Taking Advantage of Collective Operation Semantics for Loosely Coupled
Simulations *

Joe Shang-Chieh Wu and Alan Sussman
UMIACS and Department of Computer Science
University of Maryland, College Park, MD 20742, USA
email: {meou,als} @cs.umd.edu

Abstract

Although a loosely coupled component-based framework
offers flexibility and versatility for building and deploying
large-scale multi-physics simulation systems, the perfor-
mance of such a system can suffer from excessive buffer-
ing of data objects which may or may not be transferred
between components. By taking advantages of the collec-
tive properties of parallel simulation components, which is
common for data-parallel scientific applications, an opti-
mization method, which we call buddy-help, can greatly
enhance overall performance. Buddy-Help can reduce the
time taken for buffering operations in an exporting compo-
nent, when there are timing differences across processes in
the exporting component. The optimization enables skip-
ping unnecessary buffering operations, once another pro-
cess, which has already performed the collective export op-
eration, has determined that the buffered data will never be
needed. Because an analytical study would be very difficult
due to the complexity of the overall coupled simulation sys-
tem, the performance improvement enabled by buddy-help
is investigated via a micro-benchmark specifically designed
to illustrate the behavior of coupled simulation scenarios
under which buddy-help can provide performance gains.

1 Introduction

Integrating well-tested modules, each of which models
part of the target system, and deploying them as a loosely
coupled framework, rather than developing a single tightly
coupled monolithic code, is a more efficient and flexible
way to develop complex or large-scaled systems and has

*This research was supported by the National Science Foundation un-
der Grant #CNS-0615072 and NASA under Grants #NAG5-12652 and
#NNGO6GE75G.
1-4244-0910-1/07/$20.00 (©2007 IEEE.

been used in many scientific simulations. Applications
include large-scale space science simulations solving the
magnetohydrodynamics (MHD) equations [7] and multi-
scale multiresolution petroleum reservoir simulation [9].

The various coupled application programs (components)
may use different simulation time and space scales, either
because of the scale of the phenomena being modeled or be-
cause of the numerical techniques being employed. Some
components may themselves be parallel programs, perhaps
implemented using message passing [16] or threads. The in-
terfaces between components, which are the shared bound-
aries or the overlapped regions between physical models,
must be made consistent in both time and space to obtain
correct results. How to exchange data between coupled pro-
grams is a major concern in these scenarios. The spatial
resolution problem involves proper interpolation between
the grids used in the two components, and several projects,
including the MxN working group in the Common Compo-
nent Architecture (CCA) Forum [2], are currently address-
ing some of these issues. Our earlier work [18] describes
a method for solving the temporal consistency issue. That
work describes a temporal consistency model in which each
exported data object must be buffered by the runtime sys-
tem implementing the model, until there is no possibility
that an object will be requested by an importing component.
That can be determined by determining that either there is
no importing component for objects of that type or because
importer requests that have already been processed can be
shown to ensure that the object in question cannot be re-
quested. Although this approach ensures the correctness of
the data exchange mechanism, overall system performance
may suffer from unnecessary buffering, when one process
in a data exporting (parallel) component performs the col-
lective export operation early relative to the other processes
(i.e. it is the first process to execute the export runtime li-
brary call). In that case, other processes can use the in-
formation produced in resolving the call in one process for
later calls in other processes in the exporting parallel com-
ponent.

This paper focuses on the the temporal consistency issue
by taking advantage of the semantics of collective opera-
tions, which ensure that all processes in a parallel compo-
nent must make the same sequence of export (or import)
operations (similar to the required behavior of parallel pro-
grams that use MPI collective operations [16]). Collective
operations are commonly used in many single program mul-
tiple data (SPMD) parallel program implementations, and
require that (1) the same code is running on all processes,
(2) the dataset is partitioned across the multiple processes,
and (3) each process performs computation on the part of
the data object it owns. Moreover, collective operations,
such as broadcast, barrier, reduce, etc., require all processes
in the same program to execute the same function with ap-
propriately matching parameters. These operations are well
supported in popular parallel libraries such as PVM [17] and
MPI [16], and play important roles in SPMD programs. Per-
formance studies have shown that some parallel programs
spend more than 80% of their interprocessor communica-
tion time in collective operations [15].

