
Task-pushing: a Scalable Parallel GC Marking Algorithm
without Synchronization Operations

Ming Wu1 and Xiao-Feng Li2

1Institute of Computing Technology

Chinese Academy of Sciences
Haidian District, Beijing, China

wuming@ict.ac.cn

2Middleware Products Division
Software and Solutions Group, Intel Corp

Haidian District, Beijing, China
xiao.feng.li@intel.com

Abstract

This paper describes a scalable parallel marking
technique for garbage collection that does not employ any
synchronization operation. To achieve good scalability,
two major design issues have to be resolved in parallel
marking algorithm, i.e., the overhead of synchronization
operations and load balance. This paper presents task-
pushing, a novel parallel marking algorithm where each
thread proactively gives up its spare tasks to other
threads. Enlightened by the idea of communicating
sequential process (CSP), task-pushing arranges the
computation into a process network, eliminating
synchronization operations in the whole marking process.
Load balance is achieved by dripping tasks from thread
local mark-stack for other threads to execute. To the best
of our knowledge, this is the first parallel marking
algorithm that completely avoids the synchronization
primitives. We evaluated task-pushing in aspects of
queuing efficiency, load balancing strategy,
synchronization overhead, and overall scalability. The
results on a 16-way Intel Xeon machine showed that
task-pushing has better scalability than work-stealing
technique with pseudojbb and GCOld server-kind Java
benchmarks.

1. Introduction

Along with the increasing deployments of shared-
memory multi-core or multi-processor computers, parallel
and concurrent garbage collection (GC) is becoming more
and more important in modern runtime system design. A
well-developed parallel GC can effectively reduce the GC

1-4244-0910-1/07/$20.00 ©2007 IEEE.

pause time, improve the runtime system scalability, and
deliver better performance. Since Halstead introduced the
first parallel GC [8], a variety of algorithms have been
proposed to parallelize the GC process [10, 6, 7, 5, 4, 11,
14]. Today, most of the existing commercial JVMs have
one or more parallel GC algorithms implemented.

Parallel GC needs to partition the collection work for
the available GC threads. The collection process in a
stop-the-world GC includes three main tasks:

1. Enumeration of root references,
2. Discovery of live objects, and
3. Reclamation of the garbage.
The parallelization of task 1 is well understood that

each mutator can enumerate its own root set independently
before the GC threads take control. In a copying GC, task
2 and task 3 are normally carried out together by scanning
the objects when they are forwarded. Their parallelization
is related with the GC copying order [10, 13]. In a
non-copying GC like mark-sweep or compaction GC, task
2 and 3 are usually done in separate phases. Task 2 is the
marking phase, and task 3 is the sweeping or compaction
phase respectively. Task 3 is relatively easier to be
parallelized once marking phase has identified all live
objects with either an auxiliary data structure like
mark-table or the object header meta-data. For example,
the sweeping process can be parallelized by partitioning
the heap regions among the GC threads. Since the free-list
is local to the data-block it tracks, both load-balance and
low synchronization overhead can be achieved straight-
forwardly [4]. The compaction process can be parallelized
once the target addresses of the to-be-moved objects are
computed. Different from its sweeping counterpart,
compaction GC usually partitions the heap regions
according to the targeted compaction space. The difficult
part in parallel compaction is how to preserve the object
order with as few heap passes as possible [1, 14].

The marking phase is the major contributor to GC
pause time in a non-copying stop-the-world GC when
there are lots of live objects in large heap. Parallelization
of the marking work on multiprocessors can alleviate the
problem, but the parallelization efficiency is critical for
the finally achieved server application performance. In
sequential marking process, an auxiliary mark-stack is
usually used. Every unmarked object reference that is
found during object scanning is pushed onto the stack. The
whole marking process can be viewed as iterations over
the mark-stack elements. In each iteration, GC thread pops
the top element off the stack, scans its referenced object,
and pushes unmarked object references onto the stack. At
first glance, this process is trivial to be parallelized
because of its perfect iterative property. A straightforward
parallelization is to share the mark-stack among GC
threads for pushing and popping. But it requires intensive
synchronized accesses to the mark-stack, which usually
means high overhead and low scalability when the number
of processors is big.

Some improvements were proposed to reduce the
synchronization overhead [6, 7, 5, 11]. Endo et al. [6] has
designed a load-balancing mechanism called work-
stealing. When a GC thread runs out of its work, it can
steal half of the tasks in another GC thread’s stealable
mark queue. Their work achieved impressive scalability
when evaluated on servers with big number of processors.
Since the stealable mark queue accesses are still critical
sections, the synchronized access operations had to be
carefully designed. For example, they improved the queue
access algorithm from simple lock-then-steal sequence to
try-lock-then-steal sequence during their development.
Flood et al. [7] further improved their algorithm with a
non-blocking implementation of a double-ended queue.
Their implementation is known to have the best scalability
for the marking phase up to now.

