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Abstract each lightpath). Each subproblem alone makes the RWA
and TM problems NP-hard. When a lightpath is given for
We investigate the problem of online routing and wave- each connection request, the RWA problem becomes the
length assignment and the related throughput maximizationwavelength assignme(#VA) problem. It has been proven
problem in wavelength division multiplexing optical net- that the WA problem and the well known NP-hard graph
works. Itis pointed out that these problems are highly inap- coloring problem can be reduced to each other [12]. Hence,
proximable. We evaluate the average-case performance othe WA problem has high inapproximability; in particuldr, i
several online algorithms, which have no knowledge of fu- NP£ZPP, for any constarit > 0, no polynomial time WA
ture arriving connection requests when processing the cur- algorithm can achieve approximation rati&/2—¢% or m!—9
rent connection request. Our experimental results on awidefor m lightpaths in anm-node WDM network [23]. When
range of optical networks demonstrate that the average-there is only one wavelength, the TM problem is precisely
case performance of these algorithms are very close to op-the classicamaximum disjoint pathEMDP) problem, that
timal. is, finding as many edge-disjoint paths as possible for a se-
guencer of source-destination pairs. The MDP problem is
also highly inapproximable; in particular, iE#NP, for any
1 Introduction constanty > 0, no polynomial time MDP algorithm can
achieve approximation ratio'/2—9 for a WDM network

Given wavelengthai, \o, A3, ..., and a sequence of con- with m edges [14].

nection requests = (ry,72,...,y) in @ wavelength di- The RWA and TM problems have been extensively stud-
vision multiplexing (WDM) network, where each connec- ied by many researchers in the last ten years. Various
tion request-; is a source-destination pai; = (s;,d;), heuristic methods have been proposed, such as genetic algo-

1 < j < m, therouting and wavelength assignme&RI\WA) rithms [9], graph-theoretic modeling [11], partition cala
problem is to establish a lightpathy for each connection  [22], integer linear program [5, 27]. A recent survey of var-
request; and assign a wavelengiy, to each lightpatip;, ious algorithms for the RWA problem can be found in [13].
wherel < i; < k, such that no two lightpaths which share The reader is also referred to [28] for information on WDM
a common link are assigned the same wavelength and thabptical networks.
the numbelk of wavelengths used is minimized. We also
consider a related optimization problem of RWA, namely,
the throughput maximizatiolfTM) problem, in which we
are given a fixed numbér of wavelengths\;, A, ..., A,
and a sequenceof connection requests. The goal is to sat-
isfy as many connection requests as possible by using the
wavelengths.

Both the RWA and the TM problems contain two sub-
problems, namely, routing (finding a lightpath for each con-
nection request) and coloring (assigning a wavelength to

In this paper, we consider online routing and wavelength
assignment in WDM optical networks, where connection
requests arrive in the order of one at a time. Upon the ar-
rival of a connection request, a lightpattp; is established
and its wavelength is assigned immediately without know-
ing the remaining connection requests i1, rjt2, ..., "'m.,
but only the past connection requestsry, ...,7;—1. On-
line RWA and TM algorithms are very useful in real ap-
plications, since connection requests typically do navarr
at the same time, and those arriving earlier should be pro-
1-4244-0910-1/07/$20.0@)2007 |EEE. cessed before the entire sequence of requests is available.




Itis not surprising that the online RWA and TM problems coloring on linear array networks and no deterministic on-
are highly inapproximable, since the offline RWA and TM line algorithm is better than 3-competitive [19]. For any
problems already contain highly inapproximable graph col- n-node tree network, it was shown that both the Classify-
oring and disjoint paths problems as subproblems or speciabind-Greedy-Color algorithm [8] and the First-Fit-Colarin
cases. Nevertheless, it is still possible that there eKist-e [18] algorithm are2 log n-competitive. It was also proven
tive approximation algorithms with excellent averageecas in [8] that any deterministic algorithm has competitive ra-
performance. The main contribution of the paper is to de- tio at IeastQ(lolg‘_’ign) even for complete binary tree net-
velop several online RWA and TM algorithms and demon- works. Bartal and Leonardi also constructed the optimal
strate by experimentation that the average-case competiO(logn)-competitive algorithm for path coloring onx n
tive ratios of these algorithms are very close to optimal. It mesh networks. On brick wall graphs, it was shown that
should be noticed that while existing work only compare any randomized algorithm is at best—'°8: 3-competitive
heuristic algorithms with themselves, we are able to com- [7], wherel — log, 3 = 0.2075187....
pare the performance of our algorithms with optimal solu-  The lower bound for brick wall graphs implies that no
tions (actually, lower bounds for the optimal solutions). deterministic or randomized online routing and wavelength

assignment algorithm has reasonable competitiveness, es-
2 Inapproximability of Online RWA and TM pecially for Igrge_ network;. Th_g above discussion give; ris
Problems to the following inapproximability theorem for the routing
and wavelength assignment problem on arbitrary networks.

