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Abstract

We investigate the problem of online routing and wave-
length assignment and the related throughput maximization
problem in wavelength division multiplexing optical net-
works. It is pointed out that these problems are highly inap-
proximable. We evaluate the average-case performance of
several online algorithms, which have no knowledge of fu-
ture arriving connection requests when processing the cur-
rent connection request. Our experimental results on a wide
range of optical networks demonstrate that the average-
case performance of these algorithms are very close to op-
timal.

1 Introduction

Given wavelengthsλ1, λ2, λ3, ..., and a sequence of con-
nection requestsσ = (r1, r2, ..., rm) in a wavelength di-
vision multiplexing (WDM) network, where each connec-
tion requestrj is a source-destination pairrj = (sj , dj),
1 ≤ j ≤ m, therouting and wavelength assignment(RWA)
problem is to establish a lightpathpj for each connection
requestrj and assign a wavelengthλij

to each lightpathpj,
where1 ≤ ij ≤ k, such that no two lightpaths which share
a common link are assigned the same wavelength and that
the numberk of wavelengths used is minimized. We also
consider a related optimization problem of RWA, namely,
the throughput maximization(TM) problem, in which we
are given a fixed numberk of wavelengthsλ1, λ2, ..., λk,
and a sequenceσ of connection requests. The goal is to sat-
isfy as many connection requests as possible by using thek
wavelengths.

Both the RWA and the TM problems contain two sub-
problems, namely, routing (finding a lightpath for each con-
nection request) and coloring (assigning a wavelength to
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each lightpath). Each subproblem alone makes the RWA
and TM problems NP-hard. When a lightpath is given for
each connection request, the RWA problem becomes the
wavelength assignment(WA) problem. It has been proven
that the WA problem and the well known NP-hard graph
coloring problem can be reduced to each other [12]. Hence,
the WA problem has high inapproximability; in particular, if
NP6=ZPP, for any constantδ > 0, no polynomial time WA
algorithm can achieve approximation ration1/2−δ or m1−δ

for m lightpaths in ann-node WDM network [23]. When
there is only one wavelength, the TM problem is precisely
the classicalmaximum disjoint paths(MDP) problem, that
is, finding as many edge-disjoint paths as possible for a se-
quenceσ of source-destination pairs. The MDP problem is
also highly inapproximable; in particular, if P6=NP, for any
constantδ > 0, no polynomial time MDP algorithm can
achieve approximation ratiom1/2−δ for a WDM network
with m edges [14].

The RWA and TM problems have been extensively stud-
ied by many researchers in the last ten years. Various
heuristic methods have been proposed, such as genetic algo-
rithms [9], graph-theoretic modeling [11], partition coloring
[22], integer linear program [5, 27]. A recent survey of var-
ious algorithms for the RWA problem can be found in [13].
The reader is also referred to [28] for information on WDM
optical networks.

In this paper, we consider online routing and wavelength
assignment in WDM optical networks, where connection
requests arrive in the order ofσ, one at a time. Upon the ar-
rival of a connection requestrj , a lightpathpj is established
and its wavelength is assigned immediately without know-
ing the remaining connection requestsrj+1, rj+2, ..., rm,
but only the past connection requestsr1, r2, ..., rj−1. On-
line RWA and TM algorithms are very useful in real ap-
plications, since connection requests typically do not arrive
at the same time, and those arriving earlier should be pro-
cessed before the entire sequence of requests is available.



It is not surprising that the online RWA and TM problems
are highly inapproximable, since the offline RWA and TM
problems already contain highly inapproximable graph col-
oring and disjoint paths problems as subproblems or special
cases. Nevertheless, it is still possible that there exist effec-
tive approximation algorithms with excellent average-case
performance. The main contribution of the paper is to de-
velop several online RWA and TM algorithms and demon-
strate by experimentation that the average-case competi-
tive ratios of these algorithms are very close to optimal. It
should be noticed that while existing work only compare
heuristic algorithms with themselves, we are able to com-
pare the performance of our algorithms with optimal solu-
tions (actually, lower bounds for the optimal solutions).

2 Inapproximability of Online RWA and TM
Problems

Let ALG(σ) denote the solution produced by algorithm
ALG andOPT(σ) the optimal solution for an instanceσ. For
example, in the RWA problem,ALG(σ) denotes the number
of wavelengths needed by algorithmALG to establish light-
paths for the connection requests inσ, andOPT(σ) denotes
the minimum number of wavelengths needed to support the
connection requests inσ. In the TM problem,ALG(σ)
denotes the number of lightpaths established by algorithm
ALG for the connection requests inσ by using the given
number of wavelengths, andOPT(σ) denotes the maximum
number of lightpaths that can be established for the con-
nection requests inσ. The competitive ratioof an online
algorithmALG is defined as

sup
σ

(

ALG(σ)

OPT(σ)

)

, for a minimization problem;

and

sup
σ

(

OPT(σ)

ALG(σ)

)

, for a maximization problem.

Algorithm ALG is said to beα-competitive, if for allσ,

ALG(σ) ≤ α · OPT(σ), for a minimization problem;

and

ALG(σ) ≥ 1

α
· OPT(σ), for a maximization problem.

For a randomized algorithm,ALG(σ) is replaced by
E(ALG(σ)), whereE(·) denotes the expectation of a ran-
dom variable [10].