We believe the marking phase can be improved further
when the synchronization operations can be removed
completely. In this paper, we present a scalable parallel
marking technique called task-pushing that achieves this
goal. Task-pushing is different from all prior arts in
parallel GC research in how the tasks are allocated and
balanced among the GC threads. It applies the idea of
communicating sequential process (CSP) [9] for thread
coordination, hence achieving the merits of CSP in both
synchronization and load balance. In task-pushing, each
GC thread proactively discovers other GC threads that
may want more work, and then pushes new tasks to them
through a communication channel. Previously, tasks are
assigned by either accessing a globally-shared task pool or
stealing from other threads’ task lists. These traditional
ways of thread coordination cannot avoid thread
synchronization primitives.

The contributions of this paper include:
1. We designed a CSP-based parallel marking

algorithm for non-copying GC, which does not use
any thread synchronization primitives;

2. In order to enable the CSP-based design, we
developed a high-performance queue data structure
that can be accessed by two threads simultaneously
without atomic operation;

3. We studied the load-balancing strategies for both
queuing and task selecting mechanisms;

4. We evaluated our parallel marking design on real
hardware platform. Moreover, the marking phase
was evaluated separately from other GC phases.
This is important for us to understand the behavior
characteristics of the specific phase.

We implemented task-pushing algorithm in Harmony,
an Apache open source implementation of Java SE [2],
and evaluated it on a 16-way Intel Xeon multiprocessor
platform. We also implemented Flood’s optimized
work-stealing algorithm for comparison. The results
demonstrate that task-pushing can achieve 8.3 times
speedup with 16 processors with pseudojbb and GCOld.
Moreover, task-pushing showed increasingly better
performance than work-stealing when the processor
number increases.

1.1 Organization

The rest of the paper is organized as follows. Next in
section 2 we will discuss the related work. Then we
introduce the algorithm of task-pushing and the queue data
structure used for CSP process network in section 3.
Section 4 is detailed discussion on the load-balancing
techniques we developed. We evaluated task-pushing with
server benchmarks in section 5. Finally in section 6 is the
conclusion and future work.

2. Related Work

Parallel GC design was started from Halstead [8]. His
copying GC was developed for Multilisp on shared
memory multiprocessors. Each processor has its local
heap organized as semi-space and moves objects from any
from-space to its to-space. The algorithm uses lock bits to
manipulate forwarding pointers and has no support for
load-balancing, which resulted in limited scalability.

Imai and Tick [10] extended Halstead’s parallel
copying GC with dynamic load balancing. The idea is to
put blocks with gray objects into a shared work pool, so
that any thread that has finished its block scanning can
grab a new block from the pool. This algorithm requires
synchronized operations on both the from-space objects
and work pool accesses.

Endo et al. [6] constructed a parallel stop-the-world
mark-sweep GC and used work-stealing for load balance.
The GC threads periodically check the auxiliary queues
and if empty then move some tasks to them. Other starved

threads can steal tasks from the queues. The accesses to
the stealable mark queues are synchronized. Lockings are
also needed for mark bits manipulation. They noted that
substantial processor cycles are consumed by the locking
operations, and improved the algorithm by using atomic
CAS (compare-and-swap) instruction for mark bits
manipulation.

Flood et al. [7] extended Endo’s work in their
mark-compaction and copying GCs. They improved the
load-balancing mechanism with a cheaper work stealing
mechanism, which was based on a double-ended queue
proposed by Arora et al. [3].

Cheng and Blelloch [5] designed a real-time GC that
supports both parallelism and concurrency. Their collector
balances the work by employing a single shared stack
among all threads. They used room synchronization [16]
for the shared stack accesses and copy-copy
synchronization for forwarding pointer accesses. Both
synchronization mechanisms use atomic instructions.

Attanassio et al. [4] developed a couple of parallel GCs
in different algorithms, including copying, mark-sweep,
generational or non-generational. They used a shared list
of work buffers for load balancing. Each processor
repeatedly grabs a work buffer from the shared list. Any
new references found are entered into the local work
buffer. They avoided using atomic operation for object
marking in mark-sweep collectors, but had to use atomic
operation for the shared list accesses.

Ossia et al. [11] proposed a “server-oriented” GC that
is parallel, incremental and mostly concurrent. They
developed load balancing mechanism called work packet
management, which is similar to the work pool of Imai’s;
but their GC partitions the global pool into sub-pools to
reduce the atomic operations.

Abuaiadh et al. [1] extended Flood’s parallel order-
preserving compaction by reducing the number of heap
passes from three to two, and balanced the work by
splitting the heap into lots of small areas. More recently,
Kermany and Petrank’s Compressor [14] requires only
one heap pass for parallel compaction. The parallelization
of the compaction in these GCs are orthogonal to our
parallelized marking phase, they can be combined to
construct a highly scalable parallel mark-compaction GC.

