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Abstract 
 

This paper describes a scalable parallel marking 
technique for garbage collection that does not employ any 
synchronization operation. To achieve good scalability, 
two major design issues have to be resolved in parallel 
marking algorithm, i.e., the overhead of synchronization 
operations and load balance. This paper presents task- 
pushing, a novel parallel marking algorithm where each 
thread proactively gives up its spare tasks to other 
threads. Enlightened by the idea of communicating 
sequential process (CSP), task-pushing arranges the 
computation into a process network, eliminating 
synchronization operations in the whole marking process. 
Load balance is achieved by dripping tasks from thread 
local mark-stack for other threads to execute. To the best 
of our knowledge, this is the first parallel marking 
algorithm that completely avoids the synchronization 
primitives. We evaluated task-pushing in aspects of 
queuing efficiency, load balancing strategy, 
synchronization overhead, and overall scalability. The 
results on a 16-way Intel Xeon machine showed that 
task-pushing has better scalability than work-stealing 
technique with pseudojbb and GCOld server-kind Java 
benchmarks. 
 
 
1. Introduction 
 

Along with the increasing deployments of shared- 
memory multi-core or multi-processor computers, parallel 
and concurrent garbage collection (GC) is becoming more 
and more important in modern runtime system design. A 
well-developed parallel GC can effectively reduce the GC 
_____________________ 
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pause time, improve the runtime system scalability, and 
deliver better performance. Since Halstead introduced the 
first parallel GC [8], a variety of algorithms have been 
proposed to parallelize the GC process [10, 6, 7, 5, 4, 11, 
14]. Today, most of the existing commercial JVMs have 
one or more parallel GC algorithms implemented. 

Parallel GC needs to partition the collection work for 
the available GC threads. The collection process in a 
stop-the-world GC includes three main tasks:  

1. Enumeration of root references,  
2. Discovery of live objects, and 
3. Reclamation of the garbage.  
The parallelization of task 1 is well understood that 

each mutator can enumerate its own root set independently 
before the GC threads take control. In a copying GC, task 
2 and task 3 are normally carried out together by scanning 
the objects when they are forwarded. Their parallelization 
is related with the GC copying order [10, 13]. In a 
non-copying GC like mark-sweep or compaction GC, task 
2 and 3 are usually done in separate phases. Task 2 is the 
marking phase, and task 3 is the sweeping or compaction 
phase respectively. Task 3 is relatively easier to be 
parallelized once marking phase has identified all live 
objects with either an auxiliary data structure like 
mark-table or the object header meta-data. For example, 
the sweeping process can be parallelized by partitioning 
the heap regions among the GC threads. Since the free-list 
is local to the data-block it tracks, both load-balance and 
low synchronization overhead can be achieved straight- 
forwardly [4]. The compaction process can be parallelized 
once the target addresses of the to-be-moved objects are 
computed. Different from its sweeping counterpart, 
compaction GC usually partitions the heap regions 
according to the targeted compaction space. The difficult 
part in parallel compaction is how to preserve the object 
order with as few heap passes as possible [1, 14].  



The marking phase is the major contributor to GC 
pause time in a non-copying stop-the-world GC when 
there are lots of live objects in large heap. Parallelization 
of the marking work on multiprocessors can alleviate the 
problem, but the parallelization efficiency is critical for 
the finally achieved server application performance. In 
sequential marking process, an auxiliary mark-stack is 
usually used. Every unmarked object reference that is 
found during object scanning is pushed onto the stack. The 
whole marking process can be viewed as iterations over 
the mark-stack elements. In each iteration, GC thread pops 
the top element off the stack, scans its referenced object, 
and pushes unmarked object references onto the stack. At 
first glance, this process is trivial to be parallelized 
because of its perfect iterative property. A straightforward 
parallelization is to share the mark-stack among GC 
threads for pushing and popping. But it requires intensive 
synchronized accesses to the mark-stack, which usually 
means high overhead and low scalability when the number 
of processors is big. 

Some improvements were proposed to reduce the 
synchronization overhead [6, 7, 5, 11]. Endo et al. [6] has 
designed a load-balancing mechanism called work- 
stealing. When a GC thread runs out of its work, it can 
steal half of the tasks in another GC thread’s stealable 
mark queue. Their work achieved impressive scalability 
when evaluated on servers with big number of processors. 
Since the stealable mark queue accesses are still critical 
sections, the synchronized access operations had to be 
carefully designed. For example, they improved the queue 
access algorithm from simple lock-then-steal sequence to 
try-lock-then-steal sequence during their development. 
Flood et al. [7] further improved their algorithm with a 
non-blocking implementation of a double-ended queue. 
Their implementation is known to have the best scalability 
for the marking phase up to now. 