Let ALG(o) denote the solution produced by algorithm |napproximability Theorem 1. For n-node WDM opti-
ALG andOPT(o) the optimal solution for an instanee For  cal networks, there is no deterministic or randomized on-
example, in the RWA problemALG (o) denotes the number  ine routing and wavelength assignment algorithm that has
of wavelengths needed by algorithkhG to establish light- a competitive ratio less tham®-2075.
paths for the connection requestsinandOPT(c) denotes
the minimum number of wavelengths needed to supportthe When there is only one wavelength, the TM problem be-
connection requests in. In the TM problem,ALG (o) comes the MDP problem. Itis a simple observation that any
denotes the number of lightpaths established by algorithmdeterministic online algorithm for the MDP problem has
ALG for the connection requests in by using the given ~ competitive ratio at least — 1 even on am-node linear ar-
number of wavelengths, af@PT(c) denotes the maximum  ray network [2]. Therefore, investigation has been focused
number of lightpaths that can be established for the con-0n randomized algorithms. Lower bounds for randomized

nection requests i. The competitive ratioof an online  algorithms for the MDP problem on linear array networks
algorithmALG is defined as were established in [3]. For tree networks with diaméber

severalO(log D)-competitive algorithms have been devel-
Sup(ALG(U) oped [3, 4, 21]. The lower bourfd(log n) and the optimal
o \OPT(0) O(logn) upper bound for randomized algorithmserx n
mesh networks are found in [4] and [20] respectively. The

) ,  for a minimization problem

and randomized lower bound of°-2°7 for brick wall graphs is
OPT(0) ; imizati bl due to [7].
Sl;p ALG(0) )’ ora maximization probiem The lower bound for brick wall graphs implies the fol-
) ) ) o lowing inapproximability theorem for the throughput max-
Algorithm ALG is said to bex-competitive, if for allo, imization problem on arbitrary networks.
ALG(0) < a-OPT(o), for a minimization problem Inapproximability Theorem 2. For n-node WDM opti-
and cal networks, there is no deterministic or randomized anlin
throughput maximization algorithm that has a competitive
1 o i 0.2075
ALG(c) > — - OPT(0), for a maximization problem ratio less tham '
«

For a randomized algorithmALG (o) is replaced by
E(ALG(0)), whereE(-) denotes the expectation of a ran-
dom variable [10].

The RWA problem is also callegath coloring (PC) The solutions produced by an approximation algorithm
problem. Online path coloring has been studied exten-should be compared with optimal solutions. Unfortunately,
sively in the literature. It was shown that there is a 3- itis infeasible to obtain optimal routing and wavelength as
competitive algorithm (called Recursive Greedy) for path signment in reasonable amount of time even for moderate

3 Lower Bounds



sized networks. In this section, we derive lower bounds for

the minimum number of wavelengths required.

A cutsetC of a connected graph (WDM network) is a
set of W (C') edges (optical linksl' = {l1,1l2, ..., lw(c)}
whose removal results in disconnection of the network [17],
i.e., a partition of the network into two subnetworks with
n(C) andn — n(C) nodes respectively. For a sequence
o = (r1,72,...,mm) Of connection requests, let(o, C) de-
note the number of connection requesfs= (s;,d;) in
o such thats; andd; are in the two disjoint subnetworks
separated by the cutsét For each such;, the lightpath
established for; must go through one of thB/(C') links
I1,l2, ..., lw(c). Let L; be theload on an optical link, i.e.,
the number of lightpaths passing througfThen, the max-
imum load only, Iz, ..., lyy (¢ is at least

m(o, C)
L)) > ——~2.
1§1‘H§12vt§(0)( u) 2 w(C)
Since
OPT{ > L.
(o) > 135235‘(0)( 1)
we obtain
OPT(o) > m(o,C)
- W)

The above lower bound is strengthened to

(e )

becaus&” can be an arbitrary cutset.

The minimum sizdV of a cutset that results in an even
partition of a network into two subnetworks of sizles/2 |
and[n/2] is called thebisection widthof the network. By
considering a cutset with W links, we get a special lower
bound foroPT(o):

m(o,C)

OPT(0) > e

m(o, C).

OPT(0) >

The above discussion is summarized as the following theo-

rem.

Lower Bound Theorem A. For any WDM network and a
sequence of connection requests, we have

)

In particular, for a cutset”' with W (C') equal to the net-
work’s bisection widtH1”, we have

m(o, C)
OPT(o) > —

m(o, C)
wW(C)

OPT(o) > mcax( (1)

(Note: The above lower bound is valid for both online and
offline RWA problems.)

Now we derive a lower bound fdt (OPT(¢)), wheres is
a sequence oh random connection requests rs, ..., T, .
We consider two models of random connection requests. In
therandom drawing with replacementodel, each connec-
tion request; = (s;,d;) is a source-destination pair drawn
from the set ofn(n — 1)/2 possible pairs randomly with a
uniform distribution. For such a randomly chosen connec-
tion request; = (s;,d;), the probability that; andd; are
in the two separate parts of the network is

n(C)(n —n(C))
n(n—1)/2

Hence, form independent random connection requests,
the expected number of lightpaths passing through

l1,1, ..., lw(c) is
E(m(s,0C)) =

In the random drawing without replacememhodel,
the sequence containsm distinct connection requests
r1,T2,..., m. Therefore, the numben(o,C) of connec-
tion requests; = (s;, d;) with s; andd; in the two sepa-
rate parts of the network is a hypergeometric random vari-
able, i.e.,

P{m(0,0) =i} =
<n<c><n - n<c>>> <n<n —1)/2—n(C)(n— n(O)))

) m—1

(n(n ;11)/2> ’

forall 0 <4 < m [15]. The expectation of.(o, C) is

n(C)(n — n(C’))m'

E(m(o,C)) = W =1)2

In both models, the maximum expected number of light-
paths passing through onelgflz, ..., Iy (¢ is at least