At the same time as Compressor was presented,
Siegwart and Hirzel presented a parallel hierarchical
copying GC [13]. They borrowed Imai’s algorithm to
parallel the young generation collection in IBM’s J9 JVM
while achieving hierarchical copying order.

3. Task-Pushing Algorithm

In this section, we describe the design of the task-
pushing algorithm. We will give a brief description about

the major design points at high-level, then we discuss the
queuing mechanism in details.

3.1 CSP-style task sharing

As we described in Section 1 “Introduction”, the
marking phase during collection is an iterative process
over the mark-stack. Our parallelization algorithm firstly
eliminates the shared mark-stack by maintaining separate
local mark-stacks for different GC threads. Each GC
thread acquires their initial tasks by evenly partitioning the
root set references among the GC threads1. A new task is
generated when an unmarked object is met during object
scanning. By default, newly generated tasks are always
pushed onto the mark-stack of the scanning thread. Since
we implemented mark bits in object header meta-data and
the mark process is idempotent, the synchronization on
mark-bit manipulation is not required for correctness. In
this way, we have a trivial parallel marking algorithm
without any synchronization operations, although it might
be badly load-balanced.

Our next step for parallelization is to allow the GC
threads to share tasks, i.e., a thread can put its spare tasks
into one or more queues so that other threads can grab
them off the queues. Designing of the queue is critical for
load-balance hence the scalability. We found the concept
of CSP-based dataflow computation can be very well
applied here. Each GC thread can be viewed as a
sequential process, and the queues for task exchange are
communication channels. Consequently, the overall
marking process represents a process network. The good
scalability merit of CSP computation can be achieved
naturally. Based on the experiences in Shangri-La project
by Chen et al. [18], we designed the process network for
parallel marking as illustrated in Figure 1.

Every GC thread maintains an array of queues, one for
each peer thread. The queues are the communication
channels between GC threads. A queue is identified with a
tuple <i,j>, meaning thread i pushes into and thread j pops
off it. Queue <i,j> is an output queue of thread i; at the
same time, it is an input queue of thread j. All the output
queues of thread i are <i, *>, and all the input queues of
thread j are <*, j>, where the asterisk symbol * refers to
any legal number as a thread index.

GC thread i operates over its local mark-stack as usual,
while occasionally pushing selected tasks into the queues
<i, *> that have vacancies, and popping tasks off the
queues <*, i> that have items. Figure 1 gives the pseudo
code of task-pushing algorithm. Boolean variable
Exit_Marking indicates whether the marking phase is
ended. mark_stack[i] is the local mark-stack of Thread i.

1 Wilson et al. [17] believed the roots should be scanned in declaration

order for good locality. Our algorithm can balance the work loads well
in spite of the root reference partitioning strategy.

Figure 1. Pseudo code of task-pushing

When the queue <i,j> is full, Thread i skips the task
pushing step. In this situation, Thread j can not be idle
waiting for new tasks because its input queues are holding
tasks at the moment.

Except for the queue operation, there is no other thread
synchronization which might be needed to coordinate the
threads activities. Once started, all threads will keep busy.
We can expect good scalability from it as long as the
process can be correctly terminated. Next we describe the
termination mechanism.

Marking phase termination. The termination issue exists
because a thread cannot locally determine if it should exit
the marking phase. Empty mark-stack and empty input
queues do not necessarily mean it has no more tasks, since
other threads may pass new tasks to it soon.

We developed a termination detection mechanism
enlightened by Peterson’s mutual exclusion algorithm
[19]. No CAS operation is required and the pseudo code is
shown in Figure 2 with the same symbol denotations as in
Figure 1.

A GC thread is arbitrarily designated to be the
termination detecting thread (Thread 0 in the code). It
executes different code sequence than all the rest threads
(Thread i). A global flag terminating is introduced to
indicate if the termination detection should be carried on.
It is set TRUE by Thread 0 when it has no task, and set
FALSE by other threads if any of them has tasks. Flag
no_work[i] is maintained by Thread i to indicate whether
it has tasks. When Thread 0 has no task, it sets
terminating, and then checks if all other threads have no
task either. If this is the case, Thread 0 will check again
the terminating flag. If it is still TRUE, Thread 0 notifies
other threads the marking phase is finished and exits.
Thread i simply loops over if all its input queues are
empty. Inside the loop, it might be notified by Thread 0 to
exit the marking phase. Otherwise, if it can get new tasks

from the input queues, Thread i simply clears the flags and
returns to normal execution, whose entry is labeled as
NORMAL. The proof of the correctness of the termination
detection algorithm is presented in Appendix A.

Up to this point, we described briefly the main idea of
task-pushing. Next we will give a detailed discussion on
the queue data structure that enables the synchronization-
free computation.

