], but proposes

an algorithm that is able to resolve conflicts locally, and is

therefore sensitive to energy expenditure constraints.

3 Computational Model

We denote the number of clusters in the network by n.

We denote the number of motes in the ith cluster by Ni,

and the total number of motes in the network by Ntot. We

denote the motes in the ith cluster by si,1, si,2, ..., si,Ni
, and

the cluster head of the ith cluster by mi. We assume that all

the motes in a cluster (or at least the majority of them) have

a direct radio link with the cluster head, and that all radio

links are full duplex. The motes in a cluster only interact

with their cluster head.

Apart from interacting with the motes in their cluster,

cluster heads also communicate with the cluster heads of

neighboring clusters. The links between the cluster heads

are modeled by an undirected connectivity graph, where

each cluster is represented by a vertex, and an edge connects

every two vertices that represent neighbouring clusters. We

assume that a spanning tree has been constructed over the

connectivity graph, as in [9, 19]. We assume that a query

is injected into the network from one of the cluster heads,

referred to as the gateway node, and denoted by m1.

A continuous aggregate threshold query is formally de-

fined as follows: each mote si,j holds a d-dimensional vec-

tor of measurements, which is referred to as the measure-

ment vector and is denoted by ~vi,j = (v
(1)
i,j , v

(2)
i,j , ..., v

(d)
i,j)T .

Let the global measurement vector, denoted by ~v =
(v(1), v(2), ..., v(d))T , be the average of the measurement

vectors held by all the motes in the network:

~v =
1

Ntot

n
∑

i=1

Ni
∑

j=1

~vi,j

Let a function f : R
d → R, called the aggregation

function, be an arbitrary function from the space of the d-

dimensional real vectors to the reals. Let r be a predeter-

mined threshold. A continuous aggregate threshold query

requires that any sensor will be able to determine at any

given time whether or not f(~v) > r.

As an example, the average temperature alert described

in Section 1 can be trivially formulated as an aggregate

threshold query: the measurement vector held by each mote

is a scalar, holding the temperature reading at the mote, and

the aggregation function is the identity function, f(x) = x.

The temperature variance alert can be formulated as an ag-

gregate threshold query, as follows: let X denote a ran-

dom variable representing a set consisting of the temper-

ature reading of the individual motes. Let xi,j denote the

temperature reading at the mote si.,j . Each mote holds the

following measurement vector:

~vi,j =

(

xi,j

(xi,j)
2

)

Note that

~v =
1

Ntot

n
∑

i=1

Ni
∑

j=1

(

xi,j

(xi,j)
2

)

=

(

E[X]
E[X2]

)

Therefore, the variance of the temperature readings can

be calculated using the following aggregation function:

f(~v) = v(2) − (v(1))2 = E[X2]− E[X]2 = V ar(X)

4 A Network with a Single Cluster

In this section we describe an algorithm implementing

aggregate threshold queries in a network consisting of a sin-

gle cluster. In Section 5 we extend this algorithm to handle

networks consisting of multiple clusters. Recall from Sec-

tion 3 that each mote si holds a measurement vector de-

noted by ~vi (since in this section we limit our discussion to

a network consisting of a single cluster, we omit the first

index, i.e., the cluster index, from mote and measurement

references).

From time to time, as dictated by the algorithm, the clus-

ter head collects the current measurements vectors from all

the motes, calculates their average, and reports the average

vector to all the motes. This action is referred to as synchro-

nizing the motes.

The average vector calculated by the cluster head during

the last synchronization event is called the estimate vector,

and is denoted by ~e. Each mote remembers the measure-

ment vector collected from it by the cluster head during the

last synchronization event. The measurement taken from

the mote si during the last synchronization event is referred

to as the reference vector, and is denoted by ~vi
′. According

to these definitions:

~e =
1

N

∑N

i=1
~vi

′

Finally, each mote maintains two additional variables.

The first variable is called the slack vector, and is de-

noted by ~δi. The algorithm will guarantee that at any given

time the sum of the slack vectors held by the motes is 0

(
n
∑

i=1

~δi = 0). In particular, after a synchronization event,

each mote sets its slack vector to 0. The second variable

maintained by each mote is called the drift vector, denoted

by ui. The drift vector is calculated as follows:

~ui = ~e + ~vi − ~vi
′ + ~δi (1)

It is easy to show that at any given time, the average of

the drift vectors held by the motes is equal to the global

measurement vector. Furthermore, immediately after the

motes are synchronized, for every mote, si, the reference

vector is equal to the measurement vector (~vi
′ = ~vi) and

the slack vector is 0, therefore the drift vector held by each

mote immediately after a synchronization event is equal to

the estimate vector.