E(m(o,C)) _ n(C)(n—n(C)) m
(X o, (Bllw) 2 =35 nin—1)/2  W(C)
Since
B(OPT(0)) > B(L) > _max _(E(Ly).

we have the following lower bound fdt (OPT(c)):

n(C)(n —n(C))
n(n—1)/2

m

W(C)

E(OPT(0)) >

The above lower bound is strengthened to

n(C
E(OPT(0)) > mcz}x(



becaus&’ can be an arbitrary cutset. By considering a cut- e all samples of a random network.
setC with W (C') equal to the bisection width’, we get a

special lower bound foE (OPT(0)): The above three sources of randomness are independent of
each other.
E(OPT(0)) > [n/2][n/2] Lm We will evaluate the average-case performance of sev-
“nan-1/2 W eral online algorithms for the RWA and the TM prob-

. L ) ) lems. All our algorithms visualize a WDM optical network
The above discussion is summarized as the following theo-N — (V, E) as having separate copi€s;, Na, N, ..., one
rem. for each wavelength, such that all the connection requests
Lower Bound Theorem B. For anyn-node WDM network  routed onN; use the wavelength;, and that lightpaths on
and a sequence of m random connection requests, we the same copy; are edge-disjoint. Initially, there is only

have one copyNy, and new copies will be introduced when nec-
3 essary.
E(OPT(0)) > mgX(n(C)‘(/g(C;L(C))) nn Tl)/Q' @ Assume thatV;, N», ..., N, are the current copies ever
used. When processing a connection requgsan exist-
In particular, if the network has bisection widf, we  ing copyN; is chosen to find a lightpath; for ; and the
have lightpathp; is assigned the waveleng. Then, the opti-
cal links occupied by, are deleted fromV;, so that these
[n/2][n/2] m _ m links cannot be used by later connection requests to prevent
E(OPT(0)) > —F—+— RS . ' -
nn—1)/2 W 2W link overlapping.

(Note: The above lower bound is valid for both online and Different algorithms use different strategies in idenify
oﬁliné RWA problems.) ing V;. We will consider the following heuristics.

Both Lower Bound Theorems A and B are applicable to e First-Fit (FF) — A shortest lightpath is sought vy by

the random drawing with/without replacement models. using those optical links still not deleted. If there is no
such a lightpath, a shortest lightpath is soughivVis)

4 Online Algorithms Ns, ..., and so on, until a lightpath is found.

_ e Best-Fit(BF) — A shortest lightpatlp; ; is sought in
While the known results on the worst-case performance each ofN;, 1 < i < b. Then, the shortest lightpath
of online PC and MDP problems are quite discouraging (i.e. amongp; 1, p; ; --7;j » is chosen ag;.
the RWA and the TM problems have high inapproximabil- T "
ity for arbitrary WDM networks), we take a different ap- o pensest-Fit(DF) — A shortest lightpath is sought

proach to attacking the online RWA and TM problems in in N; which has the most optical links among
this paper, that is, evaluating the average-case perfarenan Ni,Ns, ..., N,. If such a lightpath cannot be estab-
of (deterministic and randomized) online algorithms. lished, a shortest lightpath is sought in the copy with
Let o denote a sequence of random connection re- the second most links, the copy with the third most
questsri, 7z, ..., 7. For such random input, bo#L.G (o) links, ..., and so on, until a lightpath is found.

andOPT(c) become random variables. We also notice that
ALG can be a randomized algorithm and a WDM network ¢ Random-Fit(RF) — A shortest lightpath is sought in a

can be a random network. We define tawerage-case
competitive ratios

a(ALG) = E<ALG(0)),

OPT(0)

and
E(ALG(0))

E(OPT(0))’
where the expectations are taken over

B(ALG) =

¢ all sequences ofi random connection requests;

e all random choices of algorith®lLG if it is a random-
ized algorithm;

randomly selected cop¥;, whereN; is chosen from
all those copies which can provide shortest paths for
rj, say, Ni,, Ni,, N4y, ..., and each of these copies

Ni,, N;,, N;,, ... are chosen with equal probability.

-
In all the above algorithms, a shortest lightpath is found by
using the breadth-first search algorithm.

When no existing copy iV, No, ..., N, can provide a
lightpath forr;, a new copyN,; identical toN is initi-
ated, so that a shortest lightpathis established omV,;
and assigned the wavelength, ;. However, for the TM
problem, the connection request is blocked (i.e., notsatis
fied and rejected) i is already equal té, the given number
of wavelengths.



5 Experimental Performance Evaluation

Extensive experiments have been conducted to evaluate
the average-case performance of the online algorithms pre-
sented in the last section for the RWA and the TM problems

on a wide range of WDM optical networks.