The RWA problem is also calledpath coloring (PC)
problem. Online path coloring has been studied exten-
sively in the literature. It was shown that there is a 3-
competitive algorithm (called Recursive Greedy) for path

coloring on linear array networks and no deterministic on-
line algorithm is better than 3-competitive [19]. For any
n-node tree network, it was shown that both the Classify-
and-Greedy-Color algorithm [8] and the First-Fit-Coloring
[18] algorithm are2 logn-competitive. It was also proven
in [8] that any deterministic algorithm has competitive ra-
tio at leastΩ( log n

log log n ) even for complete binary tree net-
works. Bartal and Leonardi also constructed the optimal
O(log n)-competitive algorithm for path coloring onn × n
mesh networks. On brick wall graphs, it was shown that
any randomized algorithm is at bestn1−log

4
3-competitive

[7], where1 − log4 3 = 0.2075187....
The lower bound for brick wall graphs implies that no

deterministic or randomized online routing and wavelength
assignment algorithm has reasonable competitiveness, es-
pecially for large networks. The above discussion gives rise
to the following inapproximability theorem for the routing
and wavelength assignment problem on arbitrary networks.

Inapproximability Theorem 1. For n-node WDM opti-
cal networks, there is no deterministic or randomized on-
line routing and wavelength assignment algorithm that has
a competitive ratio less thann0.2075.

When there is only one wavelength, the TM problem be-
comes the MDP problem. It is a simple observation that any
deterministic online algorithm for the MDP problem has
competitive ratio at leastn− 1 even on ann-node linear ar-
ray network [2]. Therefore, investigation has been focused
on randomized algorithms. Lower bounds for randomized
algorithms for the MDP problem on linear array networks
were established in [3]. For tree networks with diameterD,
severalO(log D)-competitive algorithms have been devel-
oped [3, 4, 21]. The lower boundΩ(log n) and the optimal
O(log n) upper bound for randomized algorithms onn× n
mesh networks are found in [4] and [20] respectively. The
randomized lower bound ofn0.2075 for brick wall graphs is
due to [7].

The lower bound for brick wall graphs implies the fol-
lowing inapproximability theorem for the throughput max-
imization problem on arbitrary networks.

Inapproximability Theorem 2. For n-node WDM opti-
cal networks, there is no deterministic or randomized online
throughput maximization algorithm that has a competitive
ratio less thann0.2075.

3 Lower Bounds

The solutions produced by an approximation algorithm
should be compared with optimal solutions. Unfortunately,
it is infeasible to obtain optimal routing and wavelength as-
signment in reasonable amount of time even for moderate



sized networks. In this section, we derive lower bounds for
the minimum number of wavelengths required.

A cutsetC of a connected graph (WDM network) is a
set ofW (C) edges (optical links)C = {l1, l2, ..., lW (C)}
whose removal results in disconnection of the network [17],
i.e., a partition of the network into two subnetworks with
n(C) and n − n(C) nodes respectively. For a sequence
σ = (r1, r2, ..., rm) of connection requests, letm(σ, C) de-
note the number of connection requestsrj = (sj , dj) in
σ such thatsj anddj are in the two disjoint subnetworks
separated by the cutsetC. For each suchrj , the lightpath
established forrj must go through one of theW (C) links
l1, l2, ..., lW (C). Let Ll be theloadon an optical linkl, i.e.,
the number of lightpaths passing throughl. Then, the max-
imum load onl1, l2, ..., lW (C) is at least

max
1≤i≤W (C)

(Lli) ≥
m(σ, C)

W (C)
.

Since
OPT(σ) ≥ max

1≤i≤W (C)
(Lli),

we obtain

OPT(σ) ≥ m(σ, C)

W (C)
.

The above lower bound is strengthened to

OPT(σ) ≥ max
C

(

m(σ, C)

W (C)

)

,

becauseC can be an arbitrary cutset.
The minimum sizeW of a cutset that results in an even

partition of a network into two subnetworks of sizesbn/2c
anddn/2e is called thebisection widthof the network. By
considering a cutsetC with W links, we get a special lower
bound forOPT(σ):

OPT(σ) ≥ m(σ, C)

W
.

The above discussion is summarized as the following theo-
rem.

Lower Bound Theorem A. For any WDM network and a
sequenceσ of connection requests, we have

OPT(σ) ≥ max
C

(

m(σ, C)

W (C)

)

. (1)

In particular, for a cutsetC with W (C) equal to the net-
work’s bisection widthW , we have

OPT(σ) ≥ m(σ, C)

W
.

(Note: The above lower bound is valid for both online and
offline RWA problems.)

Now we derive a lower bound forE(OPT(σ)), whereσ is
a sequence ofm random connection requestsr1, r2, ..., rm.
We consider two models of random connection requests. In
therandom drawing with replacementmodel, each connec-
tion requestrj = (sj , dj) is a source-destination pair drawn
from the set ofn(n − 1)/2 possible pairs randomly with a
uniform distribution. For such a randomly chosen connec-
tion requestrj = (sj , dj), the probability thatsj anddj are
in the two separate parts of the network is

n(C)(n − n(C))

n(n − 1)/2
.

Hence, form independent random connection requests,
the expected number of lightpaths passing through
l1, l2, ..., lW (C) is

E(m(σ, C)) =
n(C)(n − n(C))

n(n − 1)/2
· m.

In the random drawing without replacementmodel,
the sequenceσ containsm distinct connection requests
r1, r2, ..., rm. Therefore, the numberm(σ, C) of connec-
tion requestsrj = (sj , dj) with sj anddj in the two sepa-
rate parts of the network is a hypergeometric random vari-
able, i.e.,

P{m(σ, C) = i} =
(

n(C)(n − n(C))

i

)(

n(n − 1)/2 − n(C)(n − n(C))

m − i

)

(

n(n − 1)/2

m

) ,

for all 0 ≤ i ≤ m [15]. The expectation ofm(σ, C) is

E(m(σ, C)) =
n(C)(n − n(C))m

n(n − 1)/2
.