The algorithm is based on the following geometric in-

terpretation of an aggregate threshold query: vectors held

by motes are viewed as points in R
d. The combination of

the aggregation function, f, and the threshold value, r, de-

fines the following coloring over R
d: any point ~x ∈ R

d for

which f(~x) < r is said to be white, while any point ~y ∈ R
d

for which f(~y) ≥ r is said to be gray. Figure 1 depicts

the coloring induced by the VARIANCE aggregate func-

tion, f(~x) = x(2)−(x(1))2 (x(1) is plotted on the horizontal

axis, and x(2) is plotted on the vertical axis), and a threshold

r=1.8 deg2. The goal of the aggregate threshold query un-

der this interpretation is to determine the color of the point

representing the global measurement vector. Figure 1 de-

picts the drift vectors held by three motes (the red circles),

and the global measurement vector they define, i.e., the av-

erage of these vectors (the cross). In both Figure 1(a) and

Figure 1(b), the drift vectors held by the motes are white,

but in 1(a) the global measurement vector is white, while it

is gray in 1(b). This demonstrates that the query cannot be

answered solely by observing the color of the drift vectors

held by the motes.

(a) (b)

(c)

Figure 1. Geometric interpretation.

Every time the measurements taken by a mote change,

the mote checks that the new measurement vector complies

to a local constraint. These constraints are constructs such

that if the constraints on all motes are satisfied, it is guaran-

teed that the convex hull of the drift vectors is monochro-

matic (i.e. all the vectors belonging to the convex hull have

the same color). Since the global measurement vector is the

average of the drift vectors held by the motes, it belongs to

the convex hull of the drift vectors. Therefore, if the convex

hull is monochromatic, the color of the global measurement

vector is the same as the color of the convex hull.

At first glance it may seem difficult to determine if the

convex hull of the drift vectors is monochromatic by set-

ting local constraints on the individual drift vectors, since

as demonstrated in Figure 1(b), only knowing that the drift

vectors are monochromatic is insufficient for determining

that their convex hull is monochromatic. In order to verify

that the convex hull of the drift vectors is monochromatic,

we use Theorem 4.1, taken from [13].

Theorem 4.1. Let ~x, ~y1, ~y2, ..., ~yn ∈ R
d be a set of

vectors in R
d. Let Conv(~x, ~y1, ~y2, ..., ~yn) be the con-

vex hull of ~x, ~y1, ~y2, ..., ~yn. Let B(~x, ~yi) be a ball cen-

tered at 1
2 (~x + ~yi) and with a radius of

∥

∥

1
2 (~x− ~yi)

∥

∥

2

i.e., B(~x, ~yi) =
{

~z
∣

∣

∥

∥~z − 1
2 (~x + ~yi)

∥

∥

2
≤

∥

∥

2 (~x− ~yi)
∥

∥

2

}

.

Then Conv(~x, ~y1, ~y2, ..., ~yn) ⊂
⋃n

i=1 B(~x, ~yi).

Theorem 4.1 is used to bound the convex hull of n+1

vectors in R
d by the union of n d-dimensional balls. In our

case it is used to bound the convex hull of the estimate vec-

tor and the drift vectors i.e., Conv(~e, ~u1, ~u2, ..., ~un), by a set

of n balls, where each ball is constructed independently by

one of the motes. Each mote, si, constructs a ball B(~e, ~ui),
which is centered at ~e+~ui

2 , and has a radius of
∥

∥

~e−~ui

2

∥

∥. This

ball is called the drift sphere. Note that at any given time

each mote has all the information required to independently

construct its drift sphere.

Theorem 4.1 states that the convex hull of the drift vec-

tors and the estimate vector is bound by the union of the

drift spheres constructed by the motes. Therefore, if all the

drift spheres are monochromatic, the convex hull is guar-

anteed to be monochromatic, and thus the global measure-

ment vector is the same color as the convex hull. Since the

estimate vector is part of the convex hull as well, if all the

drift spheres are monochromatic, the global measurement

vector and the estimate vector have the same color. To test

whether a ball is monochromatic, we calculate the maxi-

mum and minimum values of f over it. Due to lack of space

we cannot elaborate on this any further; suffice to say that

for important functions such as the variance, there is a very

simple closed-form solution.

