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Abstract. A fundamental challenge in Internet computing
(IC) is to efficiently schedule computations having complex
interjob dependencies, given the unpredictability of remote
machines, in availability and time of access. The recent IC
Scheduling theory focuses on these sources of unpredictabil-
ity by crafting schedules that maximize the number of exe-
cutable jobs at every point in time. In this paper, we ex-
perimentally investigate the key question: does IC Schedul-
ing yield significant positive benefits for real IC? To this end,
we develop a realistic computation model to match jobs to
client machines and conduct extensive simulations to com-
pare IC-optimal schedules against popular, intuitively com-
pelling heuristics. Our results suggest that for a large range of
computation-dags, client availability patterns, and two quite
different performance metrics, IC-optimal schedules signifi-
cantly outperform schedules produced by popular heuristics,
by as much as 10–20%.

1 Introduction

Advances in technology have made collections of computers
that communicate across the Internet a viable computational
platform [5], even for solving individual computational prob-
lems [1, 2, 8]. Perhaps the major impediment to scheduling
complex computations efficiently in this new environment is
temporal unpredictability:
• Communication is over the Internet, hence may experi-
ence unpredictable delays.

• Remote computing clients may not be dedicated to per-
forming the work they receive remotely, hence may exe-
cute that work at an unpredictable rate.

This uncertainty makes it difficult to accurately identify crit-
ical paths in complex computations, hence demands a new
scheduling paradigm that acknowledges the strengths and
weaknesses of the Internet as a computational medium.
Recent papers [3, 11, 12, 13] identify a new goal when
scheduling computations consisting of multiple jobs with
complex interdependencies for Internet-based computing
(IC). These sources develop the conceptual and algorithmic
foundations of IC Scheduling for an idealized version of IC.
IC Scheduling attempts to schedule a complex computation in
a manner that always maximizes the number of jobs that are
eligible for allocation to remote clients, seeking to:

• utilize remote clients’ computational resources well, by
always having work available for allocation;

• lessen the likelihood that a computation will stall for lack
of tasks that are eligible for execution.

IC Scheduling focuses on grids of committed clients (cf. the
LHC Computing Grid or the UK e-Science Grid), rather than
completely public ones (as in [8]). Thus, we assume that
clients are trustworthy and that they may tarry but do not dis-
appear.
IC Scheduling theory optimally schedules a large variety of
common computations, such as those in Fig. 1 (whose optimal
schedules are derived in [4], using algorithms from [3, 11]),
as well as myriad less uniform ones. The theory seeks a reg-
imen for scheduling complex IC computations, that has both
a strong theoretical grounding and significant benefit for real
computations. This paper begins to investigate the theory’s
benefits, via the following questions:
• What are reasonable computational models within which
to evaluate the theory’s performance under an a priori
unknown sequence of available client machines?

• Does IC Scheduling theory have significant positive ben-
efit over simpler scheduling heuristics within these mod-
els?

We address these questions by comparing schedules mandated
by the theory against schedules based on popular heuristics,
on randomly generated dags, using two new quality metrics.
Our study shares its motivation with [9] but differs from that
study in three major respects, that lead to our main contribu-
tions.
1. We test the IC-optimal scheduler, ICO, of [11] on hun-
dreds of random dags and many client availability pat-
terns; we generate only dags that are certain to admit
IC-optimal schedules. In [9] a heuristic based on ICO
is tested on four dags that arise in real computations; this
heuristic produces schedules for all dags. We feel that
understanding the performance of the actual ICO sched-
uler is a necessary test for assessing its importance for
real IC.

2. We evaluate ICO against: enhanced versions of FIFO and
LIFO schedulers; a greedy scheduler that employs lo-
cally the scheduling criteria that ICO employs globally;
the competitor in [9] is a FIFO scheduler inspired by the
one used in Condor [2].
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3. Our comparisons employ a new “area-maximizing” met-
ric that measures the average rate of producing eligible
jobs, in addition to the “batched makespan” metric of
[10, 9].

Our results suggest: for a broad range of situations that
one might expect to encounter in IC, ICO achieves sig-
nificant performance improvements over its competitors
for a wide range of client availability patterns.

Note 1 We are comparing algorithmic approaches to schedul-
ing, not scheduling systems that must cope with, e.g., faults,
changes in the computational environment, etc.