We believe the marking phase can be improved further 
when the synchronization operations can be removed 
completely. In this paper, we present a scalable parallel 
marking technique called task-pushing that achieves this 
goal. Task-pushing is different from all prior arts in 
parallel GC research in how the tasks are allocated and 
balanced among the GC threads. It applies the idea of 
communicating sequential process (CSP) [9] for thread 
coordination, hence achieving the merits of CSP in both 
synchronization and load balance. In task-pushing, each 
GC thread proactively discovers other GC threads that 
may want more work, and then pushes new tasks to them 
through a communication channel. Previously, tasks are 
assigned by either accessing a globally-shared task pool or 
stealing from other threads’ task lists. These traditional 
ways of thread coordination cannot avoid thread 
synchronization primitives. 

The contributions of this paper include: 
1. We designed a CSP-based parallel marking 

algorithm for non-copying GC, which does not use 
any thread synchronization primitives; 

2. In order to enable the CSP-based design, we 
developed a high-performance queue data structure 
that can be accessed by two threads simultaneously 
without atomic operation; 

3. We studied the load-balancing strategies for both 
queuing and task selecting mechanisms; 

4. We evaluated our parallel marking design on real 
hardware platform. Moreover, the marking phase 
was evaluated separately from other GC phases. 
This is important for us to understand the behavior 
characteristics of the specific phase. 

We implemented task-pushing algorithm in Harmony, 
an Apache open source implementation of Java SE [2], 
and evaluated it on a 16-way Intel Xeon multiprocessor 
platform. We also implemented Flood’s optimized 
work-stealing algorithm for comparison. The results 
demonstrate that task-pushing can achieve 8.3 times 
speedup with 16 processors with pseudojbb and GCOld. 
Moreover, task-pushing showed increasingly better 
performance than work-stealing when the processor 
number increases.  
 
1.1 Organization 
 

The rest of the paper is organized as follows. Next in 
section 2 we will discuss the related work. Then we 
introduce the algorithm of task-pushing and the queue data 
structure used for CSP process network in section 3. 
Section 4 is detailed discussion on the load-balancing 
techniques we developed. We evaluated task-pushing with 
server benchmarks in section 5. Finally in section 6 is the 
conclusion and future work. 
 
2. Related Work 
 

Parallel GC design was started from Halstead [8]. His 
copying GC was developed for Multilisp on shared 
memory multiprocessors. Each processor has its local 
heap organized as semi-space and moves objects from any 
from-space to its to-space. The algorithm uses lock bits to 
manipulate forwarding pointers and has no support for 
load-balancing, which resulted in limited scalability. 

Imai and Tick [10] extended Halstead’s parallel 
copying GC with dynamic load balancing. The idea is to 
put blocks with gray objects into a shared work pool, so 
that any thread that has finished its block scanning can 
grab a new block from the pool. This algorithm requires 
synchronized operations on both the from-space objects 
and work pool accesses. 

Endo et al. [6] constructed a parallel stop-the-world 
mark-sweep GC and used work-stealing for load balance. 
The GC threads periodically check the auxiliary queues 
and if empty then move some tasks to them. Other starved 



threads can steal tasks from the queues. The accesses to 
the stealable mark queues are synchronized. Lockings are 
also needed for mark bits manipulation. They noted that 
substantial processor cycles are consumed by the locking 
operations, and improved the algorithm by using atomic 
CAS (compare-and-swap) instruction for mark bits 
manipulation. 

Flood et al. [7] extended Endo’s work in their 
mark-compaction and copying GCs. They improved the 
load-balancing mechanism with a cheaper work stealing 
mechanism, which was based on a double-ended queue 
proposed by Arora et al. [3]. 

Cheng and Blelloch [5] designed a real-time GC that 
supports both parallelism and concurrency. Their collector 
balances the work by employing a single shared stack 
among all threads. They used room synchronization [16] 
for the shared stack accesses and copy-copy 
synchronization for forwarding pointer accesses. Both 
synchronization mechanisms use atomic instructions. 