3.2 High Performance Queuing Design

Performance of CSP-style computation on real
platform largely depends on the queue implementation.
Since the commodity platforms do not have special
hardware support for queuing, we developed a high
performance queue data structure that does not have
atomic CAS operations.

The idea of the queue is simple. We abstracted the
basic queuing mechanism into single writer (enqueuing
thread) and reader (dequeuing thread), i.e., SWSR
(single-writer-single-reader) queue, and guaranteed the
access correctness with cache coherence protocol. The
queues with multiple writers or readers can be composed
of SWSR sub-queues. We have used the queue design in
our CSP-style network application development. In task-
pushing, the SWSR queue is the only kind of queue which
is needed.

All the entries in SWSR queue are required to be
word-aligned, thus their loads and stores are guaranteed to
be atomic. SWSR queue utilizes the inherent atomicity
property of word-aligned memory access, which is
available in all known modern processors. Since object
reference is word-sized, this requirement is not a real
constraint. SWSR queue uses value NULL (or any value
that is invalid as a task identifier, i.e., object reference) to
indicate a vacant entry. Any non-NULL entry holds a task
identifier. Once an entry is dequeued, the reader stores a
NULL into the entry; and before the writer enqueues, it
checks whether the current entry value is NULL. The
queue has a head and a tail pointer that always point to the

Figure 2. Pseudo code of marking phase
termination detection

Thread i:
while(!Exit_Marking) {

while ((task = pop (mark_stack[i])) != NULL) {
 new_tasks = execute(task);
 foreach(task in new_tasks) {

if(j needs task-pushing and queue <i,j> has vacancy){
 enqueue(task, <i,j>);
 continue;
 }
 push(task, mark_stack[i]);

}
 }
 if(queue <k,i> for any k has item){
 task = dequeue(<k,i>);
 push(task, mark_stack[i]);
 }
}

Thread 0:

terminating = FALSE;
if(mark_stack[0] and <*,0> are empty)

terminating = TRUE;
else

goto NORMAL;

for(all thread i)

if(! no_work[i] || <i, *> not empty)
goto NORMAL;

if(terminating){

Exit_Marking = TRUE;
exit_mark_phase;

}

goto NORMAL;

Thread i (i≠0):

no_work[i] = FALSE;
if(mark_stack[i] and <*,i> are empty)

no_work[i] = TRUE;
else

goto STOP_CHECK;

while(<*, i> are empty){

if(Exit_Marking){
exit_mark_phase;

}
}

STOP_CHECK:
no_work[i] = FALSE;
terminating = FALSE;
goto NORMAL;

T1

T2

T3

mark-stacks queuesthreads

first filled and first unfilled entry respectively.

The pseudo code of the algorithm is given in Figure 3,
with a label for each statement. A proof of the design’s
correctness is presented in Appendix B.

4. Load Balance in Task-Pushing

There are some design subtleties in task-pushing in
order to achieve good scalability. In this section, we
describe two issues with load balancing and our solutions.

4.1 Task selection for balanced sharing

As we described, any unmarked object references
found during object scanning are regarded as newly
generated tasks. In our first design of task-pushing, the
new tasks of Thread i are fairly assigned to all threads by
1) enqueuing them into <i, *> that have vacant entries
and, 2) pushing them onto Thread i’s local mark-stack.
Each GC thread maintains a counter for task assignment to
peer threads in round-robin fashion.

This simple load-balancing strategy can keep all
threads busy; however, there is still room for
improvement. For example, in some situation, a busy
thread may not be able to immediately generate new tasks
for other idle threads when lots of its scanned objects have
no non-null reference.

We improved the algorithm by allowing task dripping
from the bottom of the mark-stack. When a GC thread is
scanning an object, not able to generate any new task and
a peer thread has vacancies in its input queue, the thread
will drip a task from the bottom of its mark-stack for the
peer thread. The implementation of this double-ended
mark-stack borrows some idea from Arora’s work-stealing
queue [3] but needs no atomic instruction since the
mark-stack is local to the GC thread. The evaluation of
task selection strategy will be presented in Section 5.

4.2 Queue length selection

The SWSR queues can also be a source of load balance.
In the same situation as described above, if the queued
tasks’ execution can not immediately produce new tasks,
load imbalance can be resulted in. The other situation is
that some big tasks (tasks with some big tree hanging on
them) are deposited in a queue waiting for being
processed.

To reduce the potential negative impact of the queue on
load-balance, an obvious choice is to reduce the length of
the queue to mitigate the task deposition in the queue, so
that the shared tasks can be more evenly distributed
among the threads. In the extreme case where the queue
has only one entry, it actually degenerates into a shared
variable between two threads. However, when the length
of the queues becomes too short, the weakened buffering
effect may cause some loss of scalability. We expect the
single entry queue brings the most scalable result when
the GC threads are mostly busy-working locally and task
passing happens infrequently; but longer queue would win
if the threads exchange tasks frequently. Since the SWSR
queue was designed for network streaming applications, it
can support very high throughput of data passing. The
average data throughput requirement of task-pushing is far
lower than the capability of a long queue. We believe a
very small number of queue entries are enough to sustain
the best scalability of most sever applications. The
evaluation presented in next section confirmed our
speculation.