Figure 1(c) illustrates the use of Theorem 4.1. The setup

depicted in Figure 1(a) is shown, together with the estimate

vector (the blue square), and the drift sphere constructed

by each of the motes. One can notice, that as stated by

Theorem 4.1, the convex hull of the drift vectors is bound

by the union of the drift spheres constructed by the motes.

In order to complete the description of the algorithm we

need to specify how to resolve constraint violations. One

method of resolving constraint violations is by synchro-

nizing the motes. As mentioned earlier, synchronizing the

motes produces a new estimate vector, and sets the drift vec-

tors on all motes to be equal to the estimate vector. The new

drift spheres held by the motes have 0 radius, and are there-

fore monochromatic by definition, and the constraints on

all the motes are upheld. Synchronizing the motes is rela-

tively costly because it requires communicating with all the

motes. Therefore, a more efficient method called balancing

is first used to attempt to resolve a constraint violation.

A balancing process attempts to resolve a constraint vi-

olation by constructing a set of motes, referred to as the

balancing group, such that the balancing group includes the

mote whose constraint has been violated, and the average

of the drift vectors held by the motes in the group creates a

monochromatic drift sphere. If a balancing group has been

successfully constructed, all the motes in the group modify

their drift vectors to be equal to the average of the drift vec-

tors held by the motes in the balancing group by modifying

their slack vectors. Note that the sum of the slack vectors

in such a case remains 0, therefore the global measurement

vector is guaranteed to remain in the convex hull of the drift

vectors. The advantage of balancing is that it that as op-

posed to synchronization, it does not require all the nodes

to process, and is therefore more efficient. If a constraint

violation has not been resolved by a balancing process, the

nodes are synchronized.

Balancing is performed as follows: first the mote whose

constraint has been violated reports its drift vector to the

cluster head. This mote is the first mote to be added to

the balancing group, and is referred to as the unbalanced

mote. The cluster head constructs the balancing group by

iteratively adding new motes to the balancing group. In

each iteration the cluster head randomly selects a number

of motes that are not in the group, and requests them to

send their drift vector. In the ith iteration, the cluster head

randomly selects 2i−1 new motes to be included in the bal-

ancing group. The average of the drift vectors held by the

members of the balancing group is referred to as the bal-

anced vector.

Note that since the cluster head communicates with the

motes using broadcast messages, in each iteration the clus-

ter head uses a single broadcast message to request drift vec-

tors from all the selected motes. By doubling the number of

motes that are added to the balancing group in each itera-

tion, the number of messages the cluster head produces in

order to complete the balancing process is logarithmic in

the size of the cluster.

After each iteration the cluster head checks if the bal-

anced vector create a monochromatic drift sphere. If so,

the balancing process is said to have succeeded. If the bal-

ancing group includes all the motes in the cluster, and the

balanced does not create a monochromatic drift sphere, the

balancing process is said to have failed.

If the balancing process has succeeded, the cluster head

sends the balanced vector to the members of the balancing

group. Upon receipt of the balanced vector, each mote, in-

cluding the unbalanced mote, sets its slack vector so that its

drift vector is equal to the balanced vector, thus resolving

the original constraint violation.

5 Multi-Cluster Networks

In this section we extend the algorithm presented in Sec-

tion 4 to networks that comprise of multiple clusters. As

described in Section 3, the network can be modeled by an

undirected connectivity graph, where each cluster is repre-

sented by a vertex, and an edge connects every two ver-

tices that represent neighbouring clusters. We assume that

a spanning tree has been constructed over the graph.

The multi-cluster algorithm is also based on decompos-

ing the query into a set of constraints, monitored locally by

each mote. All the motes hold a common estimate vector.

Each mote maintains a drift vector, and constructs a drift

sphere according to the estimate vector and its drift vector.

As long as the constraints on all the motes are upheld, no

communication is required. In case a constraint is violated

on a mote, an attempt is made to resolve it by balancing the

violating drift vector. First an attempt is made to balance

the violating drift vector with drift vectors held by mem-

bers of the same cluster. This process is referred to as an

intra cluster balancing. If unsuccessful, an attempt is made

to balance the constraint violation with drift vectors held by

members of other clusters. This process is referred to as ex-

tra cluster balancing. Finally, if the extra cluster balancing

has failed, all the motes in the network are synchronized.