Attanassio et al. [4] developed a couple of parallel GCs 
in different algorithms, including copying, mark-sweep, 
generational or non-generational. They used a shared list 
of work buffers for load balancing. Each processor 
repeatedly grabs a work buffer from the shared list. Any 
new references found are entered into the local work 
buffer. They avoided using atomic operation for object 
marking in mark-sweep collectors, but had to use atomic 
operation for the shared list accesses. 

Ossia et al. [11] proposed a “server-oriented” GC that 
is parallel, incremental and mostly concurrent. They 
developed load balancing mechanism called work packet 
management, which is similar to the work pool of Imai’s; 
but their GC partitions the global pool into sub-pools to 
reduce the atomic operations. 

Abuaiadh et al. [1] extended Flood’s parallel order- 
preserving compaction by reducing the number of heap 
passes from three to two, and balanced the work by 
splitting the heap into lots of small areas. More recently, 
Kermany and Petrank’s Compressor [14] requires only 
one heap pass for parallel compaction. The parallelization 
of the compaction in these GCs are orthogonal to our 
parallelized marking phase, they can be combined to 
construct a highly scalable parallel mark-compaction GC. 

At the same time as Compressor was presented, 
Siegwart and Hirzel presented a parallel hierarchical 
copying GC [13]. They borrowed Imai’s algorithm to 
parallel the young generation collection in IBM’s J9 JVM 
while achieving hierarchical copying order. 
 
3. Task-Pushing Algorithm 
 

In this section, we describe the design of the task- 
pushing algorithm. We will give a brief description about 

the major design points at high-level, then we discuss the 
queuing mechanism in details. 
 
3.1 CSP-style task sharing 
 

As we described in Section 1 “Introduction”, the 
marking phase during collection is an iterative process 
over the mark-stack. Our parallelization algorithm firstly 
eliminates the shared mark-stack by maintaining separate 
local mark-stacks for different GC threads. Each GC 
thread acquires their initial tasks by evenly partitioning the 
root set references among the GC threads1. A new task is 
generated when an unmarked object is met during object 
scanning. By default, newly generated tasks are always 
pushed onto the mark-stack of the scanning thread. Since 
we implemented mark bits in object header meta-data and 
the mark process is idempotent, the synchronization on 
mark-bit manipulation is not required for correctness. In 
this way, we have a trivial parallel marking algorithm 
without any synchronization operations, although it might 
be badly load-balanced.  

Our next step for parallelization is to allow the GC 
threads to share tasks, i.e., a thread can put its spare tasks 
into one or more queues so that other threads can grab 
them off the queues. Designing of the queue is critical for 
load-balance hence the scalability. We found the concept 
of CSP-based dataflow computation can be very well 
applied here. Each GC thread can be viewed as a 
sequential process, and the queues for task exchange are 
communication channels. Consequently, the overall 
marking process represents a process network. The good 
scalability merit of CSP computation can be achieved 
naturally. Based on the experiences in Shangri-La project 
by Chen et al. [18], we designed the process network for 
parallel marking as illustrated in Figure 1. 

Every GC thread maintains an array of queues, one for 
each peer thread. The queues are the communication 
channels between GC threads. A queue is identified with a 
tuple <i,j>, meaning thread i pushes into and thread j pops 
off it. Queue <i,j> is an output queue of thread i; at the 
same time, it is an input queue of thread j. All the output 
queues of thread i are <i, *>, and all the input queues of 
thread j are <*, j>, where the asterisk symbol * refers to 
any legal number as a thread index. 

GC thread i operates over its local mark-stack as usual, 
while occasionally pushing selected tasks into the queues 
<i, *> that have vacancies, and popping tasks off the 
queues <*, i> that have items. Figure 1 gives the pseudo 
code of task-pushing algorithm. Boolean variable 
Exit_Marking indicates whether the marking phase is 
ended. mark_stack[i] is the local mark-stack of Thread i. 
                                                             
1 Wilson et al. [17] believed the roots should be scanned in declaration 

order for good locality. Our algorithm can balance the work loads well 
in spite of the root reference partitioning strategy. 



 
Figure 1. Pseudo code of task-pushing 

 
When the queue <i,j> is full, Thread i skips the task 
pushing step. In this situation, Thread j can not be idle 
waiting for new tasks because its input queues are holding 
tasks at the moment. 