5.1 The Methodology

In the experiments for the RWA problem, for each com-

bination of (network, algorithmy), we report, 3, andpl,
whose meanings are explained as follows.

e The lower bound forOPT(c) expressed in Eq.
(1) requires coverage of all cutsets, which is
certainly computationally infeasible.
each networkN, there aren(N) pre-chosen cut-
setsCq, Co, ..
OPT(o) in Eq. (1) is simplified as

ma m(a,Ci)
1<ignn \ W(Ch) )

b=

The above lower bounid is then used to be compared

with ALG (o). Thus, the following expectation

o E<AL(;)(CT)>

is an over-estimation af(ALG).

e The lower bound folZ(OPT(o)) expressed in Eq. (2)
also requires coverage of all cutsétsFor a particular
network N, we can always choose a cutget which

maximizes
n(C)(n —n(C))
W (C)
Hence, the lower bound faf(OPT(o)) in Eq. (2) is
simplified as
Ib— n(Cy)(n —n(Cy)) m .
W(Cy) n(n—1)/2
However, the following ratio
5= E(ALG(0))
) -—n(C)) _ m
W(Ch) n(n—1)/2

is still an over-estimation of(ALG). For a random
network, the lower bound faE'(OPT(0)) in EqQ. (2) is
modified as

= _ o n(C1)(n—n(C1)) m
i e (M )

Hence, for

., Cy(ny» such that the lower bound for

where C; is the random cutset which cuts the unit
square into upper and lower halves, and
~ E(ALG(0))

b=—=

(See Section 5.2 for random network generation.)

e In addition to the number of wavelengths to be mini-
mized, the average lengili of lightpaths should also
be minimized, though this is a secondary optimization
goal.

In the experiments for the TM problem, for each combi-
nation of (network, algorithmn, k), we report3, which
is (1 — the expected blocking rate), i.e., the expected per-
centage of connection requests that are satisfied by ésing
wavelengths.

5.2 Optical Networks

Eight WDM optical networks are considered in our ex-
periments, namely, a mesh network, four real networks, and
three types of random networks:

e the 10 x 10 mesh network withy = 2 and 4, Cy
shown in Figure 1;

e a 24-node ARPANET-like regional network [29] with
n = 5andCyi, ..., C5 shown in Figure 2;

e a 16-node NSFNET backbone [6] with = 2 and
C1, Cy shown in Figure 3;

e the 20-node European Optical Network (EON) [25]
with p = 6 andC1, ..., Cs shown in Figure 4;

e the 30-node UK Network [1] withn =
C1, ...,Cg shown in Figure 5;

6 and

e 100-node random grid networks;
e 50-node random regular networks;
e 50-node random unit disk networks.

In Figures 1-5, the cutsets are arranged in decreasing order
of
n(Ci)(n —n(Ci))
W(C;) ’
whose values are shown in the parentheses. The cutsets for
random networks are described below.

Although a number of models are available in random
graph theory, e.g., models A, B, and C in [26], none of them
is appropriate to model computer networks. We believe that
a random network model should incorporate link locality
into consideration. In this research, we consider threegyp
of random networks.
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Figure 1. A 10 x 10 mesh network.

(20)  (18) (19.3)

C2 C3C5 c4

Figure 2. A 24-node ARPANET-like network.

Figure 3. A 16-node NSFNET backbone.

Figure 4. The 20-node European Optical Net-

work.

Figure 5. The 30-node UK Network.



N // We only consider connected random networks, that is, a

I

: \\ c3 / random network is regenerated if it is disconnected. The
_____ c4 arameters, d, andr of the three types of random net-

| & N L parameters;, d, andr of the three types of random net

| N\ / works are determined such that 0.9 andd = ng,. = 10.

These parameter settings are to yield high connectedness of
the random networks. To test the connectedness of the ran-
dom networks with the above parameter settings, we gener-
ated 10,000 samples of each type of random networks. The
numbers of connected samples of random grid networks,
random regular networks, and random unit disk networks
are 9213, 9,999, and 9,495, respectively.
Each experimentis repeated #8100 times, and the 99%

Figure 6. Cutsets in a random network.

A random grid networkV, = (V, E) is a subnetwork of
the mesh network and is generated as follows. ymax< /n
grid network, then nodes inV” are identical to the nodes in
a+/n x v/n mesh network. Each link of the mesh network
independent of the existence of other links, where g < tained from the maximum confidence interval of all the ex-

1. Cutsets for random gnd networks are the same as thosé)eriments in a table. The 99% confidence interval is less
for mesh networks. than1-2%, except Table 8(a) for random unit disk networks.

A random regular networkV, = (V, E) is generated as It is noticed that the number of wavelengths used on ran-

follows. LetU be a unit square in the Euclidean plane. The dom unit disk networks has large variance. It has been
n nodesvy, v1, v, ..., vu_1 Of V are chosen randomly and ©bserved that the probability distribution of the number of

independently front/ with a uniform distribution. For each ~ Wavelengths used on random unit disk networks has a long

nodew;, thed nearest nodes i are made its neighbors,
whered > 1. However, it is not guaranteed that and

tail, and the number of wavelengths may exceed, say, 256!
Our experimental data are displayed in Tables 1-8 for

v; are in the set ofl nearest neighbors of each other. The the eight WDM optical networks. Several observations are
actual neighbors are selected in the following way. First, in order.

we make an order of the nodes, s&yy, v1, v2, ..., Un—1).
The degree of node is d; = 0 in the beginning. Then, for
0 <i < n—1,assume that; already hadi; neighbors in
{vo,v1,...,v;—1}. We choose thd — d; nearest neighbors
of v; from the nodes i{v; 1, vit2, ..., Un—1}, SAY,V},, Vj,,
- Vj,_4,» Whose numbers of neighbors are still lessand
increase each af;,, dj,, ...,d;, , by 1.

A random unit disk networly,, = (V, E) is generated
as follows. Then nodesvg, vy, vo, ..., v,_1 Of V are chosen
randomly and independently frotd with a uniform distri-
bution. Two nodes); andv; are connected if and only if
their distance is no longer thanwhere0 < r < 1/2. The
expected number of neighbors of a nodegs, where

8 11
qr = mr? — §T3 + (? - 7)7‘45

with 0 < r < 1/2[24].