Data exchange between shared or overlapping regions in
different coupled simulation components can be viewed as a
collective operation, where the data to be transferred spans
both multiple processes in a single component and the pro-
cesses in two separate components. That is because the ex-
change is not complete until al/ involved processes transfer
their share of the data (however it does not require that all
processes transfer data at the same time, meaning no barrier
synchronization is required). In addition, the collective op-
eration semantics guarantee that all processes in the same
exporting component must make the same decision about
which copies of the generated data should (and should not)
be transferred to the corresponding importing program(s).
When some of the processes in the data exporting compo-
nent run more slowly than other others, perhaps because of
imperfect load balancing within the component or for other
application-specific reasons, those slower processes can be
sped up if the decision about which transfers to make are
performed by the fastest process in the component (the one
that executes the export call first). The rest of the paper
describes this optimization and its implications in more de-
tail, and is organized as follows. Section 2 describes re-
lated work, Section 3 outlines the overall coupled simula-
tion architecture we have designed in prior work, Section 4
explains the optimization strategy in more detail and ex-
pands on the use of collective semantics in the framework,
Section 5 provides some micro-benchmark experimental re-
sults, and we conclude in Section 6.

2 Related Work

Both Interoperable MPI(IMPI) [6], which is a set of pro-
tocols across different MPI implementations, and MPICH-

G2 [14], which is a grid-enabled implementation of the MPI
v1.1 standard, allow one MPI program to run in heteroge-
neous environments that are composed of different architec-
tures and operating systems. These systems mainly focus
on heterogeneous integration, and higher level coupling is-
sues between application components must be handled by
the participating components.

Data exchanges between distributed data structures
are provided in other software packages, including
Meta-Chaos [3], InterComm [11], Parallel Application
Work Space (PAWS) [4], the Model Coupling Toolkit
(MCT) [10], Roccom [8], the Collaborative User Migra-
tion User Library for Visualization and Steering (CU-
MULVS) [5], and the MxN working group in the Common
Component Architecture (CCA) Forum [1, 12, 2]. All of
that work targets mapping of the elements of distributed
data structures to the processes in an application compo-
nent, as well as distributed data exchange between partic-
ipating (parallel) programs, with the higher level coupling
and integration left to the participating application compo-
nents.

Collective operations, which must be invoked by a set
of processes in a parallel program to perform an operation,
are widely used in parallel libraries, such as PVM [17] and
MPI [16], either for collective data movement (broadcast,
scatter, gather, etc.) or for collective computation (maxi-
mum, summation, etc.).

3 System Architecture

Many scientific computing applications, such as a set of
coupled programs for integrated simulation of a physical
system, employ numerical algorithms to solve systems of
equations iteratively. Each iteration is typically composed
of two parts: computation on the domain where that pro-
gram is relevant and data exchange across physical bound-
aries shared with other programs. Our design provides
methods for exporting (sending) and importing (receiving)
data between programs, once the relevant (distributed) data
structures are defined.

Although each program must define its contributions
(called regions in our framework) to a data transfer, the re-
lated counterparts on the other side of the data transfer do
not need to be defined. From the point of view of a data ex-
porting program, the program defines its regions once, and
exports the desired data as often as it desires, when a new,
consistent version of the data across the parallel program
is produced (note that the data for a region can span multi-
ple processes in the program, so the parallel program must
ensure that a consistent version is exported.) The program
does not have to concern itself about which and how many
programs will receive the data, or even whether a data trans-
fer will actually occur. Data importing programs also only

define their regions once, and import data as needed, with-
out knowing anything about the corresponding exporters.
Examples of user programs are shown in Figure 1.

define region rl define region rl
define region r2 .
define region r3 for(...) {
ce import rl
for(...) { computation
export rl }
export r2
export r3
computation
}

’ Exporter PO code \ Importer P1 code ‘

Figure 1. Example exporter and importer pro-
grams

3.1 Runtime Coupling and Match

The connection between importer and exporter programs
is provided by a framework-level configuration file that (1)
is separate from all user programs, (2) is read in the ini-
tialization stage of each participating program, and (3) con-
tains runtime environment information for executing partic-
ipating user programs as well as information about how to
connect the imported and exported regions in each program.
An example is shown in Figure 2.