Except for the queue operation, there is no other thread 
synchronization which might be needed to coordinate the 
threads activities. Once started, all threads will keep busy. 
We can expect good scalability from it as long as the 
process can be correctly terminated. Next we describe the 
termination mechanism. 
 
Marking phase termination. The termination issue exists 
because a thread cannot locally determine if it should exit 
the marking phase. Empty mark-stack and empty input 
queues do not necessarily mean it has no more tasks, since 
other threads may pass new tasks to it soon.  

We developed a termination detection mechanism 
enlightened by Peterson’s mutual exclusion algorithm 
[19]. No CAS operation is required and the pseudo code is 
shown in Figure 2 with the same symbol denotations as in 
Figure 1.  

A GC thread is arbitrarily designated to be the 
termination detecting thread (Thread 0 in the code). It 
executes different code sequence than all the rest threads 
(Thread i). A global flag terminating is introduced to 
indicate if the termination detection should be carried on. 
It is set TRUE by Thread 0 when it has no task, and set 
FALSE by other threads if any of them has tasks. Flag 
no_work[i] is maintained by Thread i to indicate whether 
it has tasks. When Thread 0 has no task, it sets 
terminating, and then checks if all other threads have no 
task either. If this is the case, Thread 0 will check again 
the terminating flag. If it is still TRUE, Thread 0 notifies 
other threads the marking phase is finished and exits. 
Thread i simply loops over if all its input queues are 
empty. Inside the loop, it might be notified by Thread 0 to 
exit the marking phase. Otherwise, if it can get new tasks 

from the input queues, Thread i simply clears the flags and 
returns to normal execution, whose entry is labeled as 
NORMAL. The proof of the correctness of the termination 
detection algorithm is presented in Appendix A. 

Up to this point, we described briefly the main idea of 
task-pushing. Next we will give a detailed discussion on 
the queue data structure that enables the synchronization- 
free computation. 
 
3.2 High Performance Queuing Design 
 

Performance of CSP-style computation on real 
platform largely depends on the queue implementation. 
Since the commodity platforms do not have special 
hardware support for queuing, we developed a high 
performance queue data structure that does not have 
atomic CAS operations.  

The idea of the queue is simple. We abstracted the 
basic queuing mechanism into single writer (enqueuing 
thread) and reader (dequeuing thread), i.e., SWSR 
(single-writer-single-reader) queue, and guaranteed the 
access correctness with cache coherence protocol. The 
queues with multiple writers or readers can be composed 
of SWSR sub-queues. We have used the queue design in 
our CSP-style network application development. In task- 
pushing, the SWSR queue is the only kind of queue which 
is needed. 

All the entries in SWSR queue are required to be 
word-aligned, thus their loads and stores are guaranteed to 
be atomic. SWSR queue utilizes the inherent atomicity 
property of word-aligned memory access, which is 
available in all known modern processors. Since object 
reference is word-sized, this requirement is not a real 
constraint. SWSR queue uses value NULL (or any value 
that is invalid as a task identifier, i.e., object reference) to 
indicate a vacant entry. Any non-NULL entry holds a task 
identifier. Once an entry is dequeued, the reader stores a 
NULL into the entry; and before the writer enqueues, it 
checks whether the current entry value is NULL. The 
queue has a head and a tail pointer that always point to the 

 
Figure 2. Pseudo code of marking phase 
termination detection 

Thread i: 
while( !Exit_Marking ) { 

while ((task = pop (mark_stack[i])) != NULL) { 
    new_tasks = execute( task ); 
    foreach( task in new_tasks)  { 

if(j needs task-pushing and queue <i,j> has vacancy){ 
        enqueue( task, <i,j>); 
        continue; 
      } 
      push(task, mark_stack[i]); 

} 
  } 
  if( queue <k,i> for any k has item ){ 
    task = dequeue( <k,i> ); 
    push(task, mark_stack[i] ); 
  } 
} 

Thread 0:
 
terminating = FALSE; 
if(mark_stack[0] and <*,0> are empty) 

terminating = TRUE; 
else 

goto NORMAL; 
 
for( all thread i) 

if( ! no_work[i] || <i, *> not empty ) 
goto NORMAL; 

 
if( terminating ){ 

Exit_Marking = TRUE; 
exit_mark_phase; 

} 
 
goto NORMAL; 

Thread i  (i≠0):
 
no_work[i] = FALSE; 
if(mark_stack[i] and <*,i> are empty) 

no_work[i] = TRUE; 
else 

goto STOP_CHECK; 
 
while(<*, i> are empty){ 

if( Exit_Marking ){  
exit_mark_phase; 

}  
} 
 
STOP_CHECK: 
no_work[i] = FALSE; 
terminating = FALSE; 
goto NORMAL; 

T1

T2

T3

mark-stacks queuesthreads



 
 
 
first filled and first unfilled entry respectively.  