Four cutsets are used for a random regular network and
a random unit disk network (Figure 6), each cuts the unit

square in a different way.

5.3 Experimental Results

e All the four online algorithms exhibit excellent
average-case performance on all the networks for the
RWA problem, in the sense that for a wide range of
m, botha and 3 are very small (less than 2, except
on random unit disk networks). In particular,asin-
creases, both and decrease and approach 1. For the
TM problem, high throughput can be achieved even for
smallk.

e The quality ofa and 3 depends on the quality of the
lower bounds. We believe that the relatively large val-
ues ofa andg for the random unit disk networks are
due to our inability to find tighter lower bounds. Those
data in Table 8(a) obtained from loose lower bounds
do not accurately reflect the average-case performance
and certainly do not imply relatively poor performance
of the four online algorithms on random unit disk net-
works.

e Though there is no dramatic difference among the per-
formance of the four algorithms, Best-Fit is superior to
all other algorithms in the sense that it yields smailer
and 3, produces shorter average path length, and gen-

All the sequences of random connection requests are
generated by using the random drawing without replace-
ment model. We believe that similar conclusions can
be drawn by using the random drawing with replacement
model.

erates higher throughput.

The average path length is quite stable and does not de-
pend too much on the number of connection requests.



Table 1(a). Experimental Data for RWA on the x 10 Mesh Network. Table 3(a). Experimental Data for RWA on a 16-node NSFNETkBane.

(99% confidence intervat0.741%) (99% confidence intervat1.437%)

FirstFit |  BestFit | DensestFit | Random-Fit First-Fit |  BestFit | DensestFit | Random-Fit
m| @ B | pl a B | pl a B | pl a B | pl m| @ B | pl a B | pl a B | pl a B | pl
50[1.6241.7347.5121.6331.7447.1111.7411.8617.3781.6771.8007.448 10{1.7141.7342.7141.7211.7452.6521.7741.8042.7061.7421.7582.698

1001.4421.5177.59241.4491.5217.1311.57§1.6597.48(01.5031.58(07.541 20/1.4981.4712.736§1.5141.4872.6531.5741.5572.7431.5311.5212.754
1501.3721.4287.6331.3641.4287.1531.51§1.5837.5251.4321.4937.574 30[1.3611.3602.7791.3761.3552.6521.4611.4412.7451.4171.4012.758
2001.3281.3797.6441.3261.3747.1431.4821.5397.55§1.391)1.4427.59¢ 40/1.3031.2942.77(1.3001.28§2.6611.3961.3872.7641.3431.33§2.773
2501.3021.3487.6571.2941.3397.1471.4561.5087.5701.3651.4077.61( 50/1.2571.2442.7741.2511.2422.6561.3671.35542.7711.3001.2932.766
3001.2811.32737.6501.2731.3117.1431.4431.4867.5671.3441.3857.62¢ 60/1.22111.2142.7791.2181.2152.6591.3341.3292.7671.26§1.2622.77§
3501.2661.3047.6531.2571.2947.1551.4311.4717.5851.3301.3667.624 70/1.1961.1942.7771.1931.1912.6621.3051.3042.7711.2421.2312.769
4001.2541.2867.6451.2441.2767.1511.42(1.4567.5841.31591.3517.631 80[1.1741.1732.7781.17591.1732.6631.2881.2842.7701.2231.2182.777
4501.2431.2747.6521.2311.2627.1561.4111.4467.5961.3061.3367.634 90/1.1641.1592.7801.1571.1532.6581.27§1.2732.7741.2061.2042.779
5001.2361.2647.6501.2231.2517.1531.4031.4367.5941.2971.3287.642 1001.1491.1462.7791.1451.1442.6631.2631.2592.7701.1901.1892.774
Table 1(b). Experimental Data for TM on th® x 10 Mesh Network. Table 3(b). Experimental Data for TM on a 16-node NSFNET Bacie.
(99% confidence intervat0.257%) (99% confidence intervat0.549%)

First-Fit | Best-Fit Densest-Fit | Random-Fit First-Fit | Best-Fit Densest-Fit | Random-Fit
m| 7 14 | 21 7 14 | 21 7 14 | 21 7 14 | 21 m| 3 6 9 3 6 9 3 6 9 3 6 9
50/1.0001.0001.00¢1.00¢1.0001.0001.0001.00¢1.00¢1.0041.0001.004 10{1.0001.0001.0001.0041.00¢1.0041.0001.0001.0001.00¢1.0041.00Q