PO cluster0 /home/meou/bin/P0 16
P1 clusterl /home/meou/bin/P1 8

P2 clusterl /home/meou/bin/P2 32
P4 clusterl /home/meou/bin/P4 4

#

PO.rl Pl.rl REGL 0.2

PO.rl P2.r3 REG 0.1

PO0.r2 P4.r2 REGU 0.3

Figure 2. An example configuration file

Separating the export/import connections from user pro-
grams makes coupling flexible — even recompiling a pro-
gram is not necessary if another program that it will com-
municate with is replaced. In addition, in its initialization
stage the framework can determine whether any exported or
imported regions are not involved in the connection speci-
fication, enabling both early detection of an incorrect cou-
pling specification (e.g., and imported region that has no
corresponding exported region) and a low overhead imple-
mentation for an exported region that is not imported by

any other program (i.e., the connection specification has no
entries for that exported region).

We require that each data object in each export/import
region be associated with an increasing simulation times-
tamp, so data exchange between two regions can not start
until a matched export timestamp is identified for each im-
port request. However, in a set of loosely coupled programs
programs that have been developed independently, in gen-
eral it may happen that an exported region with the ex-
act timestamp requested by an import in another program
might never become unavailable. Our framework there-
fore uses approximate matching [18], which defines a per
connection match policy and a related tolerance, to handle
this issue. Roughly speaking, given a requested timestamp
and the user-defined tolerance, an acceptable region can be
identified, and then based on the match policy, one of the
candidate timestamps in the acceptable region will be cho-
sen as the match for a given import operation. For example,
in Figure 2 the connection PO.r1 P1.rl has a match pol-
icy REGL and tolerance 0.2 which means if the requested
timestamp is x, the acceptable region would be [x — 0.2,x],
and the match is the one closest to x if more than one export
timestamp is located in the interval [x —0.2,x].

In an implementation of approximate matching, com-
pared to the standard exact matching (where for any given
import/export pair it is possible to determine whether the
result is MATCH/NO MATCH), PENDING is a possible result for
an approximate match. That means that, based on data ex-
ported up to the point in time that the match is performed
(presumably because of an import request), the best match
cannot be decided, either because exported data in the ac-
ceptable region has not yet been generated, or because an
export that has not yet occurred might be a better match
(closer to the timestamp requested by the import) than the
current candidate.

4 Collective Semantics

Compared to traditional collective operations, such as
broadcast (copying data from one to a group of pro-
cesses) and reduce (aggregating with some binary opera-
tion data supplied by a group of processes) in PVM [17]
and MPI [16], data transfers in our framework also exhibit
collective properties. This means that all processes in the
same program must execute the same export (or import) op-
erations in the same order (but not necessarily at the same
time), with appropriately matching parameters. Formally
the following property must always hold in our framework:

Property 1 If one process transfers (exports or
imports) data with timestamps 1, ..., t, during
execution, all other processes in the same pro-
gram must also transfer data with those times-
tamps, in the same order.

To support and monitor collective behavior at runtime,
our framework implementation employs an extra process in
each program, called the representative (or rep for short),
to act as a low-overhead control gateway [18]. For exam-
ple when the rep in an exporting program receives a request
from an importing program, it (1) forwards the request to
all processes in the exporting program, (2) collects the re-
sponses from all processes, (3) combines all responses to
produce the final answer to the request, and (4) sends back
the final answer to the requester (to the rep of the importing
program).

The legal set of responses from all the processes aggre-
gate into one of the following five cases: all MATCH, all
NO MATCH, all PENDING, a mixture of PENDING and MATCH,
or a mixture of PENDING and NO MATCH. Additionally when
all or only some responses are MATCH, all the matched times-
tamps must be the same.

It is incorrect for some of the responses to be MATCH and
some to be NO MATCH for the same request, because only
those processes whose responses are MATCH try to transfer
data, which is a clear violation of Property 1. It is also incor-
rect if the matched timestamps from those MATCH responses
are not the same, because those processes will try to trans-
fer data with different timestamps and Property 1 would not
hold again.