The pseudo code of the algorithm is given in Figure 3, 
with a label for each statement. A proof of the design’s 
correctness is presented in Appendix B. 
 
4. Load Balance in Task-Pushing 
 

There are some design subtleties in task-pushing in 
order to achieve good scalability. In this section, we 
describe two issues with load balancing and our solutions. 
 
4.1 Task selection for balanced sharing 
 

As we described, any unmarked object references 
found during object scanning are regarded as newly 
generated tasks. In our first design of task-pushing, the 
new tasks of Thread i are fairly assigned to all threads by 
1) enqueuing them into <i, *> that have vacant entries 
and, 2) pushing them onto Thread i’s local mark-stack. 
Each GC thread maintains a counter for task assignment to 
peer threads in round-robin fashion. 

This simple load-balancing strategy can keep all 
threads busy; however, there is still room for 
improvement. For example, in some situation, a busy 
thread may not be able to immediately generate new tasks 
for other idle threads when lots of its scanned objects have 
no non-null reference.  

We improved the algorithm by allowing task dripping 
from the bottom of the mark-stack. When a GC thread is 
scanning an object, not able to generate any new task and 
a peer thread has vacancies in its input queue, the thread 
will drip a task from the bottom of its mark-stack for the 
peer thread. The implementation of this double-ended 
mark-stack borrows some idea from Arora’s work-stealing 
queue [3] but needs no atomic instruction since the 
mark-stack is local to the GC thread. The evaluation of 
task selection strategy will be presented in Section 5. 
 

4.2 Queue length selection 
 

The SWSR queues can also be a source of load balance. 
In the same situation as described above, if the queued 
tasks’ execution can not immediately produce new tasks, 
load imbalance can be resulted in. The other situation is 
that some big tasks (tasks with some big tree hanging on 
them) are deposited in a queue waiting for being 
processed. 

To reduce the potential negative impact of the queue on 
load-balance, an obvious choice is to reduce the length of 
the queue to mitigate the task deposition in the queue, so 
that the shared tasks can be more evenly distributed 
among the threads. In the extreme case where the queue 
has only one entry, it actually degenerates into a shared 
variable between two threads. However, when the length 
of the queues becomes too short, the weakened buffering 
effect may cause some loss of scalability. We expect the 
single entry queue brings the most scalable result when 
the GC threads are mostly busy-working locally and task 
passing happens infrequently; but longer queue would win 
if the threads exchange tasks frequently. Since the SWSR 
queue was designed for network streaming applications, it 
can support very high throughput of data passing. The 
average data throughput requirement of task-pushing is far 
lower than the capability of a long queue. We believe a 
very small number of queue entries are enough to sustain 
the best scalability of most sever applications. The 
evaluation presented in next section confirmed our 
speculation.  

A short queue has an important implication to the 
system memory requirement. Since task-pushing 
maintains N*(N-1) number of queues for N threads, a short 
queue means the total memory requirement for the queues 
are negligible compared to the heap size. For example, 
with a two-entry queue, all the queues for 16 threads 
consume less than 2KB memory (i.e., 1920 bytes). 
 
5. Evaluations 
 
5.1 Benchmarks and Experimental Platform 
 

Task-pushing is mainly designed for large-scale 
parallel computer, so we evaluated the technique with 
GCOld and pseudojbb, two benchmarks that imitate server 
application behavior. We ran both benchmarks with heap 
size of 320MB. 