1000.9821.0001.0000.9831.0001.0000.9521.0001.0000.9681.0001.000 20/0.9001.00401.0000.9041.0001.0000.8791.0001.0000.8871.0001.00q
1500.7691.0001.00(0.7841.0001.0040.7561.0001.0000.7601.0001.000 30/0.7070.9991.0000.7140.9991.0000.6950.99¢1.0000.7050.9991.00q
2000.6240.9941.0000.6410.9991.0000.6210.9741.0000.6210.9941.00Q 40/0.5850.9501.0000.5950.95241.0000.5810.92(1.0000.5820.9351.00(q
2500.5290.9061.0000.5430.9181.0000.5290.8741.0000.5290.8871.00q 50/0.5030.84(0.9990.5130.84§0.9990.5010.8190.9930.5010.8300.994
3000.4600.7991.0000.4750.8161.0000.4640.7800.9830.4610.7870.994 60]0.4450.7540.9740.4540.7620.9740.4450.7390.94(0.4440.7440.954
3500.4100.7140.9640.4240.7330.9720.4140.7060.9190.4110.7070.941 70/0.4000.681{0.8990.4080.6920.9050.4000.6730.87(0.4010.6760.885
4000.3710.6480.8830.3840.6660.8980.3760.6430.8530.3730.6440.866 80/0.3660.6250.8330.3730.6370.8390.3650.6190.81(00.3650.6270.81§
4500.3410.5940.8130.3540.6120.8320.3440.5930.7930.3430.5920.799 90/0.3360.5810.7720.3440.5910.7820.3370.5740.7560.33§0.5740.765
5000.3150.5490.7540.3260.5670.7730.3190.551/0.7410.3170.5490.744 1000.3130.5440.7240.3210.5550.7340.3130.5380.7140.3140.5390.717
Table 2(a). Experimental Data for RWA on a 24-node ARPANETWoek. Table 4(a). Experimental Data for RWA on the 20-node Eurapg@ptical Network.
(99% confidence intervat-1.406%) (99% confidence intervat-1.792%)

FirstFit |  Best-Fit | Densest-Fit | Random-Fit FirstFit |  Best-Fit | Densest-Fit | Random-Fit
m| & B | pl a B | pl a B | pl a B | pl m| @ B | pl a B | pl a B | pl a B | pl
2011.2391.2113.2071.2341.2173.0131.2671.2293.0861.2571.2253.129 10{1.5922.1772.7431.60592.19(2.6461.5992.1862.6691.6042.2012.704
40[1.1201.0943.2441.1141.0992.9841.1361.1233.1091.1241.1073.173 20/1.4091.72¢42.8031.4081.7192.6461.4141.7442.7261.3991.71§2.765
60/1.0731.0713.2701.0701.06(02.9581.0941.0863.1151.076§1.0613.176 30[1.3141.5522.8381.3041.5412.6351.34§1.5892.7561.3441.5792.80(Q
80/1.051/1.0493.2651.0471.0442.9451.0641.06593.1151.0551.0533.189 40/1.2641.4462.8491.2531.4432.6411.3051.4892.7831.3001.4752.808

1001.0401.0433.28591.03§1.03842.93591.0531.0513.1141.0441.0423.194¢ 50/1.2341.3852.8591.2231.3762.6331.2871.44(2.7911.2561.4062.823
120/1.0321.0273.2771.0341.0332.92(31.0441.0463.1081.0351.0383.197 60/1.211]1.3332.8681.2031.3252.6251.2661.3872.8061.23§1.3612.831]
1401.0261.0263.2821.0281.0292.9241.0391.04(3.1111.0371.0293.197 70[1.1931.2942.8761.1771.2852.6231.25111.3552.8111.2171.3232.845
1601.0231.0203.2811.0231.0202.9091.0341.0353.1071.0251.02§3.203 80/1.1741.2632.8731.1631.25§2.6181.2341.3262.8241.1971.2852.85(
1801.0201.0243.2841.0201.0162.9041.0301.02¢3.1061.0231.0253.203 90/1.1661.2412.8741.1581.2322.6061.23111.30542.8271.1981.2722.853
2001.0181.0143.2821.0191.0192.9061.0271.0283.1041.0201.0203.199 1001.1501.2112.8841.1501.2142.6031.22Q1.28§2.8351.1811.2442.854
Table 2(b). Experimental Data for TM on a 24-node ARPANE Twinwrk. Table 4(b). Experimental Data for TM on the 20-node Europ@ptical Network.
(99% confidence intervat-0.435%) (99% confidence intervat-0.417%)

FirstFit | Best-Fit Densest-Fit | Random-Fit FirstFit |  Best-Fit Densest-Fit | Random-Fit
m| 3 6 9 3 6 9 3 6 9 3 6 9 m| 3 6 9 3 6 9 3 6 9 3 6 9
20/0.9531.0001.0000.9541.0001.0000.9531.00(1.00¢0.9531.00Q1.004 10{0.9991.0001.0000.9991.00(1.0000.9991.0001.0000.9991.0041.00Q
40/0.7930.9741.00(0.8000.9721.0000.7810.9741.00¢0.7830.9731.004 20/0.9841.00¢1.0040.9811.0001.0070.9801.00(1.00¢0.98Q1.0001.004
60/0.6290.8940.98(0.64240.89§0.9800.6200.8930.9740.6220.8940.981) 30/0.9050.9991.00(0.9090.9991.0070.89110.9991.0030.8950.9991.004
80/0.5150.8290.9270.53(00.8340.9290.5140.8090.9250.5150.8140.927 40/0.7800.99€61.00(0.7890.9961.0000.76§0.9961.0070.7700.9961.004

100[0.4410.7410.8830.4560.7580.88240.4390.7230.8760.4380.7260.879 50/0.6730.9841.0000.6820.9861.0000.6630.9791.0000.6660.9811.00Q
120/0.3850.6610.8430.4000.6820.8460.3850.6470.8210.3850.6500.827 60/0.5870.9520.9990.601/0.9530.9990.5860.93(00.9990.5850.9410.999
1400.3440.5950.7890.3590.6200.8040.3430.5870.7640.3430.5890.764 70/0.5240.8920.9960.5380.9010.9970.5230.8660.9950.5230.8760.996
1600.3120.5440.7290.3250.5700.7530.3110.5390.7090.3120.5390.713 800.4730.82240.9890.4880.8390.9890.4750.801/0.98(30.4740.8090.98§
180/0.2850.5010.6760.2990.5280.7030.2860.4940.66240.2850.49§0.663 900.4350.761{0.9740.4480.7790.9740.4350.74€60.9440.4350.7490.96(0
2000.2630.4650.6310.2760.4910.6540.2640.4640.6190.2640.4640.621 1000.40240.7050.9370.4160.7250.9420.4030.6950.9060.4020.6990.919