In both models, the maximum expected number of light-
paths passing through one ofl1, l2, ..., lW (C) is at least

max
1≤i≤W (C)

(E(Lli
)) ≥

E(m(σ, C))

W (C)
=

n(C)(n − n(C))

n(n − 1)/2
·

m

W (C)
.

Since

E(OPT(σ)) ≥ E(L) ≥ max
1≤i≤W (C)

(E(Lli)),

we have the following lower bound forE(OPT(σ)):

E(OPT(σ)) ≥ n(C)(n − n(C))

n(n − 1)/2
· m

W (C)
.

The above lower bound is strengthened to

E(OPT(σ)) ≥ max
C

(

n(C)(n − n(C))

n(n − 1)/2
· m

W (C)

)

,



becauseC can be an arbitrary cutset. By considering a cut-
setC with W (C) equal to the bisection widthW , we get a
special lower bound forE(OPT(σ)):

E(OPT(σ)) ≥ bn/2cdn/2e
n(n− 1)/2

· m

W
.

The above discussion is summarized as the following theo-
rem.

Lower Bound Theorem B. For anyn-node WDM network
and a sequenceσ of m random connection requests, we
have

E(OPT(σ)) ≥ max
C

(

n(C)(n − n(C))

W (C)

)

·
m

n(n − 1)/2
. (2)

In particular, if the network has bisection widthW , we
have

E(OPT(σ)) ≥ bn/2cdn/2e
n(n − 1)/2

· m

W
≈ m

2W
.

(Note: The above lower bound is valid for both online and
offline RWA problems.)

Both Lower Bound Theorems A and B are applicable to
the random drawing with/without replacement models.

4 Online Algorithms

While the known results on the worst-case performance
of online PC and MDP problems are quite discouraging (i.e.
the RWA and the TM problems have high inapproximabil-
ity for arbitrary WDM networks), we take a different ap-
proach to attacking the online RWA and TM problems in
this paper, that is, evaluating the average-case performance
of (deterministic and randomized) online algorithms.

Let σ denote a sequence ofm random connection re-
questsr1, r2, ..., rm. For such random input, bothALG(σ)
andOPT(σ) become random variables. We also notice that
ALG can be a randomized algorithm and a WDM network
can be a random network. We define twoaverage-case
competitive ratios

α(ALG) = E

(

ALG(σ)

OPT(σ)

)

,

and

β(ALG) =
E(ALG(σ))

E(OPT(σ))
,

where the expectations are taken over

• all sequences ofm random connection requests;

• all random choices of algorithmALG if it is a random-
ized algorithm;

• all samples of a random network.

The above three sources of randomness are independent of
each other.

We will evaluate the average-case performance of sev-
eral online algorithms for the RWA and the TM prob-
lems. All our algorithms visualize a WDM optical network
N = (V, E) as having separate copies,N1, N2, N3, ..., one
for each wavelength, such that all the connection requests
routed onNi use the wavelengthλi, and that lightpaths on
the same copyNi are edge-disjoint. Initially, there is only
one copyN1, and new copies will be introduced when nec-
essary.

Assume thatN1, N2, ..., Nb are the current copies ever
used. When processing a connection requestrj , an exist-
ing copyNi is chosen to find a lightpathpj for rj and the
lightpathpj is assigned the wavelengthλi. Then, the opti-
cal links occupied bypj are deleted fromNi, so that these
links cannot be used by later connection requests to prevent
link overlapping.

Different algorithms use different strategies in identify-
ing Ni. We will consider the following heuristics.

• First-Fit (FF) – A shortest lightpath is sought inN1 by
using those optical links still not deleted. If there is no
such a lightpath, a shortest lightpath is sought inN2,
N3, ..., and so on, until a lightpath is found.

• Best-Fit (BF) – A shortest lightpathpj,i is sought in
each ofNi, 1 ≤ i ≤ b. Then, the shortest lightpath
amongpj,1, pj,2, ..., pj,b is chosen aspj.

• Densest-Fit (DF) – A shortest lightpath is sought
in Ni which has the most optical links among
N1, N2, ..., Nb. If such a lightpath cannot be estab-
lished, a shortest lightpath is sought in the copy with
the second most links, the copy with the third most
links, ..., and so on, until a lightpath is found.

• Random-Fit(RF) – A shortest lightpath is sought in a
randomly selected copyNi, whereNi is chosen from
all those copies which can provide shortest paths for
rj , say, Ni1 , Ni2 , Ni3 , ..., and each of these copies
Ni1 , Ni2 , Ni3 , ... are chosen with equal probability.

In all the above algorithms, a shortest lightpath is found by
using the breadth-first search algorithm.

When no existing copy inN1, N2, ..., Nb can provide a
lightpath forrj , a new copyNb+1 identical toN is initi-
ated, so that a shortest lightpathpj is established onNb+1

and assigned the wavelengthλb+1. However, for the TM
problem, the connection request is blocked (i.e., not satis-
fied and rejected) ifb is already equal tok, the given number
of wavelengths.



5 Experimental Performance Evaluation

Extensive experiments have been conducted to evaluate
the average-case performance of the online algorithms pre-
sented in the last section for the RWA and the TM problems
on a wide range of WDM optical networks.

5.1 The Methodology

In the experiments for the RWA problem, for each com-
bination of (network, algorithm,m), we report̄α, β̄, andpl,
whose meanings are explained as follows.