When a local constraint is violated on a mote, it sends

its drift vector to its cluster head. The cluster head tries

to resolve the constraint violation by performing an intra

cluster balancing process, which is similar to the balancing

process described in Section 4. If the cluster head failed to

balance the violating vector, it will initiate an extra cluster

balancing process.

Extra cluster balancing is performed by passing a token

between cluster heads. The token contains two values, the

aggregation vector, denoted by ~a, which holds the average

of the drift vectors held by the motes in the clusters the to-

ken has visited so far, and a counter, denoted by c, which

holds the total number of motes in the clusters the token has

visited so far. To initiate extra cluster balancing, the cluster

head creates a token with an aggregation vector consisting

of the average of the drift vectors held by the cluster mem-

bers, and sets the token counter to the number of motes in

the cluster. Note that the average drift vector has already

been calculated by the intra balancing process, therefore no

additional communication is needed in order to create the

token. More formally, the cluster head mi will create the

following token:

< ~a, c >←<

∑Ni

j=1 ~ui,j

Ni

, Ni >

If the drift sphere defined by a token’s aggregation vector

is monochromatic (i.e. B(~e,~a) is monochromatic) the token

is said to be balanced, otherwise it is said to be unbalanced.

The cluster head that created the token is referred to as the

source of the token. When a cluster head, mk, receives a

token for the first time, it collects the drift vectors from its

cluster members, and adds them to the average vector held

by the token by modifying the token as follows:

< ~a, c >←<

∑Nk

j=1 ~uk,j + c · ~a

Nk + c
, Nk + c > (2)

The token is passed between the cluster heads until the

token has been balanced, or until it has visited all the clus-

ters. If the token has been balanced, the extra cluster bal-

ancing process is said to have succeeded, and the motes in

each of the clusters that have received the token will set their

slack vector so that their drift vector will be equal to the ag-

gregation vector held by the token. If the token has traversed

all the clusters, and has not been balanced, the extra cluster

balancing process is said to have failed, and all the motes

in the network will adopt the aggregation vector held by the

token as the new estimate vector (thus implementing a syn-

chronization process). At this stage we assume that at any

given time, only a single token traverses the network. Later

we extend the algorithm to handle multiple tokens travers-

ing the cluster heads.

In order to complete the description of the algorithm, we

need to specify exactly how the token is passed among the

cluster heads. Recall that we assumed that a spanning tree

has been constructed over the connectivity graph. The token

is passed over the edges of the spanning tree, according to

a depth first search (DFS), rooted at the source of the token.

This ensures that as long as the token is unbalanced, it will

continue to traverse the clusters. If, during traversal of the

token through the cluster heads, one of them detects that

the token is balanced, the balanced token is flooded to all

the cluster heads that the token traversed. Upon receipt of

the token, each cluster head broadcasts the aggregation vec-

tor specified in the token to all the cluster members, which

in turn set their slack vectors so that its drift vector is equal

to the aggregation vector, thus implementing a successful

balancing process. If the token has traversed all the clus-

ters, and has not been balanced (this can be detected by the

source of the token), the token is flooded to all the cluster

heads in the network. Upon receipt of the token, each clus-

ter head broadcasts the aggregation vector specified in the

token to all the cluster members, which in turn set the es-

timate vector to be equal to the aggregation vector, and set

their reference vector to be equal to the measurement vector

that was collected from it by the cluster head, thus imple-

menting a synchronization process.

5.1 Handling Multiple Tokens

When presenting the multi-cluster algorithm, we as-

sumed that at any given time only a single token traverses

the network. In practice, several constraint violations may

occur simultaneously on motes in several different clusters.

This may lead to several tokens simultaneously traversing

the network. Therefore, the multi-cluster algorithm must

be extended to specify how to handle cases where a token

has reached a cluster head that is currently involved in the

traversal of another token. This condition is referred to as a

token collision.