Related work. The most closely related study is [9], as dis-
cussed above. The closest sources involving IC Scheduling
theory are: [12, 13], wherein the new scheduling paradigm
is introduced and optimal schedules are computed for sev-
eral uniform dags; [3, 11], wherein ICO is developed; [10],
wherein our “batchedmakespan” quality metric is studied the-
oretically. Our study is motivated by the exciting systems-
and/or application-oriented studies of IC in sources such as
[1, 2, 5, 6, 7, 8, 14]. Traditional, critical-path-based, schedul-
ing is not relevant to our study because temporal unpre-
dictability renders the notion of critical path fuzzy at best.

2 Foundations of IC-Scheduling Theory

The arcs of a dag connect a parent node to a child; sources
have no parents; sinks have no children.
2.1. A Quality Model for IC. When one executes a dag G, a
node v ∈ NG is ELIGIBLE (for execution) only after all of its
parents have been executed. We do not allow recomputation of
nodes, so a node loses its ELIGIBLE status once it is executed.
In compensation, a node v’s execution may render new nodes
ELIGIBLE, if v is their last parent to be executed. A schedule
for G is a rule for selecting which ELIGIBLE node to execute at
each step of an execution of G. We measure the quality of an
execution by the number of ELIGIBLE nodes after each node-
execution—the more, the better. (Note that we measure time
in an event-driven manner, as the number of nodes that have
been executed up to that point.) Our goal is to execute G’s

nodes in an order that maximizes the production rate of ELI-
GIBLE nodes at every step of the computation. A schedule that
achieves this demanding goal is IC-optimal. The significance
of IC optimality stems from the following facts. (1) Sched-
ules that produce ELIGIBLE nodes more quickly may reduce
the chance of the “gridlock” that could occur when no new
jobs can be allocated pending the return of already allocated
ones. (2) If the IC Server receives a batch of requests for jobs
at (roughly) the same time, then having more ELIGIBLE jobs
available allows it to satisfy more requests, thereby increasing
“parallelism.”
2.2. A Framework for IC-Optimal Scheduling.
One prioritizes dags as follows. For i = 1, 2, let the bipar-
tite dag Gi have si sources, and let it admit the IC-optimal
schedule Σi. Let EΣi(x) denote the number of eligible nodes
after executing x jobs using the schedule Σ i. If the following
inequalities hold:1

(∀x ∈ [0, s1]) (∀y ∈ [0, s2]) :
EΣ1(x) + EΣ2(y) ≤ EΣ1(min{s1, x + y})+

EΣ2(max{0, x + y − s1})
(1)

then G1 has priority over G2, denoted G1 ! G2. Informally,
one never decreases IC quality by executing a source of G 1

whenever possible.
One composes dags as follows.
• Start with a set B of base “building block” dags (which
are CBBBs2 in [3, 11]).

• Compose dags G1,G2 ∈ B—which could be the same
dag with nodes renamed to achieve disjointness—to ob-
tain a composite dag G, as follows.
– Let G begin as the sum (or, disjoint union), G 1+G2,
of the dags G1,G2. Rename nodes to ensure that
NG is disjoint fromNG1 andNG2 .

– Select some set S1 of sinks from the copy of G 1 in
the sum G1+G2, and an equal-size set S2 of sources
from the copy of G2 in the sum.

– Pairwise merge the nodes in S1 and S2 in some
way. The resulting set of nodes is G’s node-set; the
induced set of arcs is G’s arc-set.3

1[a, b] denotes the set of integers {a, a + 1, . . . , b}.
2CBBB is short for Connected Bipartite Building Block.
3An arc (u → v) is induced if {u, v} ⊆ NG .
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• Add the dag G thus obtained to the base set B.

We denote the composition operation by ⇑ and say that G is
composite of type [G1 ⇑ G2].
G is a !-linear composition of the CBBBs G1, . . . ,Gn if: (a)
G is composite of type G1 ⇑ · · · ⇑ Gn (composition is asso-
ciative); (b) Gi ! Gi+1, for all i ∈ [1, n − 1].

Theorem 1 ([11]) Let G be a !-linear composition of
G1, . . . ,Gn, where each G i admits an IC-optimal scheduleΣi.
The schedule Σ for G that proceeds as follows is IC optimal.
1. For i = 1, . . . , n, in turn, Σ executes the nodes of G

that correspond to sources of G i, in the order
mandated by Σi.