GCOld [15] is a synthetic benchmark which models a 
range of server applications in their general object 
characteristics. The program maintains an array of 
pointers to roots of binary trees. A run of GCOld consists 
of an initialization phase and a steady state. The 
initialization phase allocates and initializes the data 
structures, and the steady state consists of a number of 

void* dequeue(que){ 
d1: head = que->head; 
d2: data = que->entry[head];  
d3: if( data == NULL ) 
d4:   return NULL; 
d5: que->entry[head] = NULL; 
d6: que->head = (head+1)%queue_size; 
d7: return data; 
} 
(b) Dequeue implementation  
 

bool enqueue(que, data){
e1: tail = que->tail; 
e2: old = que->entry[tail]; 
e3: if( old != NULL )  
e4:    return FALSE; 
e5: que->entry[tail] = data; 
e6: que->tail = (tail+1) % queue_size; 
e7: return TRUE; 
} 
(c) Enqueue implementation  
 

struct queue { 
    int head;  
    int tail; 
    void* entry[queue_size]; 
}; 

Figure 3. SWSR queue implementation 

 
(a) Data structure of SWSR queue. All 
entry[queue_size] elements are word- 
aligned. 
 



steps. Each step allocates certain amount of short-lived 
data, does some amount of mutator work. Each step also 
allocates certain number of bytes in a long-lived tree 
structure that replaces some existing tree and makes it 
unreachable, then does some pointer-mutations to the 
long-lived trees. The parameters that control the work 
amount of each step can be specified in command line. In 
our experiments, we ran GCOld with 300MB of live data, 
and allocated three bytes of short-lived data for every byte 
of long-lived data. 

Pseudojbb is the same as SPECjbb2000 [12] except 
that it executes a certain number of transactions to 
measure the execution time, rather than running for a 
certain period of time to measure the processed 
transactions. In our evaluation, we configured pseudojbb 
to run 8 warehouses with each warehouse processing 
500000 transactions. 

The platform we used for the evaluation is a machine 
of Unisys Enterprise Server ES7000 500 series. It has 16 
Intel Xeon processors, each with 3.0 GHz frequency and 
4MB cache. The operating system installed is Fedora Core 
release 3 from Redhat. 

In order to best characterize the behavior, we measured 
only the parallel marking phase so as to exclude any 
potential confusion caused by other phases. We always 
use equal number of GC threads to the used processors, 
and one thread is affined to one processor. 
 
5.2 SWSR queue length selection 
 
We measured task-pushing scalability with different 
SWSR queue lengths from one entry to 64 entries. The 
result shows in Figure 4, which plots the speedup curves 
with processor number ranging from one through sixteen. 
On the whole, the curves show that the scalability 
increases with shorter queue when the length is bigger 
than two. Best scalability is achieved at length one for 

 

 
Figure 5. Scalability with different task 
selection strategy (with single-entry queue) 

pseudojbb, while for GCOld, the best scalability with 
large processor number is achieved at queue length two. 
The result is consistent with our analysis, indicating that 
the buffering effect of the queue for high-throughput is not 
critical for task-pushing; but we were still surprised a little 
bit by the obvious gaps between the curves. 
 
5.3 Task selection strategy 
 

To better understand the implications of task selection 
in task-pushing, we implemented three different strategies: 
new task assigning, old task dripping, and the hybrid of 
the two. 
New-task assigning: During object scanning, only the 

newly generated tasks are passed to other threads. 
Old-task dripping: GC thread always drips tasks from the 

bottom of its mark-stack and passes them to its peer 
threads. 

Hybrid task sharing: If there is no new task generated 
during object scanning, the GC thread drips tasks 
from local mark-stack; otherwise, the new tasks are 
passed to other threads. 

The measured speedups are shown in Figure 5. The 
strategy “new-task assigning” got staggered speedups 
when processor number increases. The staggering is 
obviously caused by load-unbalance, i.e., an additional 
GC thread may not improve the overall marking 
performance because some threads dominate the marking 
time. The other two strategies which have task dripping 
achieved rather smooth scalability curves, whereas the 
“old-task dripping” is always the winner. The results are 
compliant with the intuition: The object reference in the 
bottom of the mark-stack usually represents bigger task 
compared to the one on the stack top, because the heap 
tracing algorithm implies that earlier pushed object often 
has a deeper tree hanging on it. This demonstrates that 
task dripping is essential for task-pushing on large scale 
multiprocessor platforms. 
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Figure 4. Task-pushing scalability of 
different queue length (with hybrid task 
sharing strategy as explained in Section 5.3) 



 
Figure 6. Synchronization impact on 
scalability (with hybrid task sharing strategy 
and two-entry queue) 

 
5.4 Impact of atomic CAS operations 

 
It is of our strong interests to understand how the 

elimination of synchronization operations impacts the 
scalability. There are two places where the atomic CAS 
operations were traditionally used in GC marking but are 
removed in task-pushing. One is for the mark bits 
manipulation in object header meta-data; the other is for 
the queue accesses.  