• The lower bound for OPT(σ) expressed in Eq.
(1) requires coverage of all cutsetsC, which is
certainly computationally infeasible. Hence, for
each networkN , there areη(N) pre-chosen cut-
setsC1, C2, ..., Cη(N), such that the lower bound for
OPT(σ) in Eq. (1) is simplified as

l̃b = max
1≤i≤η(N)

(

m(σ, Ci)

W (Ci)

)

.

The above lower bound̃lb is then used to be compared
with ALG(σ). Thus, the following expectation

ᾱ = E

(

ALG(σ)

l̃b

)

is an over-estimation ofα(ALG).

• The lower bound forE(OPT(σ)) expressed in Eq. (2)
also requires coverage of all cutsetsC. For a particular
networkN , we can always choose a cutsetC1 which
maximizes

n(C)(n − n(C))

W (C)
.

Hence, the lower bound forE(OPT(σ)) in Eq. (2) is
simplified as

lb =
n(C1)(n − n(C1))

W (C1)
· m

n(n − 1)/2
.

However, the following ratio

β̄ =
E(ALG(σ))

n(C1)(n − n(C1))

W (C1)
· m

n(n − 1)/2

is still an over-estimation ofβ(ALG). For a random
network, the lower bound forE(OPT(σ)) in Eq. (2) is
modified as

lb = E

(

n(C1)(n − n(C1))

W (C1)
· m

n(n − 1)/2

)

,

whereC1 is the random cutset which cuts the unit
square into upper and lower halves, and

β̄ =
E(ALG(σ))

lb
.

(See Section 5.2 for random network generation.)

• In addition to the number of wavelengths to be mini-
mized, the average lengthpl of lightpaths should also
be minimized, though this is a secondary optimization
goal.

In the experiments for the TM problem, for each combi-
nation of (network, algorithm,m, k), we reportB̄, which
is (1 − the expected blocking rate), i.e., the expected per-
centage of connection requests that are satisfied by usingk
wavelengths.

5.2 Optical Networks

Eight WDM optical networks are considered in our ex-
periments, namely, a mesh network, four real networks, and
three types of random networks:

• the 10 × 10 mesh network withη = 2 and C1, C2

shown in Figure 1;

• a 24-node ARPANET-like regional network [29] with
η = 5 andC1, ..., C5 shown in Figure 2;

• a 16-node NSFNET backbone [6] withη = 2 and
C1, C2 shown in Figure 3;

• the 20-node European Optical Network (EON) [25]
with η = 6 andC1, ..., C6 shown in Figure 4;

• the 30-node UK Network [1] withη = 6 and
C1, ..., C6 shown in Figure 5;

• 100-node random grid networks;

• 50-node random regular networks;

• 50-node random unit disk networks.

In Figures 1–5, the cutsets are arranged in decreasing order
of

n(Ci)(n − n(Ci))

W (Ci)
,

whose values are shown in the parentheses. The cutsets for
random networks are described below.

Although a number of models are available in random
graph theory, e.g., models A, B, and C in [26], none of them
is appropriate to model computer networks. We believe that
a random network model should incorporate link locality
into consideration. In this research, we consider three types
of random networks.
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Figure 1. A 10 × 10 mesh network.
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Figure 4. The 20-node European Optical Net-
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Figure 5. The 30-node UK Network.
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Figure 6. Cutsets in a random network.

A random grid networkNq = (V, E) is a subnetwork of
the mesh network and is generated as follows. In a

√
n×√

n
grid network, then nodes inV are identical to the nodes in
a
√

n ×√
n mesh network. Each link of the mesh network

appears in a random grid network with probabilityq and is
independent of the existence of other links, where0 < q <
1. Cutsets for random grid networks are the same as those
for mesh networks.

A random regular networkNd = (V, E) is generated as
follows. LetU be a unit square in the Euclidean plane. The
n nodesv0, v1, v2, ..., vn−1 of V are chosen randomly and
independently fromU with a uniform distribution. For each
nodevi, thed nearest nodes inV are made its neighbors,
whered ≥ 1. However, it is not guaranteed thatvi and
vj are in the set ofd nearest neighbors of each other. The
actual neighbors are selected in the following way. First,
we make an order of the nodes, say,(v0, v1, v2, ..., vn−1).
The degree of nodevi is di = 0 in the beginning. Then, for
0 ≤ i ≤ n − 1, assume thatvi already haddi neighbors in
{v0, v1, ..., vi−1}. We choose thed − di nearest neighbors
of vi from the nodes in{vi+1, vi+2, ..., vn−1}, say,vj1 , vj2 ,
..., vjd−di

, whose numbers of neighbors are still lessd, and
increase each ofdj1 , dj2 , ...,djd−di

by 1.
A random unit disk networkNr = (V, E) is generated

as follows. Then nodesv0, v1, v2, ..., vn−1 of V are chosen
randomly and independently fromU with a uniform distri-
bution. Two nodesvi andvj are connected if and only if
their distance is no longer thanr, where0 ≤ r ≤ 1/2. The
expected number of neighbors of a node isnqr, where

qr = πr2 − 8

3
r3 +

(

11

3
− π

)

r4,

with 0 ≤ r ≤ 1/2 [24].
Four cutsets are used for a random regular network and

a random unit disk network (Figure 6), each cuts the unit
square in a different way.

5.3 Experimental Results

All the sequences of random connection requests are
generated by using the random drawing without replace-
ment model. We believe that similar conclusions can
be drawn by using the random drawing with replacement
model.