Property 1 is maintained if all responses are the same.
Interestingly, it is still legal if the collective responses are
a mixture of PENDING and MATCH or a mixture of PENDING
and NO MATCH. This situation means that some processes
are running more slowly than others (e.g., either because
of load imbalance or because of other application-specific
properties), such that when receiving forwarded requests
the best match cannot yet be decided (so their responses
are PENDINGSs.) Based on the guarantee (because of the col-
lective nature of export and import operations) that those
slower processes will make the same decisions as their
faster peers, the answer sent by the rep is MATCH if the
collective responses are a mixture of PENDING and MATCH
and is NO MATCH if the collective responses are a mixture of
PENDING and NO MATCH.

4.1 Buddy-Help

When the collected responses are a mixture of PENDING
and MATCH, more can be done than just determining the rep
answer for the MATCH. If the rep then sends the final answer
(MATCH in this case) back to the slower processes in that
program, those processes then know whether or not a data
object they will export in the future should be buffered by
the framework (buffered only in the case that it is a match),
even before the data is exported by that process.

Because the overall model requires that timestamps for
requests form an increasing sequence, as in many timestep-

based numerical algorithms, the generated data objects are
buffered only if the framework cannot decide whether the
data objects are needed or not — either because they already
have passed the latest timestamp in the acceptable region,
or because the best match still cannot be decided.

When the data importing program runs more slowly than
the related exporting counterpart, as shown in Figure 3(a),
the timestamp of a newly generated data object will pass the
latest acceptable region which is identified by the last re-
quest timestamp and a user-defined tolerance. Buffering of
this generated data object is necessary because it might be
a match for future requests. Although the buffering opera-
tion may be time-consuming when the data size is large, the
overall application performance will not be affected much
because the data exporting program is not the slowest com-
ponent in the whole system.

When the data exporting program runs more slowly than
the related importing counterpart, the buffering of newly
generated data is a performance concern. If the timestamp
of the newly generated data object is outside all of the ac-
ceptable regions, buffering is not needed because it is be-
yond the user-defined tolerance.

However if the new generated data object, call it A@1, (a
distributed array A with simulation timestamp ¢), is in one
of acceptable regions R, as shown in Figure 3(b), in general
buffering is necessary because A @t might be the match. If
the next generated data object A@t’ is outside region R, then
A @t is confirmed as the match for this region R, and the
buffering step was indeed required. However, if A@¢’ is
also located in region R, A@t’' would be a better match, and
the system could free the buffer for object A @t.

It is no surprise that much unnecessary buffering can oc-
cur in the framework if multiple objects are exported that
fall in one acceptable region — which can easily occur in
coupling physical simulation components that act on differ-
ent time scales. Formally, if data objects Oy, ...,0,; are
located in the acceptable region R;, and the time for buffer-
ing (and freeing) object O; is t;, the time T; spent on that
unnecessary buffering in region R; is:

T=Y & (1)

If a total of N requests are received (so that the ac-
ceptable regions are Rj,...,Ry) during the program ex-
ecution, and all acceptable regions are mutually disjoint
(R;NR;=0,i+# j), the total time T,;, spent on unnecessary
buffering is:

Ty =

M=
™=

n(i)—1
=Y Y u 2
i=1 i=1 k=1

Compared to currently used ad-hoc tightly coupled ap-
proaches, approximate matching and buffering of generated
data are two extra tasks that our framework must perform,

Latest Acceptable Region New Data

»

Simulation time

-~

Previous Generated Data

(a) Slower Importer

Acceptable Regions

1 s T
T

»

Simulation time

—_

Previous Generated Data New Data

(b) Slower Exporter

Figure 3. Buffering Exported Data

and it is clear that 7, plays an important role in overall
performance when the data exporting program runs more
slowly than the related importing counterpart.

One way to decrease T, is taking advantage of Property
1 described previously. More precisely, if for a given re-
quest the collective responses in the rep are a mixture of
MATCH (or NO MATCH) and PENDING, the rep not only sends
the final answer (which is MATCH or NO MATCH) to the re-
quester, but also sends it to those processes whose responses
are PENDING (we call this buddy-help.) In this way those
slower processes can know the right match for this request,
and avoid unnecessary buffering of data objects that can-
not possibly be a match, even before the data objects are
generated by export operations in those slower processes..
Decreasing 7; (and therefore 7,,;) in those slower processes
matters for overall performance, because the processes that
benefit from buddy-help are the slowest processes in the
slower program — and therefore are the performance lim-
iting factor for that pair of coupled programs.