Table 5(a). Experimental Data for RWA on the 30-node UK Nekwo
(99% confidence intervat1.085%)

FirstFit |  BestFit | DensestFit | Random-Fit
m| @ 5| pl a 5] pl a B | pl a 5| pl

30[1.5791.6613.8111.5731.6583.59§1.6491.73§3.7261.61711.7023.772

60[{1.4001.4313.8451.4011.4363.6171.5061.5413.7801.4381.4813.82¢

90[1.3241.3393.8761.3271.3433.6131.4471.4643.8051.3741.3893.847
1201.2771.2893.8891.2841.2913.6161.4131.42(3.8241.3291.3373.854
150/1.25(01.2533.8841.25(01.2533.6171.3841.3873.8271.2991.3043.864
180/1.2291.2293.8891.2251.2263.6181.3641.3673.8401.2771.2793.875
2101.2081.2083.8971.2061.2083.6171.3481.35(03.8461.2611.2593.873
2401.1951.1943.9001.1911.1943.6171.3361.3363.8481.2481.2453.88(Q
2701.1821.1833.9051.18(1.1793.6181.3251.3253.8531.23(01.2313.883
3001.1711.1713.9051.1661.1663.6141.3111.3153.8501.2191.22(3.884

Table 5(b). Experimental Data for TM on the 30-node UK Networ
(99% confidence intervat0.339%)

First-Fit | Best-Fit Densest-Fit | Random-Fit
m| 5 10 | 15 5 10 | 15 5 10 | 15 5 10 | 15

30/1.0001.0001.00¢1.0041.0001.0001.0001.0001.0041.0041.0001.004
60/0.8691.0001.0000.8741.0001.0000.8451.00(1.00(0.8551.0001.004
90/0.6640.9971.0000.6760.9971.0000.6570.9861.0000.6580.9951.000
1200.5350.9071.0000.5510.9141.0000.5340.8761.0030.5360.8911.00Q
1500.4550.7820.9940.4700.8000.9940.4580.77(0.9640.4570.7740.986
1800.3990.6880.9260.4130.7060.9320.4040.6830.88490.4010.6840.906
2100.3560.6160.8390.3690.6350.8520.3610.6160.8150.3590.6140.824
2400.3230.55490.7630.3360.5790.7810.3270.5630.7500.3260.5590.755
2700.2970.5130.7020.3090.5330.7210.3020.5190.6960.2990.5150.697

3000.2750.4760.6510.2860.4940.6700.2790.4810.6490.2780.4740.648

Table 6(a). Experimental Data for RWA on 100-node Randond Glgtworks.
(99% confidence intervat-0.965%)

FirstFit | Best-Fit | Densest-Fit | Random-Fit
m| & B | pl a B | pl a 8 | pl a B | pl

50/1.8752.0258.0931.8892.0487.6031.9942.1647.9541.9262.0828.004
1001.6491.7718.1791.67Q1.7897.6281.8001.9238.0331.7131.8378.105
1501.5671.6738.1911.5821.6877.6391.7141.8318.0661.6211.7278.11Q
2001.5191.6198.2061.5301.6347.6611.6741.7858.0811.57§1.6808.151
2501.4931.5848.2061.4951.6007.6661.6361.7368.0991.53§1.6368.154
3001.4621.5568.2161.47§1.5677.6571.6141.7138.0931.5201.6078.147
3501.4461.5338.2141.4571.5467.67(01.5991.6988.09§1.4951.5948.174
4001.44Q1.5288.231/1.4441.5357.6691.5841.6778.1001.4871.5758.169
4501.4241.5038.2201.4401.5237.6811.5731.6708.1111.4761.5598.17§

5001.4181.5008.2281.4241.5007.6811.5641.6588.1091.4641.5448.184

Table 6(b). Experimental Data for TM on 100-node Random Glietvorks.
(99% confidence intervat-0.554%)

FirstFit | Best-Fit Densest-Fit | Random-Fit
m| 7 14 | 21 7 14 | 21 7 14 | 21 7 14 | 21

50/0.9991.0001.0000.9991.0001.0000.9941.00(1.0000.9991.0001.004
1000.7911.0001.0040.8031.0001.0000.7831.00(¢1.0040.7871.0001.00q
1500.5540.9821.0000.5680.9811.0000.5580.9641.0000.5590.9741.000
2000.4330.8320.9970.4420.84710.9970.4370.8220.9930.4370.8270.995
2500.3620.6860.9600.3670.7010.9640.3630.6880.9390.3640.6870.953
3000.3120.5860.8570.3150.59710.8660.3120.5890.8440.3130.5870.844
3500.2750.5120.7460.2790.5230.76(0.2760.5170.7440.276§0.5160.74¢
4000.2480.4580.6640.2500.4670.6790.2470.4610.6660.24710.4610.663
4500.2260.4180.5970.2280.4240.6100.2250.4190.6030.2260.4140.601