We only consider connected random networks, that is, a
random network is regenerated if it is disconnected. The
parametersq, d, andr of the three types of random net-
works are determined such thatq = 0.9 andd = nqr = 10.
These parameter settings are to yield high connectedness of
the random networks. To test the connectedness of the ran-
dom networks with the above parameter settings, we gener-
ated 10,000 samples of each type of random networks. The
numbers of connected samples of random grid networks,
random regular networks, and random unit disk networks
are 9213, 9,999, and 9,495, respectively.

Each experiment is repeated for2000 times, and the 99%
confidence interval is shown for each table, which is ob-
tained from the maximum confidence interval of all the ex-
periments in a table. The 99% confidence interval is less
than±2%, except Table 8(a) for random unit disk networks.
It is noticed that the number of wavelengths used on ran-
dom unit disk networks has large variance. It has been
observed that the probability distribution of the number of
wavelengths used on random unit disk networks has a long
tail, and the number of wavelengths may exceed, say, 256!

Our experimental data are displayed in Tables 1–8 for
the eight WDM optical networks. Several observations are
in order.

• All the four online algorithms exhibit excellent
average-case performance on all the networks for the
RWA problem, in the sense that for a wide range of
m, both ᾱ and β̄ are very small (less than 2, except
on random unit disk networks). In particular, asm in-
creases, both̄α andβ̄ decrease and approach 1. For the
TM problem, high throughput can be achieved even for
smallk.

• The quality ofᾱ andβ̄ depends on the quality of the
lower bounds. We believe that the relatively large val-
ues ofᾱ andβ̄ for the random unit disk networks are
due to our inability to find tighter lower bounds. Those
data in Table 8(a) obtained from loose lower bounds
do not accurately reflect the average-case performance
and certainly do not imply relatively poor performance
of the four online algorithms on random unit disk net-
works.

• Though there is no dramatic difference among the per-
formance of the four algorithms, Best-Fit is superior to
all other algorithms in the sense that it yields smallerᾱ
andβ̄, produces shorter average path length, and gen-
erates higher throughput.

• The average path length is quite stable and does not de-
pend too much on the number of connection requests.



Table 1(a). Experimental Data for RWA on the10 × 10 Mesh Network.
(99% confidence interval±0.741%)

First-Fit Best-Fit Densest-Fit Random-Fit
m ᾱ β̄ pl ᾱ β̄ pl ᾱ β̄ pl ᾱ β̄ pl

50 1.6221.7387.5121.6331.7427.1111.7411.8617.3781.6771.8007.448
100 1.4421.5177.5921.4491.5217.1311.5781.6597.4801.5031.5807.541
150 1.3721.4287.6331.3681.4287.1531.5181.5837.5251.4321.4927.576
200 1.3281.3797.6441.3261.3747.1431.4821.5397.5581.3911.4427.596
250 1.3021.3487.6571.2921.3397.1471.4561.5087.5701.3651.4077.610
300 1.2811.3227.6501.2731.3117.1431.4431.4867.5671.3441.3857.626
350 1.2661.3027.6531.2571.2927.1551.4311.4717.5851.3301.3667.624
400 1.2541.2867.6451.2441.2767.1511.4201.4567.5821.3151.3517.631
450 1.2431.2747.6521.2311.2627.1561.4111.4467.5961.3061.3367.634
500 1.2361.2647.6501.2231.2517.1531.4031.4367.5941.2971.3287.642

Table 1(b). Experimental Data for TM on the10 × 10 Mesh Network.
(99% confidence interval±0.257%)

First-Fit Best-Fit Densest-Fit Random-Fit
m 7 14 21 7 14 21 7 14 21 7 14 21

50 1.0001.0001.0001.0001.0001.0001.0001.0001.0001.0001.0001.000
100 0.9821.0001.0000.9831.0001.0000.9521.0001.0000.9681.0001.000
150 0.7691.0001.0000.7841.0001.0000.7561.0001.0000.7601.0001.000
200 0.6240.9981.0000.6410.9991.0000.6210.9741.0000.6210.9921.000
250 0.5290.9061.0000.5430.9181.0000.5290.8741.0000.5290.8871.000
300 0.4600.7991.0000.4750.8161.0000.4640.7800.9830.4610.7870.998
350 0.4100.7140.9640.4240.7330.9720.4140.7060.9190.4110.7070.941
400 0.3710.6480.8830.3840.6660.8980.3760.6430.8530.3730.6440.866
450 0.3410.5940.8130.3520.6120.8320.3440.5930.7930.3430.5920.799
500 0.3150.5490.7540.3260.5670.7730.3190.5510.7410.3170.5490.744

Table 2(a). Experimental Data for RWA on a 24-node ARPANET Network.
(99% confidence interval±1.406%)

First-Fit Best-Fit Densest-Fit Random-Fit
m ᾱ β̄ pl ᾱ β̄ pl ᾱ β̄ pl ᾱ β̄ pl

20 1.2391.2113.2071.2381.2173.0131.2671.2293.0861.2571.2253.129
40 1.1201.0983.2441.1141.0992.9841.1361.1233.1091.1241.1073.173
60 1.0731.0713.2701.0701.0602.9581.0921.0863.1151.0761.0673.176
80 1.0511.0493.2651.0471.0482.9451.0681.0653.1151.0551.0533.189

100 1.0401.0423.2851.0381.0382.9351.0531.0513.1121.0441.0423.196
120 1.0321.0273.2771.0321.0332.9201.0441.0463.1081.0351.0383.197
140 1.0261.0263.2821.0281.0292.9221.0391.0403.1111.0301.0293.197
160 1.0231.0203.2811.0231.0202.9081.0341.0353.1071.0251.0283.203
180 1.0201.0223.2841.0201.0162.9041.0301.0283.1061.0231.0253.203
200 1.0181.0143.2821.0191.0192.9061.0271.0283.1081.0201.0203.199