Removal of the atomic CAS operations for mark-bit 
manipulation would potentially cause duplicate markings. 
Although the duplication does not lead to any 
incorrectness, we want to know how the benefit of CAS 
removal outweighs the duplicate marking overhead. In 
Figure 6, compared to the curve without atomic CAS 
operations, the scalability with atomic mark-bit 
manipulation is rather bad. The gap starts early from two 
processors and increases with more processors. The reason 
is that marking operation is required for every live object 
and small additional overhead may incur serious 
performance issue.  

The purpose of the SWSR queues is to construct the 
CSP-style thread coordination and to balance workloads 
among GC threads. Besides the impact of queue length 
selection on scalability, it is also interesting to know the 
effect of CAS operation removal. Figure 6 shows that the 
scalability of a CAS-based queue is not as bad as the 
mark-bit CAS manipulation. With small number of 
processors, the gap to the “no CAS” curve is almost 
invisible. But the “CAS on queue” curve declines much 
faster than other curves when the processor number 
increases. At the point of 16 processors, it drops to be 
close to the speedup of “CAS on mark-bit”. This is 
understandable. The total mark-bit manipulations are 
constant no matter how many processors are involved, 
while the count of queue accesses depends on the task 
pushing frequencies. With more processors used in 
parallel marking, more task pushings happen for load 
balancing. Besides, CAS overhead is not only the 

instruction cost itself, but also includes the overhead of 
failed trials of synchronized operations. More processors 
cause more contentions, which in turn lead to more failed 
trials. 
 
5.5 Task Pushing vs. Work Stealing 
 

To better understand how scalable task-pushing is, we 
compared it with work-stealing technique. We developed 
a work-stealing implementation of parallel marking that 
can replace the task-pushing one in the same GC module 
of Harmony. The algorithm is based on Flood et al. [7] for 
its well-known good scalability. 

Figure 7 compares the execution time and the 
scalability of both parallel marking designs. The task- 
pushing is configured as follows: 1) SWSR queue length 
is one; 2) Task selection strategy is “old-task dripping”; 3) 
There is no atomic CAS operation on the queue access and 
mark-bit manipulation. The work-stealing implementation 
in the comparison has no atomic CAS on mark-bit 
manipulation either. 

Figure 7.(a)(b) are for pseudojbb, and (c)(d) are for 
GCOld. Figure 7.(a) and (c) are the execution time 
normalized to sequential marking execution time and only 
show the partial curves for processor number from 5 
through 16. Task-pushing performs a little worse when the 
number of processors is less than 7, and then it delivers 
increasingly better performance than work-stealing when 
processor number becomes bigger. The more processors 
are used, the better performance task-pushing can deliver. 
The initial little worse performance of task-pushing with 
small processor number is caused by additional operations 
for each task execution: Task-pushing maintains a counter 
to guide the target thread selection for task pushing. 
However, this overhead will be amortized by the benefits 
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Figure 7. Performance and scalability of 
task-pushing compared with work-stealing 
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of effective scalability exhibited with a larger number of 
processors. 

Figure 7.(b) and (d) are the speedups comparison. The 
data show that task-pushing has better scalability than 
work-stealing, and the gap is larger with bigger processor 
number. It is interesting to find that the speedups of 
work-stealing reach an inflection point at 15 processors, 
while task-pushing keeps growing. 

One question people may have with task-pushing is if it 
is still able to keep good load balance when different 
threads generate new tasks at very different rates. This can 
happen when the object graph looks like Figure 8. If there 
are two threads, and the only root reference to O1 is 
assigned to Thread 1, it will push O2 and O3 at scanning 
O1. When it pops O3 for scanning, O4 and O5 will be 
pushed, and O2 is dripped and pushed to Thread 2. If the 
marking goes on in this way, Thread 1 will be always busy 
generating new tasks, but Thread 2 will have no task 
generated at all. Obvious load imbalance will be incurred 
if the object graph is similar to the one in Figure 8, not 
mention the situation with more than two threads. But we 
believe work-stealing will behave no better in this 
situation. Because of the nature of GC marking that traces 
live object from root set references, the inherent data 
dependence in this kind of object graph dictates little 
marking parallelism. No matter whether it is task-pushing 
or work-stealing, load imbalance is ensured unless the 
data dependence can be broken by speculative 
computation. Fortunately, we have not encountered this 
situation in any of our experimented applications. 
 