A cluster head is considered involved in the traversal of a

token from the moment it created or received the token, un-

til it receives the outcome of the balancing/synchronization

process. The involvement of a cluster head in the traversal

of a token consists of two phases: an active phase and a pas-

sive phase. As long as the token hasn’t completed its traver-

sal through the subtree headed by the cluster head (when

taking the source of the token to be the root of the spanning

tree), the cluster head is said to be in the active phase. Dur-

ing the active phase, the cluster head may be required, as

part of the DFS traversal, to pass the token from one child

to another. Furthermore, during the active stage, if the token

has been balanced by a descendant of the cluster head, the

traversal will result in a successful balancing process. If the

token has traversed the subtree headed by the cluster head

without being balanced, the cluster head has completed its

active phase in the token traversal, and the traversal can re-

sult in either a balancing or a synchronization process. At

this point the cluster head is said to be in the passive phase

of its involvement in the token traversal.

Before describing how the multi-cluster algorithm is ex-

tended to handle token collisions, we would like to point

out the following: a token collision is only possible when a

token is passed to a cluster head that is in the active phase of

its involvement in the traversal of another token. This ob-

servation can be easily explained by the following reason-

ing: assume that two tokens, denoted by Tok1 and Tok2,

are currently traversing the network. Let the cluster head

mi be the first cluster head that received Tok2 while being

involved in the traversal of Tok1. We denote by mj the

cluster head mi has received Tok2 from. Let us assume,

by way of contradiction, that mi is in the passive phase of

its involvement in the traversal of Tok1, therefore, Tok1

has completed traversing the subtree headed by si,1, and

specifically, Tok1 has been passed to all of mi neighbours,

including mj . In other words, mj has been involved in the

traversal of Tok1 when it received Tok2. This stands in

contradiction to mi being the first cluster head involved in

the traversal of Tok1 that has received Tok2.

In order to handle token collisions, tokens hold two ad-

ditional values: a unique identifier, identifying the source

of the token, and the distance of the token from its

source. Tokens will therefore be of the following form,

<~a, c, id, dist>, where ~a and c denote the aggregation vec-

tor and token count, as in the original algorithm, and id and

dist denote the identifier of the source of the token and the

distance of the token from its source. Note that the distance

of the token from its source can be easily maintained during

the DFS traversal.

If a token collision has occurred, i.e., a cluster head,

mi, has received a token, Tok2=<~a2, c2, id2, dist2>,

while being involved in the traversal of another token,

Tok1=<~a1, c1, id1, dist1>, Tok2 will be held by mi un-

til one of the following will happen: either mi is notified

that Tok1 has been successfully balanced, or Tok1 will be

returned to mi by one of its children. If Tok1 has been suc-

cessfully balanced, the traversal of Tok1 has been termi-

nated, thus resolving the token collision. If Tok1 has been

returned to mi by one of its children, mi will merge the two

tokens.

Among the two tokens, the token that is closer to its

source will be referred to as the obsolete token, and the

other token will be referred to as the dominating token (to-

ken identifiers are used as tie breakers). The token colli-

sion will be resolved as follows: mi merges the obsolete

token into the dominating token. Assuming, with out loss

of generality, that dist1 > dist2, the token resulting from

the merge will be < c1·~a1+c2·~a2

c1+c2

, c1 + c2, id1, dist1>. If the

merged token is balanced, mi will flood the merged token

to all the cluster heads that were involved in the traversal of

either Tok1 or Tok2, thus resolving the original constraint

violations that lead to the creation of these tokens. If the

merged token is not balanced, we would like it to continue

traversing the spanning tree in a DFS search order rooted at

the source of the dominating token. This can be achieved

by sending the merged token to the source of the obsolete

token, and continuing the traversal from there.

6 Relaxing the Precision Requirements

A desired trade-off when executing aggregate threshold

queries is between accuracy and energy expenditure. Con-

sider, for example, the temperature variance query given

in Section 1. Say we are interested in receiving an alert

when the variance in the temperature in a room exceeds 5

deg2. In case the variance in the temperature is close to the

threshold, drift vectors have very little leeway before the

drift spheres they define are not monochromatic, leading to

a high transmission rate. In the temperature variance query,

it is sufficient to know that the variance in the temperature

is close to the specified threshold. In other words, it is suffi-

cient to require that the query returns a correct answer only

when the variance in the temperature in the room is signif-

icantly far from the threshold value, say when it is smaller

than 4.8 deg2 or greater than 5.2 deg2, but if the variance

is very close to the threshold value (between 4.8 deg2 and

5.2 deg2), the query is not required to provide an accurate

answer. This modified version of an aggregate threshold

query enables efficiently detecting the desired alert condi-

tion, without expending expensive energy on keeping track

of borderline values.