Table 2(b). Experimental Data for TM on a 24-node ARPANET Network.
(99% confidence interval±0.435%)

First-Fit Best-Fit Densest-Fit Random-Fit
m 3 6 9 3 6 9 3 6 9 3 6 9

20 0.9531.0001.0000.9581.0001.0000.9531.0001.0000.9531.0001.000
40 0.7930.9741.0000.8000.9721.0000.7810.9721.0000.7830.9731.000
60 0.6290.8980.9800.6420.8980.9800.6200.8930.9780.6220.8940.981
80 0.5150.8290.9270.5300.8340.9290.5140.8090.9250.5150.8140.927

100 0.4410.7410.8830.4560.7580.8820.4390.7220.8760.4380.7260.879
120 0.3850.6610.8430.4000.6820.8460.3850.6470.8210.3850.6500.827
140 0.3440.5950.7890.3590.6200.8040.3430.5870.7640.3430.5890.768
160 0.3120.5440.7290.3250.5700.7530.3110.5390.7090.3120.5390.712
180 0.2850.5010.6760.2990.5280.7030.2860.4980.6620.2850.4980.663
200 0.2630.4650.6310.2760.4910.6580.2640.4640.6190.2640.4640.621

Table 3(a). Experimental Data for RWA on a 16-node NSFNET Backbone.
(99% confidence interval±1.437%)

First-Fit Best-Fit Densest-Fit Random-Fit
m ᾱ β̄ pl ᾱ β̄ pl ᾱ β̄ pl ᾱ β̄ pl

10 1.7141.7342.7141.7211.7452.6521.7741.8042.7061.7421.7582.698
20 1.4981.4712.7361.5121.4872.6531.5721.5572.7431.5311.5212.754
30 1.3671.3602.7791.3761.3552.6521.4671.4472.7451.4171.4012.758
40 1.3031.2942.7701.3001.2882.6611.3961.3872.7621.3431.3382.772
50 1.2571.2482.7721.2511.2422.6561.3671.3552.7711.3001.2932.766
60 1.2211.2182.7791.2181.2152.6591.3341.3292.7671.2681.2622.776
70 1.1961.1942.7771.1931.1912.6621.3051.3042.7711.2421.2372.769
80 1.1771.1732.7781.1751.1732.6631.2881.2842.7701.2221.2182.777
90 1.1621.1592.7801.1571.1532.6581.2761.2732.7741.2061.2042.779

100 1.1491.1462.7791.1451.1422.6631.2631.2592.7701.1901.1892.778

Table 3(b). Experimental Data for TM on a 16-node NSFNET Backbone.
(99% confidence interval±0.549%)

First-Fit Best-Fit Densest-Fit Random-Fit
m 3 6 9 3 6 9 3 6 9 3 6 9

10 1.0001.0001.0001.0001.0001.0001.0001.0001.0001.0001.0001.000
20 0.9001.0001.0000.9001.0001.0000.8791.0001.0000.8871.0001.000
30 0.7070.9991.0000.7140.9991.0000.6950.9961.0000.7050.9991.000
40 0.5850.9501.0000.5950.9521.0000.5810.9201.0000.5820.9351.000
50 0.5030.8400.9990.5130.8480.9990.5010.8190.9930.5010.8300.998
60 0.4450.7540.9740.4540.7620.9740.4450.7390.9400.4440.7440.958
70 0.4000.6810.8990.4080.6920.9050.4000.6730.8700.4010.6760.885
80 0.3660.6250.8330.3730.6370.8390.3650.6190.8100.3650.6220.818
90 0.3360.5810.7720.3440.5910.7820.3370.5740.7560.3360.5780.765

100 0.3130.5420.7240.3210.5550.7340.3130.5380.7120.3140.5390.717

Table 4(a). Experimental Data for RWA on the 20-node European Optical Network.
(99% confidence interval±1.792%)

First-Fit Best-Fit Densest-Fit Random-Fit
m ᾱ β̄ pl ᾱ β̄ pl ᾱ β̄ pl ᾱ β̄ pl

10 1.5922.1772.7431.6052.1902.6461.5992.1862.6691.6042.2012.704
20 1.4091.7282.8031.4081.7192.6461.4181.7422.7261.3991.7182.765
30 1.3171.5522.8381.3021.5412.6351.3461.5892.7561.3441.5792.800
40 1.2641.4462.8491.2531.4432.6411.3051.4892.7831.3001.4752.808
50 1.2321.3852.8591.2231.3762.6331.2871.4402.7911.2561.4062.823
60 1.2111.3332.8681.2031.3252.6251.2661.3872.8061.2361.3612.831
70 1.1931.2982.8761.1771.2852.6231.2511.3552.8111.2171.3232.845
80 1.1781.2632.8731.1631.2582.6181.2321.3262.8221.1971.2852.850
90 1.1661.2412.8781.1581.2322.6061.2311.3052.8271.1981.2722.852

100 1.1501.2112.8821.1501.2142.6031.2201.2862.8351.1811.2442.858

Table 4(b). Experimental Data for TM on the 20-node EuropeanOptical Network.
(99% confidence interval±0.417%)