2. Σ finally executes all sinks of G in any order.

3 The Four Competing Schedulers

3.1. The IC-Optimal Scheduler ICO. One finds in [11] a
suite of algorithms that determine whether or not a dag G can
be decomposed into a set of CBBBs satisfying Theorem 1 and,
if so, uses the theorem to derive an IC-optimal schedule for G.
These algorithms, collectively called scheduler ICO, process
G via the following steps.
1. Prune G to remove all shortcut arcs.

•An arc a = (u → v) is a shortcut if there is a path from
u to v that does not use a.
• The resulting “pruned” dag G ′ shares its IC-optimal
schedules with G.

2. Decompose G′ into CBBBs, G1, . . . ,Gn, such that G′

is composite of type G1 ⇑ · · · ⇑ Gn.
• When such a “parsing” exists, it is unique and can be
found by iteratively greedily removing a maximal CBBB
of G′ all of whose sources are sources of G ′.

3. Replace G ′ by the super-dag G ′′ whose nodes
are the CBBBs G1, . . . ,Gn and whose arcs form a
blueprint of the sequence of compositions that cre-
ated G′.
• Specifically, if G ′ was formed by identifying sources of
CBBB Gi with sinks of CBBB Gj , then there is an arc in
G′′ from supernode G j to supernode G i.

4. Determine whether or not there is an !-linearization
of G1, . . . ,Gn that is consistent with the topological
dependencies within G′′.
• This determines if ! is consistent with a topological
sort of G ′′.

5. If all steps have succeeded, then output the sched-
ule for G mandated by Theorem 1.

3.2. The Competing Heuristic Schedulers.
A. The FIFO heuristic initially enqueues G’s sources into
a FIFO queue Q, in nonincreasing order of outdegree
(maximum-outdegree nodes emerge first); nodes of equal out-
degree are enqueued randomly. FIFO dequeues Q to obtain a

node for a requesting client. When a node v completes exe-
cution, FIFO enqueues, in nonincreasing order of outdegree,
those of v’s children that are newly ELIGIBLE; nodes of equal
outdegree are enqueued randomly.
B. The LIFO heuristic initially pushes G’s sources into a
(LIFO) stack S, in nondecreasing order of outdegree; nodes of
equal outdegree are pushed randomly. LIFO pops S to obtain a
node for a requesting client. When a node v completes execu-
tion, LIFO pushes, in nondecreasing order of outdegree, those
of v’s children that are newly ELIGIBLE execution; nodes of
equal outdegree are pushed randomly.
C. The GREEDY heuristic initially inserts G’s sources, in ran-
dom order, into a MAX-Priority Queue P . (The ultimate or-
der of nodes having distinct outdegrees is determined by P ’s
queuing discipline.) GREEDY uses EXTRACT-MAX on P to
obtain a node for a requesting client. When a node v com-
pletes execution, GREEDY inserts, randomly, those of v’s chil-
dren that are newly ELIGIBLE.

4 The Experimental Setup

We use the following experimental setup to compare ICO
against FIFO, LIFO, and GREEDY.
1. We generate a dag G that is randomwithin a class of dags
that admit IC-optimal schedules; cf. Section 4.1.

2. We execute G using all four schedulers of Section 3.
Since FIFO, LIFO, and GREEDY all involve a degree of
randomization, we invoke each fifty times on each dag
and use the means and variances of their “performances”
for our comparisons with ICO.

3. We compile the statistics that compare the “qualities” of
the executions of step 2. We employ two quality metrics
for our comparisons, which arise from quite distinct in-
tuitions. The first metric can be viewed as measuring the
“average” IC quality of a schedule; the second introduces
a computational model and uses an analogue of “time to
completion” as its metric. Sections 4.2 and 4.3 provide
details.

4.1. On Generating “Random” Dags. Of course, the real
test for any scheduler is to deal with given dags of possibly
complex structures. However, since our goal is to assess the
value of IC optimality when it exists, we “cheat” by evaluating
our competing schedulers on dags that are chosen via random
compositions from among dags that are guaranteed (by results
in [12, 13, 11]) to admit such schedules. Our selection process
proceeds as follows.
1. We select a random target size for the dag we want to
generate (from a few hundred nodes to several thousand).