A short queue has an important implication to the
system memory requirement. Since task-pushing
maintains N*(N-1) number of queues for N threads, a short
queue means the total memory requirement for the queues
are negligible compared to the heap size. For example,
with a two-entry queue, all the queues for 16 threads
consume less than 2KB memory (i.e., 1920 bytes).

5. Evaluations

5.1 Benchmarks and Experimental Platform

Task-pushing is mainly designed for large-scale
parallel computer, so we evaluated the technique with
GCOld and pseudojbb, two benchmarks that imitate server
application behavior. We ran both benchmarks with heap
size of 320MB.

GCOld [15] is a synthetic benchmark which models a
range of server applications in their general object
characteristics. The program maintains an array of
pointers to roots of binary trees. A run of GCOld consists
of an initialization phase and a steady state. The
initialization phase allocates and initializes the data
structures, and the steady state consists of a number of

void* dequeue(que){
d1: head = que->head;
d2: data = que->entry[head];
d3: if(data == NULL)
d4: return NULL;
d5: que->entry[head] = NULL;
d6: que->head = (head+1)%queue_size;
d7: return data;
}
(b) Dequeue implementation

bool enqueue(que, data){
e1: tail = que->tail;
e2: old = que->entry[tail];
e3: if(old != NULL)
e4: return FALSE;
e5: que->entry[tail] = data;
e6: que->tail = (tail+1) % queue_size;
e7: return TRUE;
}
(c) Enqueue implementation

struct queue {
 int head;
 int tail;
 void* entry[queue_size];
};

Figure 3. SWSR queue implementation

(a) Data structure of SWSR queue. All
entry[queue_size] elements are word-
aligned.

steps. Each step allocates certain amount of short-lived
data, does some amount of mutator work. Each step also
allocates certain number of bytes in a long-lived tree
structure that replaces some existing tree and makes it
unreachable, then does some pointer-mutations to the
long-lived trees. The parameters that control the work
amount of each step can be specified in command line. In
our experiments, we ran GCOld with 300MB of live data,
and allocated three bytes of short-lived data for every byte
of long-lived data.

Pseudojbb is the same as SPECjbb2000 [12] except
that it executes a certain number of transactions to
measure the execution time, rather than running for a
certain period of time to measure the processed
transactions. In our evaluation, we configured pseudojbb
to run 8 warehouses with each warehouse processing
500000 transactions.

The platform we used for the evaluation is a machine
of Unisys Enterprise Server ES7000 500 series. It has 16
Intel Xeon processors, each with 3.0 GHz frequency and
4MB cache. The operating system installed is Fedora Core
release 3 from Redhat.

In order to best characterize the behavior, we measured
only the parallel marking phase so as to exclude any
potential confusion caused by other phases. We always
use equal number of GC threads to the used processors,
and one thread is affined to one processor.

5.2 SWSR queue length selection

We measured task-pushing scalability with different
SWSR queue lengths from one entry to 64 entries. The
result shows in Figure 4, which plots the speedup curves
with processor number ranging from one through sixteen.
On the whole, the curves show that the scalability
increases with shorter queue when the length is bigger
than two. Best scalability is achieved at length one for

Figure 5. Scalability with different task
selection strategy (with single-entry queue)

pseudojbb, while for GCOld, the best scalability with
large processor number is achieved at queue length two.
The result is consistent with our analysis, indicating that
the buffering effect of the queue for high-throughput is not
critical for task-pushing; but we were still surprised a little
bit by the obvious gaps between the curves.

5.3 Task selection strategy

To better understand the implications of task selection
in task-pushing, we implemented three different strategies:
new task assigning, old task dripping, and the hybrid of
the two.
New-task assigning: During object scanning, only the

newly generated tasks are passed to other threads.
Old-task dripping: GC thread always drips tasks from the

bottom of its mark-stack and passes them to its peer
threads.

Hybrid task sharing: If there is no new task generated
during object scanning, the GC thread drips tasks
from local mark-stack; otherwise, the new tasks are
passed to other threads.

The measured speedups are shown in Figure 5. The
strategy “new-task assigning” got staggered speedups
when processor number increases. The staggering is
obviously caused by load-unbalance, i.e., an additional
GC thread may not improve the overall marking
performance because some threads dominate the marking
time. The other two strategies which have task dripping
achieved rather smooth scalability curves, whereas the
“old-task dripping” is always the winner. The results are
compliant with the intuition: The object reference in the
bottom of the mark-stack usually represents bigger task
compared to the one on the stack top, because the heap
tracing algorithm implies that earlier pushed object often
has a deeper tree hanging on it. This demonstrates that
task dripping is essential for task-pushing on large scale
multiprocessor platforms.