First-Fit Best-Fit Densest-Fit Random-Fit
m 3 6 9 3 6 9 3 6 9 3 6 9

10 0.9991.0001.0000.9991.0001.0000.9991.0001.0000.9991.0001.000
20 0.9821.0001.0000.9811.0001.0000.9801.0001.0000.9801.0001.000
30 0.9050.9991.0000.9090.9991.0000.8910.9991.0000.8950.9991.000
40 0.7800.9961.0000.7890.9961.0000.7680.9961.0000.7700.9961.000
50 0.6730.9841.0000.6820.9861.0000.6630.9791.0000.6660.9811.000
60 0.5870.9520.9990.6010.9530.9990.5860.9300.9990.5850.9410.999
70 0.5240.8920.9960.5380.9010.9970.5230.8660.9950.5230.8760.996
80 0.4730.8220.9890.4880.8390.9890.4750.8010.9800.4740.8090.986
90 0.4350.7610.9720.4480.7790.9740.4350.7460.9480.4350.7490.960

100 0.4020.7050.9370.4160.7250.9420.4030.6950.9060.4020.6990.919



Table 5(a). Experimental Data for RWA on the 30-node UK Network.
(99% confidence interval±1.085%)

First-Fit Best-Fit Densest-Fit Random-Fit
m ᾱ β̄ pl ᾱ β̄ pl ᾱ β̄ pl ᾱ β̄ pl

30 1.5791.6613.8111.5731.6583.5961.6491.7363.7261.6171.7023.772
60 1.4001.4313.8451.4011.4363.6171.5061.5413.7801.4381.4813.826
90 1.3241.3393.8761.3271.3433.6131.4471.4643.8051.3741.3893.842

120 1.2771.2893.8891.2841.2913.6161.4131.4203.8221.3291.3373.856
150 1.2501.2533.8841.2501.2533.6171.3841.3873.8271.2991.3043.869
180 1.2291.2293.8891.2251.2263.6181.3641.3673.8401.2771.2793.875
210 1.2081.2083.8971.2061.2083.6171.3481.3503.8461.2611.2593.873
240 1.1951.1943.9001.1911.1923.6171.3361.3363.8481.2481.2453.880
270 1.1821.1833.9051.1801.1793.6181.3251.3253.8531.2301.2313.883
300 1.1711.1713.9051.1661.1663.6141.3171.3153.8501.2191.2203.884

Table 5(b). Experimental Data for TM on the 30-node UK Network.
(99% confidence interval±0.339%)

First-Fit Best-Fit Densest-Fit Random-Fit
m 5 10 15 5 10 15 5 10 15 5 10 15

30 1.0001.0001.0001.0001.0001.0001.0001.0001.0001.0001.0001.000
60 0.8691.0001.0000.8741.0001.0000.8451.0001.0000.8551.0001.000
90 0.6620.9971.0000.6760.9971.0000.6570.9861.0000.6580.9951.000

120 0.5350.9071.0000.5510.9141.0000.5380.8761.0000.5360.8911.000
150 0.4550.7820.9940.4700.8000.9940.4580.7700.9680.4570.7740.986
180 0.3990.6880.9260.4130.7060.9320.4020.6830.8890.4010.6840.906
210 0.3560.6160.8390.3690.6350.8520.3610.6160.8150.3590.6140.824
240 0.3230.5590.7630.3360.5790.7810.3270.5630.7500.3260.5590.755
270 0.2970.5130.7020.3090.5330.7210.3020.5190.6960.2990.5150.697
300 0.2750.4760.6510.2860.4940.6700.2790.4810.6490.2780.4780.648

Table 6(a). Experimental Data for RWA on 100-node Random Grid Networks.
(99% confidence interval±0.965%)

First-Fit Best-Fit Densest-Fit Random-Fit
m ᾱ β̄ pl ᾱ β̄ pl ᾱ β̄ pl ᾱ β̄ pl

50 1.8752.0258.0931.8892.0487.6031.9982.1647.9581.9262.0828.006
100 1.6491.7718.1791.6701.7897.6281.8001.9238.0331.7131.8378.105
150 1.5671.6738.1911.5821.6877.6381.7181.8318.0661.6211.7278.110
200 1.5191.6198.2061.5301.6347.6611.6741.7858.0811.5781.6808.151
250 1.4931.5848.2061.4951.6007.6661.6361.7368.0991.5381.6368.154
300 1.4621.5568.2161.4761.5677.6571.6141.7138.0931.5201.6078.147
350 1.4461.5338.2141.4571.5467.6701.5991.6988.0981.4951.5948.174
400 1.4401.5288.2311.4441.5357.6691.5821.6778.1001.4871.5758.169
450 1.4241.5038.2201.4401.5237.6811.5731.6708.1111.4761.5598.176
500 1.4181.5008.2281.4221.5007.6811.5621.6588.1091.4641.5488.186

Table 6(b). Experimental Data for TM on 100-node Random GridNetworks.
(99% confidence interval±0.554%)

First-Fit Best-Fit Densest-Fit Random-Fit
m 7 14 21 7 14 21 7 14 21 7 14 21

50 0.9991.0001.0000.9991.0001.0000.9981.0001.0000.9991.0001.000
100 0.7911.0001.0000.8031.0001.0000.7831.0001.0000.7871.0001.000
150 0.5540.9821.0000.5680.9811.0000.5580.9641.0000.5590.9741.000
200 0.4330.8320.9970.4420.8470.9970.4370.8220.9930.4370.8270.995
250 0.3620.6860.9600.3670.7010.9640.3630.6880.9390.3620.6870.953
300 0.3120.5860.8570.3150.5970.8660.3120.5890.8440.3130.5870.845
350 0.2750.5120.7460.2790.5230.7600.2760.5170.7440.2760.5160.746
400 0.2480.4580.6620.2500.4670.6790.2470.4610.6660.2470.4610.663
450 0.2260.4180.5970.2280.4240.6100.2250.4190.6030.2260.4180.601
500 0.2080.3830.5470.2090.3890.5590.2070.3840.5500.2080.3830.550