2. We choose a collection of CBBBs randomly from a
repertoire that is defined and analyzed in [11].

3. We compose the selected CBBBs in ways that are chosen
randomly among compositions that are guaranteed (by
Theorem 1) to preserve IC-optimal schedulability.
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A. Selecting CBBBs. Although we select CBBBs from [11],
our methodology applies easily to any CBBBs that admit IC-
optimal schedules. The CBBBs we use are random-size in-
stantiations of those depicted in Fig. 2.
B. Schedulability and !-priorities among the CBBBs are
specified in [11].
C. Executing random composite dags. We generate dags
as follows.
Selecting random CBBBs. We guarantee that generated
dags admit IC-optimal schedules by constructing random !-
linearizable compositions of CBBBs. We target dags that are
likely to abstract real computations by combining CBBBs as
follows, inspired by the dags in Fig. 1.
1. Random W-dags, abstracting “expansive” dags, that
grow from sources to sinks.

2. Random M-dags, abstracting “reductive” dags, that
shrink from sources to sinks.

3. Random W-dags, “followed by” N-dags, “followed by”
M-dags, abstracting “fork-join” dags, that grow from
sources, then shrink toward sinks.

4. Random compositions of C 2, abstracting convolutional
dags such as the FFT dag.

Randomly composing CBBBs. Having assembled a !-
linearizable selection of CBBBs, we composed them in a
manner that is consistent with Theorem 1. All selections—
of CBBBs, of partially constructed dags to compose, and of
sources and sinks to effect compositions—were random in
terms of both numbers and selected individuals.
Executing dags. ICO is deterministic, but FIFO, LIFO, and
GREEDY all employ randomness. Therefore, we had heuris-
tics execute each generated dag fifty times and used means
and deviations from the results in our comparisons.
4.2. The Area-Maximization Experiment.
A. The area-maximization metric. IC optimality rewards a
schedule Σ for maximizing the number of ELIGIBLE nodes at
every step while executing a dag G. The area-maximization
metric rewards Σ for maximizing the average number of
nodes of G that are ELIGIBLE as G is executed. We term this
average the “area” of Σ, because of the formal analogy with
Riemann sums as approximate integrals.
The plot of schedule Σ is the (n + 1)-entry vector Π(Σ) =
〈EΣ(0), EΣ(1), . . . , EΣ(n)〉. (We retain entries EΣ(0) =
the number of sources of G, and EΣ(n) ≡ 0 for complete-
ness.) The area of schedule Σ is A(Σ) =

∑n
i=0 EΣ(i). Of

course, the normalized area Ê(Σ) def= 1
nA(Σ) is the average

number of nodes of G that are ELIGIBLE under schedule Σ.

Notes. (a) Some dags do not admit any IC-optimal sched-
ule [11], but every dag admits an area-maximizing sched-
ule. (b) If a dag G admits an IC-optimal schedule, then ev-
ery area-maximizing schedule for G is IC optimal, and every
IC-optimal schedule for G is area-maximizing.
B. The area-maximization experiment. This experiment
generates random dags in the manner described earlier. We
study each generated dag G as follows.

1. We compute Ê(ICO) directly, as G is generated.
2. For each heuristic Σ, we execute G fifty times and com-
pute the mean of Ê(Σ), denoted Ẽ(Σ), and the standard
deviation.