One interesting side effect of the buddy-help optimiza-
tion is that if each time-step iteration in a data exporting
programs performs computational tasks and a slower pro-
cess p; starts to get buddy-help during the jth request, T} in
process ps will form a non-increasing sequence for k > j.
We use a micro-benchmark described in the next section to
explain that behavior more completely.

S Experiment

The complexity of the framework makes it difficult to
measure the benefits from the optimization methods we
have just described for general scientific programs, so we
have designed a micro-benchmark to measure the poten-
tial performance improvements from the optimizations. The
benchmark configuration is as follows:

o Solve uy = uge+uyy + f(2,x,y), a two dimensional dif-
fusion equation with a forcing function f(z,x,y) which
can be viewed as the external input for u(z,x,y).

e Program U, which computes u(z,x,y), owns a 1024 x

1024 array which is evenly distributed among the par-
ticipating processes.

o Four configurations are considered. Program U has ei-
ther 4, 8, 16, or 32 processes.

e Program F, which computes f(z,x,y) has four pro-
cesses p1, P2, p3, and ps, each of which is responsible
for a 512 x 512 array.

e There is no data exchange between process p; and p;
with i=1,2, and 3.

e Data of size 1024 x 1024 is transferred from f(z,x,y)
to u(z,x,y) with matching policy REGL and precision
2.5. Program F is the exporter program and program
U is the corresponding importer program.

e Process p; performs extra computational work to make
it the slowest process in program F', and it may also run
more slowly than any of processes in program U (with
respect to matching export/import calls).

e Processes p; in F with i=1,2, and 3 run faster than any
of the processes in program U for all four configura-
tions of U.

The experiment was performed on a cluster of Pentium
4 2.8GHz machines connected via Gigabit Ethernet. The
execution times for exporting data in the slowest process p;
of program F are shown in Figure 4. Here each run per-
formed 1001 data exports, and to simulate multi-resolution
coupling, one out of every twenty exported data objects end
up being transferred to program U (those are the ones that
matched). The results are from six runs for each configura-
tion. The time for exporting data was measured because it
shows the effectiveness of the buddy-help optimization.

Figure 4(a) shows the case when the importer program
U has only 4 processes and is running more slowly than the
exporter program F. In this case every exported data object
will be saved in the framework buffer because there is no
way to know which exported data objects might be needed
for a match — therefore the execution time for all 1001 data

2900

2800

2700

2600

2500

time (us)

2400

2300

2200

2100
1 101 201 301 401 501 601 701 801 901 1001
Iteraticn

2900

2800

2700

2600

2500

time (us)

2400

2300

2200

2100

1 101 201 301 401 501 601 701 801 901 1001
iteration

(a) Coupled with 4 Importer Processes

(b) Coupled with 8 Importer Processes

7000

6000

5000

2000

1000

1 101 201 301 401 501 601 701 801 901 1001

Iteration

4500

4000

3500

3000

2500

time (us)

2000

1500

1000

500

o ! " Il !
1 101 201 301 401 501 601 701 801 901 1001
Iteration

(c) Coupled with 16 Importer Processes

(d) Coupled with 32 Importer Processes

Figure 4. Data Exporting Time for the Slowest Export Process

exports should be similar and Figure 4(a) confirms that, ex-
cept for early iterations (where the time is 8% greater) and
after 600 iterations (where the time is 4% less). The extra
8% is a result of initialization of the framework and its un-
derlying data structures. The 4% decrease in later iterations
is likely the result of less congestion in the network and a
lighter workload in the framework, because the times shown
in Figure 4(a) are from the slowest process p; in program F,
and after 600 iterations all other processes p;, i =1, 2, and
3, in program F have already completed.

By keeping the size of the distributed data array fixed
(1024 x 1024), the program U runs faster as the number of
importer processes increases — because less computation is
performed for each importing process. Figure 4(b) shows
the case when the importer program U has 8 processes, but
it is still running slower than the exporter program F. The
result is very similar to the case of 4 processes.