Table 7(a). Experimental Data for RWA on 50-node Random Regular Networks.
(99% confidence interval±1.706%)

First-Fit Best-Fit Densest-Fit Random-Fit
m ᾱ β̄ pl ᾱ β̄ pl ᾱ β̄ pl ᾱ β̄ pl

50 1.6541.6722.8501.6301.6482.7941.6381.6592.7941.6531.6712.821
100 1.6691.8942.9731.6771.9112.8111.7281.9652.8491.6871.9292.919
150 1.5351.7453.0261.5711.7862.8151.5981.8182.8851.5601.7882.968
200 1.4871.6713.0551.5041.7062.8271.5511.7762.8981.5121.7142.993
250 1.4491.6463.0761.4701.6572.8231.5171.7152.9121.4651.6583.014
300 1.4231.6153.0921.4381.6312.8311.4871.6972.9241.4431.6473.022
350 1.4071.6143.1011.4311.6192.8291.4701.6692.9341.4091.6083.034
400 1.3961.5753.1051.4041.5892.8281.4611.6532.9341.4051.6103.044
450 1.3801.5563.1151.4041.6012.8281.4521.6392.9371.3881.5733.049
500 1.3581.5443.1201.3911.5842.8241.4341.6322.9421.3801.5593.059

Table 7(b). Experimental Data for TM on 50-node Random Regular Networks.
(99% confidence interval±0.476%)

First-Fit Best-Fit Densest-Fit Random-Fit
m 3 6 9 3 6 9 3 6 9 3 6 9

50 1.0001.0001.0001.0001.0001.0001.0001.0001.0001.0001.0001.000
100 0.9991.0001.0000.9981.0001.0000.9981.0001.0000.9981.0001.000
150 0.9671.0001.0000.9661.0001.0000.9601.0001.0000.9641.0001.000
200 0.8540.9981.0000.8540.9991.0000.8450.9991.0000.8490.9991.000
250 0.7380.9941.0000.7450.9921.0000.7370.9910.9990.7380.9931.000
300 0.6550.9740.9990.6610.9690.9990.6550.9660.9990.6540.9700.999
350 0.5890.9250.9970.5990.9250.9950.5910.9140.9950.5900.9220.996
400 0.5380.8630.9890.5480.8650.9880.5400.8540.9860.5360.8580.989
450 0.4960.7990.9730.5080.8060.9720.4980.7960.9680.4940.7990.974
500 0.4600.7480.9470.4720.7550.9440.4620.7490.9390.4600.7470.946

Table 8(a). Experimental Data for RWA on 50-node Random UnitDisk Networks.
(99% confidence interval±5.123%)

First-Fit Best-Fit Densest-Fit Random-Fit
m ᾱ β̄ pl ᾱ β̄ pl ᾱ β̄ pl ᾱ β̄ pl

50 2.4072.6003.2472.3962.5933.0082.3822.5873.0482.3352.5753.136
100 2.4432.8873.3702.5153.0333.0002.5182.9773.1052.4892.9183.195
150 2.3702.8253.4042.4342.8812.9952.4742.8953.1052.4352.9593.190
200 2.3572.7323.4362.3742.8272.9952.3452.7683.1252.3572.7803.216
250 2.3282.7693.4492.3752.7842.9992.3992.8103.1312.3122.7383.220
300 2.2932.7443.4552.3762.8502.9802.3282.7453.1432.3892.7863.231
350 2.2942.7373.4722.3232.7572.9722.3772.7713.1322.3152.8103.232
400 2.2662.7143.4662.2742.7052.9662.3362.7833.1312.2532.6843.237
450 2.2292.6703.4662.3002.7192.9942.3122.7913.1412.2512.6863.236
500 2.2912.6973.4822.2342.6852.9672.3082.6993.1342.2062.6703.228

Table 8(b). Experimental Data for TM on 50-node Random Unit Disk Networks.
(99% confidence interval±1.062%)

First-Fit Best-Fit Densest-Fit Random-Fit
m 3 6 9 3 6 9 3 6 9 3 6 9

50 0.9810.9970.9990.9790.9960.9980.9810.9970.9990.9780.9960.999
100 0.8920.9810.9940.8870.9840.9930.8870.9830.9930.8890.9820.993
150 0.7630.9500.9840.7680.9480.9830.7670.9470.9830.7620.9470.983
200 0.6580.8980.9620.6590.8960.9610.6540.8990.9620.6540.9010.963
250 0.5700.8330.9370.5750.8360.9300.5670.8340.9360.5730.8400.933
300 0.5100.7710.8980.5110.7730.9030.5120.7700.9000.5040.7700.901
350 0.4570.7120.8590.4640.7120.8620.4580.7150.8560.4580.7170.857
400 0.4170.6610.8210.4230.6660.8170.4160.6660.8150.4180.6620.814
450 0.3820.6190.7720.3890.6210.7800.3820.6150.7740.3830.6150.781
500 0.3570.5780.7300.3620.5850.7350.3560.5760.7350.3580.5800.737



6 Concluding Remarks

We have investigated the problem of online routing and
wavelength assignment and the related throughput maxi-
mization problem in wavelength division multiplexing op-
tical networks. It is very encouraging to find that even sim-
ple online RWA and TM algorithms can achieve excellent
average-case competitive ratios. Our results also imply that
the room for performance improvement by using offline al-
gorithms is very limited.
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