We compare schedulers Σ and Σ′ under this metric via the
quantity∆(Σ, Σ′) def= Ẽ(Σ)− Ẽ(Σ′). [Ẽ(ICO) ≡ Ê(ICO) by
convention.] (Note: n · ∆(Σ, Σ′) is the L1 distance between
Π(Σ) and Π(Σ′).) As just observed,∆(ICO, Σ′) ≥ 0.
4.3. The Batched-Makespan Experiment.
A. The batched-makespan metric. This quality met-
ric compares schedulers using a “server-centric,” rather than
“client-centric,” model of IC. The “client-centric” model—
which is the one studied in [3, 11, 12, 13]—views the Server as
being interrupted by the arrival of an available remote client.
In response, the Server allocates an ELIGIBLE job to the client,
if one exists; otherwise, the client “disappears” (say, looking
elsewhere for work). The “server-centric” model—a variant
of the model in [10]—has remote clients arrive in groups at
preassigned times—perhaps, but not necessarily, periodically.
At these times, the Server polls for the presence of both clients
and ELIGIBLE jobs. When a poll finds, say, r ≥ 1 remote
clients and e ≥ 1 ELIGIBLE jobs, the Server choosesmin(r, e)
ELIGIBLE jobs and allocates them, one per client, until either
clients or jobs run out. At this point, unserved clients “disap-
pear” and unallocated jobs are returned to the ELIGIBLE pool.
The “server-centric” model suggests the batched-makespan
metric for a scheduler Σ when executing an n-node dag G.
Given a pattern of arrivals of batched requests, r0, r1, . . .,
meaning that, for each i, ri clients arrive requesting jobs at
the Server’s ith poll, how many pollings does it take to exe-
cute G? Letting E ′

Σ(i) denote the number of ELIGIBLE jobs
at the ith polling, we seek the smallest integer m such that
a0 + a1 + · · ·+ am ≥ n, where a0 = min(r0, E′

Σ(1)), a1 =
min(r1, E′

Σ(2)), . . . , am = min(rm, E′
Σ(m)). Under this

model, the Server may have to allocate r > 1 ELIGIBLE jobs
at once at some polling times. In contrast, ICO always waits
until it sees all EICO(t − 1) jobs that are ELIGIBLE after the
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execution of the (t−1)th job before selecting the tth job to al-
locate to a remote client. This leads to the apparent anomaly:
Under the batched-makespan metric, some schedulers can
conceivably outperform scheduler ICO on some dags. Thus,
under this metric, ICO is actually a heuristic. We justify using
a heuristic by noting that optimizing even a single step under
this metric is NP-Complete [10].
B. The batched-makespan experiment. This experiment
generates random dags as described earlier and studies the ex-
ecution of each dag as follows. We have the Server poll for
clients requesting work according to an externally specified
schedule. At each poll, the number ρ of requests for work
is a random variable with values distributed exponentially in
the set [2, 214]. (Thus, each polling is independent of all oth-
ers.) In common with [9], we assume that job execution times
are distributed normally, with mean 1 and standard deviation
0.1. The variability in the sizes of generated dags, our range
of values for ρ, and the assumed variability in job execution
times combine to give us a picture of how our four schedulers
behave under a rather broad range of situations.
We execute each generated dag G fifty times using each of
our four schedulers. (In contrast to the area-maximization
experiment, for this experiment, ICO encounters random-
ness also, due to the request-arrival rate ρ.) We end
up with four batched execution times, with T (Σ) (Σ ∈
{ICO, FIFO, LIFO, GREEDY} denoting the mean observed
number of pollings required by scheduler Σ. For each G, we
compare ICO against its three competitors via the phase-ratio
T (Σ) ÷ T (ICO) (so larger ratios favor ICO).

5 Experimental Results and Interpretation

5.1 Area-Maximization Results. We present both means
and 95% confidence intervals for ∆(ICO, Σ), for Σ ∈
{FIFO, LIFO, GREEDY}. (The intervals are often so tight that
they are indistinguishable from the means.) To be conserva-
tive and perspicuous, we fitted curves of the form a · v b ( v is
the size of the generated dag) to the convex hull of the lower
envelope of the observed data. Thus fit, ∆(ICO, Σ) always
grew superlinearly and often few super-quadratically
with dag size!

A. Familiar dags. We instantiated the dags of Fig. 1 in sev-
eral different sizes: 3-to-10-level FFT dags and 10-to-100-
level mesh-like dags (to equalize the sizes of the largest dags
tested). The plots in Fig. 3 expose a number of meaning-
ful patterns. Most importantly, ∆(ICO, Σ) grows nontrivially
with the size of the dag being scheduled. Specifically, except-
ing evolving meshes (and evolving trees), which (almost) any
strategy schedules well, we found that:

∆(ICO, Σ) grows superlinearly with dag size.
so that:
The average per-step gain in ELIGIBLE jobs from
using ICO rather than a heuristic grows with dag size.

B. Random composite dags. When perusing our plots in
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Fig. 4, and the following observations, keep in mind that we
are discussing lower bounds on∆(ICO, Σ).
Comparing ICO against its competitors.