GCOld

0
1
2
3
4

5
6
7
8
9

1 3 5 7 9 11 13 15

Number of processors

linear

old-task
dripping

hybrid task
sharing

new -task
assigning

Pseudojbb

0
1
2

3
4
5
6

7
8
9

1 3 5 7 9 11 13 15

Number of processors

Sp
ee

du
ps

GCOld

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of processors

linear

que len = 1

que len = 2

que len = 4

que len = 8

que len = 16

que len = 32

que len = 64

Pseudojbb

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of processors

Sp
ee

du
ps

Figure 4. Task-pushing scalability of
different queue length (with hybrid task
sharing strategy as explained in Section 5.3)

Figure 6. Synchronization impact on
scalability (with hybrid task sharing strategy
and two-entry queue)

5.4 Impact of atomic CAS operations

It is of our strong interests to understand how the

elimination of synchronization operations impacts the
scalability. There are two places where the atomic CAS
operations were traditionally used in GC marking but are
removed in task-pushing. One is for the mark bits
manipulation in object header meta-data; the other is for
the queue accesses.

Removal of the atomic CAS operations for mark-bit
manipulation would potentially cause duplicate markings.
Although the duplication does not lead to any
incorrectness, we want to know how the benefit of CAS
removal outweighs the duplicate marking overhead. In
Figure 6, compared to the curve without atomic CAS
operations, the scalability with atomic mark-bit
manipulation is rather bad. The gap starts early from two
processors and increases with more processors. The reason
is that marking operation is required for every live object
and small additional overhead may incur serious
performance issue.

The purpose of the SWSR queues is to construct the
CSP-style thread coordination and to balance workloads
among GC threads. Besides the impact of queue length
selection on scalability, it is also interesting to know the
effect of CAS operation removal. Figure 6 shows that the
scalability of a CAS-based queue is not as bad as the
mark-bit CAS manipulation. With small number of
processors, the gap to the “no CAS” curve is almost
invisible. But the “CAS on queue” curve declines much
faster than other curves when the processor number
increases. At the point of 16 processors, it drops to be
close to the speedup of “CAS on mark-bit”. This is
understandable. The total mark-bit manipulations are
constant no matter how many processors are involved,
while the count of queue accesses depends on the task
pushing frequencies. With more processors used in
parallel marking, more task pushings happen for load
balancing. Besides, CAS overhead is not only the

instruction cost itself, but also includes the overhead of
failed trials of synchronized operations. More processors
cause more contentions, which in turn lead to more failed
trials.

5.5 Task Pushing vs. Work Stealing

To better understand how scalable task-pushing is, we
compared it with work-stealing technique. We developed
a work-stealing implementation of parallel marking that
can replace the task-pushing one in the same GC module
of Harmony. The algorithm is based on Flood et al. [7] for
its well-known good scalability.

Figure 7 compares the execution time and the
scalability of both parallel marking designs. The task-
pushing is configured as follows: 1) SWSR queue length
is one; 2) Task selection strategy is “old-task dripping”; 3)
There is no atomic CAS operation on the queue access and
mark-bit manipulation. The work-stealing implementation
in the comparison has no atomic CAS on mark-bit
manipulation either.

Figure 7.(a)(b) are for pseudojbb, and (c)(d) are for
GCOld. Figure 7.(a) and (c) are the execution time
normalized to sequential marking execution time and only
show the partial curves for processor number from 5
through 16. Task-pushing performs a little worse when the
number of processors is less than 7, and then it delivers
increasingly better performance than work-stealing when
processor number becomes bigger. The more processors
are used, the better performance task-pushing can deliver.
The initial little worse performance of task-pushing with
small processor number is caused by additional operations
for each task execution: Task-pushing maintains a counter
to guide the target thread selection for task pushing.
However, this overhead will be amortized by the benefits

N
or

m
al

iz
ed

 ti
m

e
S

pe
ed

up
s

Figure 7. Performance and scalability of
task-pushing compared with work-stealing

Pseudojbb

0

1

2

3

4

5

6

7

8

9

1 3 5 7 9 11 13 15

Number of processors

Sp
ee

du
ps

GCOld

0

1

2

3

4

5

6

7

8

9

1 3 5 7 9 11 13 15

Number of processors

linear

no CAS

CAS on queue

CAS on mark-bit

of effective scalability exhibited with a larger number of
processors.

Figure 7.(b) and (d) are the speedups comparison. The
data show that task-pushing has better scalability than
work-stealing, and the gap is larger with bigger processor
number. It is interesting to find that the speedups of
work-stealing reach an inflection point at 15 processors,
while task-pushing keeps growing.