More formally, the modified aggregate threshold query is

defined as follows: let ~v be the average measurement vec-

tor, as defined in Section 3, let f be an aggregation function,

and let r be a predetermined threshold. Let ε be a prede-

termined error margin. We require that if f(~v) > r + ε,

each mote will be able to determine that f(~v) > r, and

that if f(~v) ≤ r − ε, each mote will be able to determine

that f(~v) ≤ r. An aggregate threshold query conforming to

these requirements is said to support an error margin of ε.

Our algorithm can be easily tuned to support an error

margin of ε as follows: instead of working with a single

coloring, induced by the aggregation function f and the

threshold value r, two sets of coloring are defined, one in-

duced by the aggregation function f and the threshold value

r + ε, and a second induced by the aggregation function f

and the threshold value r − ε. Whenever the original al-

gorithm checks whether a ball is monochromatic, then, if

f(~v) ≤ r, the modified algorithm will check whether the

ball is monochromatic according to the first coloring (the

one induced by f and r+ε). If f(~v) > r, the modified algo-

rithm will check whether the ball is monochromatic accord-

ing to the second coloring. This ensures that if the value of

the aggregation function on the estimate vector is below the

threshold, and the value of the aggregation function on the

average measurement vector is above r + ε (or vice verse),

the query will be reevaluated. At the same time, the modi-

fied algorithm ensures that regardless of the value of the es-

timate vector, the drift vectors have minimum leeway while

maintaining monochromatic drift spheres, thus reducing the

energy expenditure of the algorithm.

7 Experimental Results

We performed several experiments on real-world data in

order to evaluate the performance of our algorithm. We sim-

ulated a network consisting of 5184 motes. The motes were

positioned on a 144x36 grid. The motes were grouped into

81 clusters of 16x4. Each cluster was assigned a cluster

head. In summary, the network consisted of a 9x9 grid of

clusters, each cluster consisting of 64 motes.

We used climate data taken from [1] to simulate data

measurements taken by the motes. The data set consists

of temperature readings taken on a 144x72 grid that spans

the entire globe. Temperature readings are taken at a res-

olution of 6 hours. We used data that corresponds to tem-

perature reading covering the northern hemisphere over a

period of a year, which yields a total of 144x36x1459 data

measurements. According to the data, the average in the

northern hemisphere ranges from -3.52 to 17 degrees Centi-

grade. The rational behind selecting this data set is that al-

though the data set is collected on a global scale, it contains

strong spatial and temporal correlations among data points,

and is therefore similar in nature to what one would expect

of a data set collected from a large scale deployment of a

sensor network. Due to the lack of large scale real-world

data sets taken from real deployments of sensor networks,

we believe that this is the good alternative.

A spanning tree was constructed over the grid of clusters.

We employed our algorithm in order to detect when the av-

erage temperature crosses a predetermined threshold. We

compared the number of messages produced by our algo-

rithm to the number of messages that would be generated by

performing “in-network” aggregation, i.e. aggregating the

drift vectors from the leaves upwards, and employing the

aggregation function at the root. We refer to this algorithm

Mote Messages vs. Threshold

0

1000

2000

3000

4000

5000

6000

7000

8000

-30 -20 -10 0 10 20 30 40 50
Threshold (°C)

M
o
te
 M
e
s
s
a
g
e
s
 (
x
1
0
0
0
)

Decent. Alg.

Naive Alg.

(a) Mote messages vs. Threshold

Cluster Head Messages vs. Threshold

0

1000

2000

3000

4000

5000

6000

7000

8000

-30 -20 -10 0 10 20 30 40 50

Threshold (°C)

C
lu
s
te
r
H
e
a
d
 M
e
s
s
a
g
e
s

Decent. Alg.

Naive Alg.

Cluster Head Messages vs. Threshold

0

1000

2000

3000

4000

5000

6000

7000

8000

-30 -20 -10 0 10 20 30 40 50

Threshold (°C)

C
lu
s
te
r
H
e
a
d
 M
e
s
s
a
g
e
s
 (
x
1
0
0
0
)

Decent. Alg.

Naive Alg.