∆(ICO, Σ) grows superquadratically with dag size.
so that:
The average per-step gain in ELIGIBLE jobs from
using ICO rather than a heuristic grows superlinearly
with dag size.

The fact that some coefficients a are very small suggests that
the indicated advantage may be discernible only for rather
large dags.
Comparisons among the competitors.
• GREEDY consistently outperforms both other
heuristics—by a considerable margin on composi-
tions of W-dags. This suggests that GREEDY is the best
heuristic scheduler.

• FIFO appears to be the weakest scheduler on composi-
tions of W-dags. This may result from our composition
regimen, which always places W-dags with smaller out-
degrees “on top of” ones with larger outdegrees, which
leads FIFO to execute potentially shallow subtrees in the
expansive regions of a dag, before deeper ones. Thus, we
cannot yet reliably assess the relative quality of FIFO’s
schedules.

• The sparseness of data regarding random compositions
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of W-, N-, and M-dags weakens detailed inferences from
the observed values of a and b. But, recall that these
values describe only lower envelopes.

• The heuristic schedulers perform almost identically on
dags built from cycles.

5.2. Batched-Makespan Results. The difficulty of craft-
ing perspicious 2-dimensional illustrations of our batched-
makespan results, led us to present data here for only two dags
from each class that we studied, selecting dags whose results
are typical of those observed throughout the class. The se-
lected results compare the batched-makespan performance of
each heuristic Σ, as compared with that of ICO, by plotting
the phase-ratio T (Σ) ÷ T (ICO), represented via means and
95% confidence intervals, as a function of the client arrival
rate ρ (plotted in a logarithmic scale along the x-axes of the
plots). Our results suggest an unexpected consistency between

the structural area-maximization metric and the behavioral
batched-makespan metric—at least for an important range of
values of ρ. Specifically, it appears that using schedules of
higher IC quality has a benign effect on batched-makespan.
If this observation is verified by subsequent (planned) study,
then this could greatly simplify the scheduling problem for IC.

A. Familiar dags. The FFT-dag plots of Fig. 5 contain in-
stances in which T (GREEDY) ÷ T (ICO) < 1, indicating that
GREEDY sometimes takes fewer phases to complete than does
ICO, a situation described at the end of Section 4.3.1.

B. Random composite dags. The plots in Fig. 6 pro-
vide insight into schedulers’ “random performance” under the
batched-makespan metric. Notably, these results are quite
consistent with those in [9], despite the differences in the
two studies, as described earlier. The overall “shapes” of the
plots in Figs. 5 and 6 are expected. For extreme values of
ρ, scheduling strategy has no impact on batched makespan.
If requests are very sparse, then any scheduler will generate
enough ELIGIBLE jobs. If there is, effectively, an unlimited
supply of requests, then the batched makespan is really lim-
ited only by the sequential depth of the dag, so any approx-
imately breadth-first allocation of jobs should be roughly as
good as any other. It is only between these extremes that one
discerns significant differences among schedulers. The de-
tailed placement and amplitude of the “humps” in the plots
depend on the structure of the dag being executed. Notably,
though, in no experiment did we note a mean phase-ratio
below 1; i.e.: in all experiments, ICO at least matched
the batched-makespan performance of the competing
heuristics. And, in many instances—cf. Fig. 6—ICO com-
pleted execution in 10-20% fewer phases than its competitors,
over a range of values of ρ.

6 Where We Are, and Where We’re Going

Our study supplements the evidence in [9] that IC-Scheduling
theory has significant postive implications for Internet com-
puting. Our simulations have pitted the ICO scheduler against
three natural heuristics, on hundreds of randomly gener-
ated dags, using both the area-maximization and batched-
makespan quality metrics. The simulations in [9] pit an exten-
sion of ICO against a verison of FIFO on four real dags, using
the batched-makespan metric. The consistency between our
results and those in [9] strengthens our confidence in the new
theory. Of course, the ultimate validation—or refutation—of
the significance of IC Scheduling theory will require experi-
ments with real workloads on real computing platforms. The
integration of G. Malewicz’s PRIO scheduling tool into the
Condor DAGMan tool [2] (cf. [9]) may give us this opportu-
nity. This paper contributes one more step toward confirming
the value of such an endeavor.
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