The results start to become more interesting when pro-
gram U has 16 processes, as shown in Figure 4(c). Here

U catches up to process py in program F, and a typical
scenario is shown in Figure 5, where D@t denotes the dis-
tributed data D at the simulation time t. Process p; receives
the first data request D@20 after exporting 14 copies of
D in line 5. Because the matching policy is REGL (de-
scribed in Section 3.1) and the tolerance is 2.5, the accept-
able region is [17.5, 20] and the reply from process py is
{D@20, PENDING, D@14.6}, which means that for the re-
quest D@20, the answer is PENDING and the current latest
exported data is D@14.6. Once the answer is generated,
process ps knows immediately that any version of D ex-
ported with a timestamp less than 17.5, as in lines 10-11,
can be discarded it is not in the acceptable region.

Process p; then receives the buddy-help message in line
8, which is the reply MATCH and the match D@19.6, for the
earlier request from the fastest process in F. Once the match
D@19.6 has been determined, even though the export with
that timestamp has not been occurred in process p; yet, any
future data exported with a timestamp less than 19.6, as in

lines 10-13, can be discarded. This shows the benefit of
buddy-help.

This pattern occurs again after the match D@19.6 is pro-
duced by process p;. Because extra memory allocations
and deallocations memcpys are performed by process py, as
shown in the beginning part of Figure 4(c), the processes in
program U have a chance to catch up so that between suc-
cessive data transfers new data requests will show up ear-
lier, and the number of skipped data copies increases (so T;
starts to decrease.) For example 4 memcpys are skipped in
lines 10-13 and then 7 memcpys are skipped in lines 26-29
of Figure 5. Eventually the optimal state, as shown in Fig-
ure 6, is reached and maintained, where only the matched
data are buffered in the framework. The optimal state has
the following characteristics:

e For each matched and then transferred data object, a
corresponding buddy-help message will be received
early enough by a slow exporter process. (In the ex-
ample, that is process p;.)

e For slow exporter processes, the framework can deter-
mine which versions (timestamps) of exported data ob-
jects will be requested by the corresponding importer
program even before those data are exported, and only
the matched data objects are buffered in the frame-
work.

e The remaining exported data that is not a match will
not be saved by the framework. Namely 7; is equal to
0 once the optimal state is entered.

By keeping the exporter program and its participating
processes fixed, the exporter program can reach the opti-
mal state earlier if the importer program is running faster.
The reason is that when the importer program is running
faster, the related exporter processes will receive the data
requests earlier, and based on the information provided by
buddy-help, unmatchable data can be identified earlier and
more memcpys can be skipped (so 7; starts to decrease.)
This claim can be validated from the data in Figures 4(c)
and 4(d). Both configurations have the exact same exporter
program and around 400 iterations are needed to reach the
optimal state when the importer program U has 16 pro-
cesses, but only around 25 iterations are needed to reach
the optimal state when the importer program U has 32 pro-
cesses.

The performance benefits of avoiding unnecessary
buffering from the buddy-help optimization depend on the
ratio of the size of the acceptable region to the inter-arrival
time between successive importer match requests. Consider
the following example. If the matching policy is REGL and
the precision is 5.0, the result with buddy-help is shown in
Figure 7. After receiving the request for D@10.0, the ac-
ceptable region would be identified as [5.0, 10.0], and the

[e IR o) NV I SN ON] N =

— e e e e e e e e \©
01NN kW= O

DD NN NN NN~
N0 Nk WD = OO

W W W W NN
W= OO X

34

export D@1.6, call memcpy.
export D@2.6, call memcpy.

export D@14.6, call memcpy.
receive request for D@20,
reply {D@20, PENDING, D@14.6}.
remove D@1.6, ---, D@14.6.
receive buddy-help {D@20, YES, D@19.6}.
remove D@16.6.
export D@15.6, skip memcpy.
export D@16.6, skip memcpy.
export D@17.6, skip memcpy.
export D@18.6, skip memcpy.
export D@19.6,
call memcpy,
send D@19.6 out.
export D@20.6, call memcpy.
export D@21.6, call memcpy.

export D@31.6, call memcpy.

receive request for D@40,
reply {D@40, PENDING, D@31.6}.
remove D@19.6, ---, D@30.6.

receive buddy-help {D@40, YES, D@39.6}.
remove D@31.6.

export D@32.6, skip memcpy.

export D@33.6, skip memcpy.

export D@38.6, skip memcpy.
export D@39.6,

call memcpy,

send D@39.6 out.
export D@40.6, call memcpy.