(b) Cluster head messages vs. Threshold

Messages vs. Error Margin

0

200

400

600

800

1000

1200

1400

1600

1800

0 1 2 3 4 5 6 7

Error Margin (°C)

C
lu

s
te

r
H

e
a

d
 M

s
g

s
(x

1
0

0
0

)

0

50

100

150

200

250

300

M
o

te
s

 M
e

s
s

a
g

e
s

(x
1

0
0

0
)

Mote Msg

Cluster Head Msg

(c) Messages vs. Error Margin

Messages vs. Cluster Size

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 1000 2000 3000 4000 5000

Cluster Size

C
lu

s
te

r
H

e
a

d
 M

e
s

s
a

g
e

s

0

50

100

150

200

250

300

350

M
o

te
 M

e
s

s
a

g
e

s

Cluster Head Msg

Mote Msg

(d) Messages vs. Cluster Size

Figure 2. Experimental Results.

as the naive algorithm. We make a distinction between mes-

sages produced by motes, and messages produced by cluster

heads. Clearly, since cluster heads are less resource con-

strained than motes, a message sent by a cluster head in-

curs a lower penalty than a message sent from a mote, but

the exact difference between the cost of sending a message

from a cluster head and the cost of sending a message from

a mote strongly depends on the type of hardware used for

motes and cluster heads. Therefore, for each experiment we

present both the number of messages produced by motes

and the number of messages produced by cluster heads.

In the first experiment, we ran our algorithm using var-

ious threshold values. No error margin was used in this

experiment. Queries were run with threshold values rang-

ing from -30 degrees Centigrade to 50 degrees Centigrade.

Figure 2 shows the total number of mote messages and the

total number of cluster head messages produced by our al-

gorithm, as a function of the threshold value. In addition,

we plotted the total number of mote messages and the to-

tal number of cluster head messages produced by the naive

algorithm. Our algorithm significantly outperformed the

naive algorithm for all threshold values, both in the num-

ber of messages produced by motes, and in the number of

messages produced by cluster heads.

We expect that aggregate threshold queries will typically

be used to detect anomalies, therefore, we were especially

interested in the performance of the algorithm for thresh-

old values that are close to the boundaries of the range of

average temperature values. Since the data we used in our

experiments is periodic in nature, the interesting threshold

queries are the ones that detect when the average tempera-

ture diverges from its typical range of values, as opposed to

queries that use a threshold that is within the typical range

of average temperature values. When using threshold val-

ues that are close to the boundaries of the range of average

temperature values, our algorithm outperforms the naive al-

gorithm by orders of magnitude.

Next we checked the effect using an error margin has

on the performance of our algorithm. We used a threshold

value of -3 degrees Centigrade, and ran queries using error

margins ranging from 0 to 7 degrees. Figure 2(c) shows the

total number of mote and cluster head messages produced

when using different error margins. As evident from the

results, the error margin is very effective in reducing the

number of messages produced both by motes and cluster

heads. An error margin as small as 2 degrees Centigrade

reduces the number of messages by more than half.

Finally, we conducted an experiment designed to exam-

ine the effect the choice of cluster size has on the properties

of our algorithm. We ran a query with a threshold value of

-3 and no error margin on the 144x36 grid of motes. We ran

the query several times. Each run included all 5184 motes,

but we used a different cluster size for each run. We used

cluster sizes ranging from clusters of 4 motes, to a single

cluster, containing all 5184 motes. In each run we recorded

the average number of messages produced by motes, and the

average number of messages produced by a cluster head.

Figure 2(d) shows the average number of mote mes-

sages and cluster head messages as a function of the cluster

size. The results indicate that our algorithm performs bet-

ter with larger cluster sizes. The number of mote messages

decreases as the cluster size increases. We attribute the re-

duced number of mote messages in larger clusters to the fact

that in larger clusters, intra cluster balancing is performed

among motes that are more spatially dispersed, and there-

fore their measurements are more diverse, which enhances

the efficiency of intra cluster balancing. Our results indi-

cate that the number of cluster head messages increases as

the cluster size increases, but one would expect the average

number of cluster head messages to increase linearly in rela-

tion to the size of the cluster, since the number of constraint

violations a cluster head needs to handle increases linearly

in relation to the size of the cluster. Our results indicate that

the number of cluster head messages increases sub-linearly

in relation to the size of the cluster. We attribute the sub-

linear increase in cluster head messages to the fact that as

the the size of the cluster is increased, more constraints vi-

olations are resolved by the more efficient intra cluster bal-

ancing rather than by extra cluster balancing.