5000.2080.3830.5470.2090.3890.5540.2070.3840.5500.2080.3830.55(

Table 7(a). Experimental Data for RWA on 50-node Random Redietworks.
(99% confidence intervat1.706%)

First-Fit |  BestFit | DensestFit | Random-Fit
m| @ B | pl a B | pl a B | pl a B | pl
50(1.6541.6722.85(01.63(01.6482.7941.6381.6592.7941.6531.6712.821

1001.6691.8942.9731.6771.9112.8111.7281.9652.8491.6871.9292.919

1501.53491.7453.0261.5711.7862.8191.5981.8142.8851.56(01.7882.969
2001.4871.6713.0551.5041.7062.8271.5511.7762.8981.5131.7142.993
2501.4491.6463.076§1.4701.65712.8231.5111.71592.91241.4651.6583.014
3001.4231.6153.0921.4341.6312.8311.4871.6972.9241.4431.64713.022
3501.4071.6143.1011.4311.6192.8291.47Q1.6692.9341.4091.6083.034
4001.3961.57593.1051.4041.5892.8281.4611.6532.9341.4051.6103.044
4501.3801.5563.1151.4041.6012.8281.4541.6392.9371.3841.5733.049
5001.3581.5443.12(01.39111.5842.8241.4341.6322.94241.38(31.5593.059

Table 7(b). Experimental Data for TM on 50-node Random Raguetworks.
(99% confidence intervat0.476%)

First-Fit | Best-Fit Densest-Fit | Random-Fit
m| 3 6 9 3 6 9 3 6 9 3 6 9
50/1.00(31.00401.0001.0001.0001.0001.0001.0001.0001.00¢1.0001.00qQ

1000.9991.00401.00730.9941.0001.0000.9941.0001.0090.9941.00Q1.0040

1500.9671.0041.00700.9661.0001.0000.96(01.0001.0000.9641.00Q1.0040
2000.8540.9941.0000.8540.9991.0000.8450.9991.0000.8490.9991.00(
2500.7340.9941.0000.7450.9921.0000.7370.991/0.9990.73840.9931.00(Q
3000.6590.9740.9990.6610.9690.9990.6550.9660.9990.6540.97(30.999
3500.5890.9250.9970.5990.9250.9950.5910.9140.9950.59(0.9220.996¢
4000.5380.8630.9890.5480.8650.9840.54(0.8540.9860.5360.8580.989
4500.4960.7990.9730.5080.8060.9720.4980.7960.9680.4940.7990.974
5000.46(Q0.7480.9470.4720.7550.9440.46240.7490.9390.46Q0.7470.944

Table 8(a). Experimental Data for RWA on 50-node Random Disk Networks.
(99% confidence intervat-5.123%)

FirstFit | Best-Fit | Densest-Fit | Random-Fit
m| @ B | pl a B | pl a B | pl a B | pl
50/2.4072.6003.2472.3962.5933.0082.3842.5873.0482.3352.5753.136
1002.4432.8873.37(2.5153.0333.0002.5142.97713.1052.4892.91§3.195
1502.3702.8253.4042.4342.8812.9952.4742.8953.1052.4352.9593.19(
2002.3572.7323.4362.3742.8272.9952.3452.7683.1252.3572.78(33.214§
2502.3242.7693.4492.3752.7842.9992.3992.81(3.1312.3122.7383.22(Q
3002.2932.7443.4552.3762.85(02.9802.3282.7453.1432.3892.7863.231
3502.2942.7373.4722.3232.7572.9722.3712.7713.1342.3152.81(3.232
4002.2662.7143.4662.2742.7052.9662.3362.7833.1312.2532.6843.237
4502.2292.6703.4662.3002.7192.9942.3142.7913.1412.2512.6863.236
5002.2912.6973.4822.2342.6852.96712.3082.6993.1342.2062.67(33.228

Table 8(b). Experimental Data for TM on 50-node Random UiiskINetworks.
(99% confidence intervat-1.062%)

FirstFit |  Best-Fit Densest-Fit | Random-Fit
m| 3 6 9 3 6 9 3 6 9 3 6 9
50/0.9810.9970.9990.9790.9960.9980.9810.9970.9990.9740.9960.999

10010.8920.9810.9940.8870.9840.9930.8870.9830.9930.8890.9820.993

1500.7630.95(00.9840.7640.9480.9830.7670.9470.9830.7620.9470.983
2000.6580.8980.9620.6590.8960.9610.6540.8990.96240.6540.9010.963
2500.5700.8330.9370.5750.8360.9300.5670.8340.9360.5730.84(30.933
3000.51Q0.7710.8980.5110.7730.9030.5140.7700.9000.5040.77(30.901
3500.4570.7120.8590.4640.7120.8620.4580.7150.8560.4580.7170.857
4000.4170.6610.8210.4230.6660.81710.4160.6660.8150.4180.6620.814
4500.3820.6190.7720.3890.6210.78(0.3840.6150.7740.3830.6150.781
5000.3570.5780.7300.3630.5850.7350.3560.576§0.7350.35840.58(0.737




6 Concluding Remarks

We have investigated the problem of online routing and
wavelength assignment and the related throughput maxi-

mization problem in wavelength division multiplexing op-

tical networks. It is very encouraging to find that even sim-
ple online RWA and TM algorithms can achieve excellent
average-case competitive ratios. Our results also imlly th

the room for performance improvement by using offline al-
gorithms is very limited.
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