6. Conclusion and Future Work 
 

Marking is one of the major components in non- 
copying GC design. It usually dominates the GC pause 
time when there are lots of live objects in a large heap. 
Parallel marking can effectively reduce the execution 
time. To achieve good scalability in large-scale 
multiprocessor platforms, synchronization operations and 
load balance must be carefully designed. We developed 

  

a parallel GC marking technique called task-pushing that 
addresses these two main issues. Task-pushing applied 
CSP-style computation to coordinate the thread activities, 
and a high-performance SWSR queue was designed to 
entirely remove the synchronization overhead. Different 
task sharing strategies were studied and we found task 
dripping can deliver best scalability.  

We evaluated task-pushing and work-stealing with two 
server-kind benchmarks on a commodity 16-way machine. 
The results showed that task-pushing, though with a little 
bit more operations for single task execution, brings 
increasingly better performance when the processor 
number increases. 

We are now looking at how to apply the task-pushing 
technique into sliding compaction phase, so that the whole 
collection process can be parallelized in CSP-style and 
scales well on large-scale multiprocessor environment. 
For next step we are also interested to eliminate the 
synchronization primitives in a copying collector. 
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Appendix A: Proof of correctness of marking process 
termination 

The tasks in the process can only stay in either the 
thread mark-stacks or the queues. If some threads have 
tasks in their mark-stacks, the marking phase cannot finish 
because the no_work[i] value for some Thread i is 
FALSE. To prove the correctness of the termination 
mechanism, we only need to show that no thread can exit 
the marking phase when no task is in mark-stacks while 
some tasks are in the queues. There are two scenarios. 
1. The trivial case. The tasks in the queues are seen by 

Thread 0 during its checking on no_work[i] and <i,*> 
for all Thread i. In this case, Thread 0 simply stops 
the checking and goes back to normal execution. No 
thread can exit the marking phase. 

2. The tasks in the queues are not seen by Thread 0 
during its checking on no_work[i] and <i,*> for all 
Thread i. The cause for this scenario is that, after 
Thread 0 checks Thread i and finds no_work[i] is 
TRUE and <i,*> are empty, another Thread j puts 
some tasks into Thread i’s input queue <j, i>. If this 
happens, Thread 0 must check Thread j’s status after 
its checking on Thread i’s status; otherwise, it should 
have found Thread j has tasks and stop the checking 
at early time. Then we need consider two sub-cases: 
a) Thread i dequeues the tasks from <j, i> before 

Thread 0 checks Thread j’s status. Since Thread 
i only dequeues after it sets terminating flag to 
be FALSE, Thread 0 will find no_work[j] is 
TRUE and <j,*> are empty, but then 
terminating is FALSE. No thread can exit 
marking phase. 

b) Thread i dequeues the tasks from <j, i> after 
Thread 0 checks Thread j’s status. In this 
situation, Thread 0 will find <j, i> is not empty 
when it checks Thread j’s status. It will stop the 
checking and goes back to normal execution. 

End of Proof ■ 

 
Appendix B: Proof of correctness of SWSR queue 
design 

We describe the proof with the illustration in Figure 3. 
To prove the correctness of the algorithm, it is enough if 
we can prove the operations of dequeue and enqueue are 
atomic with respect to each other, i.e., sequence d1~d7 
and sequence e1~e7 act like they are not interleaved in 
any execution scenarios. We only need to consider the 
shared data related load (d2 or e2), check (d3 or e3), and 
store (d5 or e5) operations, since the non-shared data 
operations are not relevant to the atomicity. 

If head and tail are pointing to different entries, then 
reader and writer are accessing different entries, they are 
atomic for each other obviously. We consider only the 



case when head and tail are pointing to the same entry. 
Then there are two cases: 
1. The operations of enqueue and dequeue are not 

interleaved. This is a trivial case. 
2. The operations of enqueue and dequeue are 

interleaved, i.e., either d2 happens between e2 and e5, 
or e2 happens between d2 and d5. In either case, the 
two threads will load the same entry value. Since their 
checkings in d3 and e3 are for opposite conditions 

(NULL or non-NULL), only one of them can find the 
condition is FALSE, and continues to perform the 
store operation (d5 or e5). Then the two threads’ 
operation sequences look externally just like 
non-interleaved, since we can always think of the 
thread that returns without storing finishes before the 
storing thread starts.  

End of Proof ■ 

 