Note that while our results indicate that performance in-

creases as the size of the cluster increases, the choice of

cluster size is effected by additional considerations, such as

the transmission range of cluster heads.

8 Conclusion

Continuous aggregate threshold queries are an important

tool in a wireless sensor environment, since they are a natu-

ral candidates for expressing alert conditions. In many cases

the exact value of the aggregate is not required in order to

determine whether or not it has crossed the threshold, en-

abling the construction of algorithms that are far more effi-

cient than algorithms that estimate these aggregates.

In this paper we presented an algorithm for performing

continuous aggregate threshold queries over tiered sensor

networks. The algorithm is based on a novel geometric ap-

proach, enabling the decomposition of the query into local

constraints on the readings of the individual sensors. Exper-

imental results on real-world data show that our algorithm

reduces communications by orders of magnitude in compar-

ison to a naive “in-network” aggregation approach.

References

[1] NOAA-CIRES Climate Diagnos-

tics Center, Boulder, Colorado, USA

http://www.cdc.noaa.gov/cdc/data.ncep.reanalysis.html.
[2] J. Considine, F. Li, G. Kollios, and J. Byers. Approximate

aggregation techniques for sensor databases. In ICDE ’04,

page 449. IEEE Computer Society.
[3] R. Govindan, E. Kohler, D. Estrin, F. Bian, K. Chintalapudi,

O. Gnawali, S. Rangwala, R. Gummadi, and T. Stathopou-

los. Tenet: An architecture for tiered embedded networks.

in CENS Technical Report 56.
[4] M. B. Greenwald and S. Khanna. Power-conserving com-

putation of order-statistics over sensor networks. In PODS

’04, pages 275–285. ACM Press.
[5] I. Gupta, R. van Renesse, and K. P. Birman. Scalable fault-

tolerant aggregation in large process groups. In DSN ’01,

pages 433–442. IEEE Computer Society.
[6] W. Hu, N. Bulusu, C. T. Chou, S. Jha, A. Taylor, and V. N.

Tran. A hybrid sensor network for cane-toad monitoring. In

SenSys ’05, pages 305–305. ACM Press.
[7] B. Krishnamachari, D. Estrin, and S. B. Wicker. The impact

of data aggregation in wireless sensor networks. In ICDCSW

’02, pages 575–578. IEEE Computer Society.
[8] R. Kumar, V. Tsiatsis, and M. B. Srivastava. Computation

hierarchy for in-network processing. In WSNA ’03, pages

68–77. ACM Press.
[9] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.

Tag: A tiny aggregation service for ad-hoc sensor networks.

In OSDI ’02.
[10] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and

J. Anderson. Wireless sensor networks for habitat monitor-

ing. In WSNA ’02, pages 88–97. ACM Press.
[11] A. Manjhi, S. Nath, and P. B. Gibbons. Tributaries and

deltas: efficient and robust aggregation in sensor network

streams. In SIGMOD ’05, pages 287–298. ACM Press.
[12] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson. Syn-

opsis diffusion for robust aggregation in sensor networks. In

SenSys ’04, pages 250–262. ACM Press.
[13] I. Sharfman, A. Schuster, and D. Keren. A geometric ap-

proach to monitoring threshold functions over distributed

data streams. In SIGMOD ’06, pages 301–312. ACM Press.
[14] G. Sharma and R. Mazumdar. Hybrid sensor networks: a

small world. In MobiHoc ’05, pages 366–377. ACM Press.
[15] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri. Me-

dians and beyond: new aggregation techniques for sensor

networks. In SenSys ’04, pages 239–249. ACM Press.
[16] T. Stathopoulos, L. Girod, J. Heidemann, and D. Estrin.

Mote herding for tiered wireless sensor networks. in CENS

Technical Report 58.
[17] H. Wang, D. Estrin, and L. Girod. Preprocessing in a tiered

sensor network for habitat monitoring. EURASIP JASP Spe-

cial Issue on Sensor Networks, pages 392–401.
[18] M. Yarvis, N. Kushalnagar, H. Singh, A. Rangarajan, Y. Liu,

and S. Singh. Exploiting heterogeneity in sensor networks.

In INFOCOM ’05, pages 366–377.
[19] Y. J. Zhao, R. Govindan, and D. Estrin. Computing aggre-

gates for monitoring wireless sensor networks. In SNPA ’03.