Figure 5. A Typical Buddy-Help Scenario

export D@1,
call memcpy,
send D@1 out.
export D@1g, skip memcpy.

export D@t,, skip memcpy.
export D@t;,

call memcpy,

send D@fg out.

Figure 6. Optimal State

1 | export D@1.6, call memcpy.

2 | export D@2.6, call memcpy.

3 | export D@3.6, call memcpy.

4 | receive request for D@10.0,

5 reply {D@10.0, PENDING, D@3.6}.
6 remove D@1.6, ---, D@3.6.

7 | receive buddy-help {D@10.0, YES, D@9.6}.
8 | export D@4.6, skip memcpy

9 | export D@5.6, skip memcpy.

10 :

11 | export D@8.6, skip memcpy.

12 | export D@9.6,

13 call memcpy.

14 send D@9.6 out.

15 | export D@10.6

16 :

Figure 7. With Buddy-Help

exported data object D@4.6 in line 8 will not saved because
it is outside of the acceptable region. However all exported
data in lines 9-11, which are within the acceptable region,
are not saved either because they are not the match, D@9.6,
which became known via the buddy-help mechanism. Fig-
ure 8 shows a different result without buddy-help for the
same configuration. In that example, whenever acceptable
data is exported, as shown in lines 9-18, the new exported
data object is the best current candidate for a match, so
must be saved, and the previous best candidate can be safely
deleted. The final match will be identified only after a data
object is exported outside the acceptable region, which is
D@10.6 in lines 19-21.

The buddy-help message, which is the answer from the
fastest process in an exporter program, plays an important
part here — the farther the fastest process progresses, the
more help the slowest process can get. However the pro-
cesses in most scientific data-parallel programs will not usu-
ally get out of sync by too much, because data exchanges
between the processes within the program occur relatively
frequently, loosely synchronizing the processes. But if (1)
at least one of the processes py acts as a data source, which
receives external data and performs its computation without
using data from its peer processes, and (2) non-blocking
data transfers (such as MPI_Isend) or advanced facilities
such as Remote Direct Memory Access (RDMA) over In-
finiBand [13] are used for intra-program communication
such that multiple copies of the computed data objects (with
different timestamps) can be kept in the same program, then
the fastest process has an opportunity to stay ahead and to
help other, slower peer processes.

1 | export D@1.6, call memcpy.
2 | export D@2.6, call memcpy.
3 | export D@3.6, call memcpy.
4 | receive request for D@10.0,
5 reply {D@10.0, PENDING, D@3.6}.
6 remove D@1.6, ---, D@3.6.
7 | export D@4.6, skip memcpy.
8 | export D@5.6, call memcpy.
9 | export D@6.6,

10 call memcpy,

11 remove D@5.6.

12 | export D@7.6,

13 call memcpy,

14 remove D@6.6.

15 :

16 | export D@9.6,

17 call memcpy,

18 remove D@8.6.

19 | export D@10.6,

20 call memcpy,

21 send D@9.6 out.

22 | export D@11.6

23 :

Figure 8. Without Buddy-Help

6 Conclusion

We have describe an optimization, called buddy-help,
that improves the overall performance of a loosely-coupled
framework for coupled simulations with parallel compo-
nents. The method reduces the time to export data from
the slowest component in a coupled set of components. By
taking advantages of the collective properties of the data
transfers operations in the framework, this performance
enhancement can be achieved by eliminating the cost of
buffering operations that are otherwise required. We have
shown the effectiveness of the mechanism in a carefully de-
signed micro-benchmark and shown other related scenarios.

This is a work in progress — we are currently investigat-
ing several issues related to our coupling framework, in-
cluding integration with non-blocking data transfers or ad-
vanced data transfer facilities in modern high performance
networks (e.g., RDMA over InfiniBand), the performance
effects of finite buffer space in a coupled component, and
the applicability of the framework to large-scale scientific
simulation applications.

References

[1] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn,
L. Mclnnes, S. Parker, and B. Smolinski. Toward a Com-

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

mon Component Architecture for high-performance scien-
tific computing. In Proceedings of the The Eighth IEEE
International Symposium on High Performance Distributed
Computing (HPDC-8). IEEE Computer Society Press, 1999.
F. Bertrand, R. Bramley, A. Sussman, D. E. Bernholdt, J. A.
Kohl, J. W. Larson, and K. B. Damevski. Data redistribution
and remote method invocation in parallel component archi-
tectures. In Proceedings of the 19th IEEE International Par-
allel and Distributed Processing Symposium (IPDPS 2005).
IEEE Computer Society Press, 2005.