One question people may have with task-pushing is if it
is still able to keep good load balance when different
threads generate new tasks at very different rates. This can
happen when the object graph looks like Figure 8. If there
are two threads, and the only root reference to O1 is
assigned to Thread 1, it will push O2 and O3 at scanning
O1. When it pops O3 for scanning, O4 and O5 will be
pushed, and O2 is dripped and pushed to Thread 2. If the
marking goes on in this way, Thread 1 will be always busy
generating new tasks, but Thread 2 will have no task
generated at all. Obvious load imbalance will be incurred
if the object graph is similar to the one in Figure 8, not
mention the situation with more than two threads. But we
believe work-stealing will behave no better in this
situation. Because of the nature of GC marking that traces
live object from root set references, the inherent data
dependence in this kind of object graph dictates little
marking parallelism. No matter whether it is task-pushing
or work-stealing, load imbalance is ensured unless the
data dependence can be broken by speculative
computation. Fortunately, we have not encountered this
situation in any of our experimented applications.

6. Conclusion and Future Work

Marking is one of the major components in non-
copying GC design. It usually dominates the GC pause
time when there are lots of live objects in a large heap.
Parallel marking can effectively reduce the execution
time. To achieve good scalability in large-scale
multiprocessor platforms, synchronization operations and
load balance must be carefully designed. We developed

a parallel GC marking technique called task-pushing that
addresses these two main issues. Task-pushing applied
CSP-style computation to coordinate the thread activities,
and a high-performance SWSR queue was designed to
entirely remove the synchronization overhead. Different
task sharing strategies were studied and we found task
dripping can deliver best scalability.

We evaluated task-pushing and work-stealing with two
server-kind benchmarks on a commodity 16-way machine.
The results showed that task-pushing, though with a little
bit more operations for single task execution, brings
increasingly better performance when the processor
number increases.

We are now looking at how to apply the task-pushing
technique into sliding compaction phase, so that the whole
collection process can be parallelized in CSP-style and
scales well on large-scale multiprocessor environment.
For next step we are also interested to eliminate the
synchronization primitives in a copying collector.

Acknowledgement

We thank Prof. Weiwu Hu for promoting the
collaborations in this work. We thank Chen Yang and
Chunrong Lai for kind helps in both experiments and
discussions. We would also thank Intel for supporting this
work.

References

[1] Diab Abuaiadh, Yoav Ossia, Erez Petrank, and Uri

Silbershtein. An efficient parallel heap compaction
algorithm. In ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA’04), ACM SIGPLAN Notices, Vancouver,
October 2004. ACM Press.

[2] Apache Harmony, http://incubator.apache.org/harmony/.
[3] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton.

Thread scheduling for multiprogrammed multiprocessors.
In ACM Symposium on Parallel Algorithms and
Architectures (SPAA), pages 119-129, 1998.

[4] Clement R. Attanasio, David F. Bacon, Anthony Cocchi,
and Stephen Smith. A comparative evaluation of parallel
garbage collector implementations. In Workshop on
Languages and Compilers for Parallel Computing (LCPC),
August 2001.

[5] Perry Cheng and Guy E. Blelloch. A parallel, real-time
garbage collector. In Proceedings of the 2001 ACM
SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2001, volume 36(5) of ACM
SIGPLAN Notices, pages 125-136, Snowbird, Utah, USA,
May 2001. ACM Press.

[6] Toshio Endo, Kenjiro Taura, and Akinori Yonezawa. A
scalable mark-sweep garbage collector on large-scale
shared-memory machines. In Proceedings of High
Performance Networking and Computing (SC’97), 1997.

Figure 8. Object graph that may result in
very different task generating rates

O1
O3

O2
O4

O6
O8

O5
O7

O9
O11

O10

[7] Christine Flood, Dave Detlefs, Nir Shavit, and Catherine
Zhang. Parallel garbage collection for shared memory
multiprocessors. In Usenix Java Virtual Machine Research
and Technology Symposium (JVM’01), Monterey, CA,
April 2001.

[8] Robert H. Halstead, Jr. Multilisp: A language for concurrent
symbolic computation. Transactions on Programming
Languages and Systems (TOPLAS), 7(4):501-538, October
1985.

[9] C. A. R. Hoare. Communicating Sequential Processes.
http://www.usingcsp.com/. June 21, 2004.

[10] Akira Imai and Evan Tick. Evaluation of parallel copying
garbage collection on a shared-memory multiprocessor.
IEEE Transactions on Parallel and Distributed Systems,
4(9), 1993.

[11] Yoav Ossia, Ori Ben-Yitzhak, Irit Goft, Elliot K.
Kolodner, Victor Leikehman, and Avi Owshanko. A
parallel, incremental and concurrent GC for servers. In
Proceedings of the 2002 ACM SIGPLAN Conference on
Programming Languages Design and Implementation,
ACM SIGPLAN Notices, Berlin, June 2002. ACM Press.

[12] Standard Performance Evaluation Corporation.
SPECjbb2000 (Java Business Benchmark) Documentation,
release 1.01 edition, 2001

[13] David Siegwart, Martin Hirzel. Improving Locality with
Parallel Hierarchical Copying GC. In International
Symposium on Memory management (ISMM), 2006.

[14] Haim Kermany, Erez Petrank. The Compressor: concurrent,
incremental, and parallel compaction. In Proceedings of the
2006 ACM SIGPLAN Conference on Programming
Languages Design and Implementation (PLDI 2006), Pages
354-363, 2006.

[15] Sun Microsystems Laboratories. GCOld Benchmark.
http://www.experimentalstuff.com/Technologies/GCold/.

[16] Guy E. Blelloch, Perry Cheng, and Phil Gibbons. Room
synchronizations. In ACM Symposium on Parallel
Algorithms and Architecture. ACM Press, July 2001.

[17] Paul R. Wilson, Michael S. Lam, and Thomas G. Moher.
Effective “static-graph” reorganization to improve locality
in garbage-collected systems. In Proceedings of the 1991
ACM SIGPLAN Conference on Programming Languages
Design and Implementation (PLDI), 1991.

[18] Michael K. Chen, Xiao-Feng Li, Ruiqi Lian, Jason H. Lin,
Lixia Liu, Tao Liu, Roy Ju: Shangri-La: achieving high
performance from compiled network applications while
enabling ease of programming. In Proceedings of the 2005
ACM SIGPLAN Conference on Programming Languages
Design and Implementation (PLDI 2005), Pages 224-236,
2005.

[19] J. Anderson, Y.-J. Kim, and T. Herman, " Shared-memory
Mutual Exclusion: Major Research Trends Since 1986 ",
Distributed Computing, Volume 16, pages 75-110, 2003.

Appendix A: Proof of correctness of marking process
termination

The tasks in the process can only stay in either the
thread mark-stacks or the queues. If some threads have
tasks in their mark-stacks, the marking phase cannot finish
because the no_work[i] value for some Thread i is
FALSE. To prove the correctness of the termination
mechanism, we only need to show that no thread can exit
the marking phase when no task is in mark-stacks while
some tasks are in the queues. There are two scenarios.
1. The trivial case. The tasks in the queues are seen by

Thread 0 during its checking on no_work[i] and <i,*>
for all Thread i. In this case, Thread 0 simply stops
the checking and goes back to normal execution. No
thread can exit the marking phase.

2. The tasks in the queues are not seen by Thread 0
during its checking on no_work[i] and <i,*> for all
Thread i. The cause for this scenario is that, after
Thread 0 checks Thread i and finds no_work[i] is
TRUE and <i,*> are empty, another Thread j puts
some tasks into Thread i’s input queue <j, i>. If this
happens, Thread 0 must check Thread j’s status after
its checking on Thread i’s status; otherwise, it should
have found Thread j has tasks and stop the checking
at early time. Then we need consider two sub-cases:
a) Thread i dequeues the tasks from <j, i> before

Thread 0 checks Thread j’s status. Since Thread
i only dequeues after it sets terminating flag to
be FALSE, Thread 0 will find no_work[j] is
TRUE and <j,*> are empty, but then
terminating is FALSE. No thread can exit
marking phase.

b) Thread i dequeues the tasks from <j, i> after
Thread 0 checks Thread j’s status. In this
situation, Thread 0 will find <j, i> is not empty
when it checks Thread j’s status. It will stop the
checking and goes back to normal execution.

End of Proof ■

Appendix B: Proof of correctness of SWSR queue
design

We describe the proof with the illustration in Figure 3.
To prove the correctness of the algorithm, it is enough if
we can prove the operations of dequeue and enqueue are
atomic with respect to each other, i.e., sequence d1~d7
and sequence e1~e7 act like they are not interleaved in
any execution scenarios. We only need to consider the
shared data related load (d2 or e2), check (d3 or e3), and
store (d5 or e5) operations, since the non-shared data
operations are not relevant to the atomicity.

If head and tail are pointing to different entries, then
reader and writer are accessing different entries, they are
atomic for each other obviously. We consider only the

case when head and tail are pointing to the same entry.
Then there are two cases:
1. The operations of enqueue and dequeue are not

interleaved. This is a trivial case.
2. The operations of enqueue and dequeue are

interleaved, i.e., either d2 happens between e2 and e5,
or e2 happens between d2 and d5. In either case, the
two threads will load the same entry value. Since their
checkings in d3 and e3 are for opposite conditions

(NULL or non-NULL), only one of them can find the
condition is FALSE, and continues to perform the
store operation (d5 or e5). Then the two threads’
operation sequences look externally just like
non-interleaved, since we can always think of the
thread that returns without storing finishes before the
storing thread starts.

End of Proof ■