G. Edjlali, A. Sussman, and J. Saltz. Interoperability of data
parallel runtime libraries. In Proceedings of the Eleventh
International Parallel Processing Symposium. IEEE Com-
puter Society Press, April 1997.

P. Fasel and S. Mniszewski. PAWS: Collective interac-
tions and data transfers. In Proceedings of the 10th IEEE
International Symposium on High Performance Distributed
Computing (HPDC-10), Washington, DC, USA, 2001. IEEE
Computer Society.

G. Geist, J. Kohl, and P. Papadopoulos. CUMULVS: Provid-
ing fault tolerance, visualization and steering of parallel ap-
plications. Int. J. High-Perform. Comput. Appl., 11(3):224—
235, August 1997.

W. L. George, J. G. Hagedorn, and J. E. Devaney. Parallel
programming with interoperable MP1. Dr. Dobb’s Journal,
(357):49-53, February 2004.

T. I. Gombosi, K. G. Powell, D. L. D. Zeeuw, C. R. Clauer,
K. C. Hansen, W. B. Manchester, A. J. Ridley, I. I. Rous-
sev, I. V. Sokolov, Q. F. Stout, and G. T6th. Solution-
adaptive magnetohydrodynamics for space plasmas: Sun-
to-Earth simulations. IEEE Comput. Sci. Eng., 6(2):14-35,
2004.

X. Jiao, M. T. Campbell, and M. T. Heath. ROCCOM: an
object-oriented, data-centric software integration framework
for multiphysics simulations. In Proceedings of the 17th
Annual International Conference on Supercomputing, pages
358-368. ACM Press, 2003.

T. Kurc, U. Catalyurek, X. Zhang, J. Saltz, M. Peszynska,
R. Martino, M. Wheeler, A. Sussman, C. Hansen, M. Sen,
R. Seifoullaev, P. Stoffa, C. Torres-Verdin, and M. Parashar.
A simulation and data analysis system for large scale, data-
driven oil reservoir simulation studies. Concurrency and
Computation: Practice and Experience, 17(11):1441-1467,
2005.

J. Larson, R. Jacob, and E. Ong. The Model Coupling
Toolkit: A new Fortran90 toolkit for building multiphysics
parallel coupled models. Int. J. High-Perform. Comput.
Appl., 19(3):277-292, 2005.

J.-Y. Lee and A. Sussman. High performance commu-
nication between parallel programs. In Proceedings of
2005 Joint Workshop on High-Performance Grid Comput-
ing and High-Level Parallel Programming Models (HIPS-
HPGC 2005). IEEE Computer Society Press, April 2005.

S. Lefantzi, J. Ray, and H. N. Najm. Using the Common
Component Architecture to design high performance scien-
tific simulation codes. In Proceedings of the 17th Interna-
tional Symposium on Parallel and Distributed Processing
(IPDPS 2003). IEEE Computer Society Press, 2003.

[13]

(14]

[15]

[16]

(17]

(18]

J. Liu, J. Wu, and D. K. Panda. High performance RDMA-
based MPI implementation over InfiniBand. Int’l Journal of
Parallel Programming, 32(3), 2004.

MPICH-G2. http://www3.niu.edu/mpi.

R. Rabenseifner. Automatic MPI counter profiling of all
users: First results on a CRAY T3E 900-512. In Proceedings
of the Message Passing Interface Developer’s and User’s
Conference, pages 77-85, 1999.

M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Don-
garra. MPI-The Complete Reference, Second Edition. Sci-
entific and Engineering Computation Series. MIT Press,
1998.

V. S. Sunderam, G. A. Geist, J. Dongarra, and R. Manchek.
The PVM concurrent computing system: evolution, expe-
riences, and trends. Parallel Computing, 20(4):531-545,
1994.

J. S.-C. Wu and A. Sussman. Flexible control of data
transfers between parallel programs. In Proceedings of the
5th IEEE/ACM International Workshop on Grid Computing,
pages 226-234. IEEE Computer Society Press, November
2004.

