
 Abstract 
 

With the continuous advances in optical 
communications technology, the link transmission speed of 
Internet backbone has been increasing rapidly. This in 
turn demands more powerful IP address lookup engine. In 
this paper, we propose a power-efficient parallel 
TCAM-based lookup engine with a distributed logical 
caching scheme for dynamic load-balancing. In order to 
distribute the lookup requests among multiple TCAM chips, 
a smart partitioning approach called pre-order splitting 
divides the route table into multiple sub-tables for parallel 
processing. Meanwhile, by virtual of the cache-based load 
balancing scheme with slow-update mechanism, a speedup 
factor of N-1 can be guaranteed for a system with N (N>2) 
TCAM chips, even with unbalanced bursty lookup 
requests. 
 
 
1. Introduction 
 

IP address lookup is one of the key issues in Internet 
core routers. Today, an Internet core router, such as the 
Juniper T640, processes 640G bits per second (Gbps). On 
condition that each packet is at its minimum size of 40 
bytes, such router should complete a packet lookup every 
0.5ns. In light of the Moore’s law, the growing pace of 
link transmission speed expects much higher lookup 
throughput in the near future. 

Ternary Content Addressable Memory (TCAM) is a 
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fully associative memory that allows a "don't care" state to 
be stored in each memory cell in addition to 0's and 1's. It 
returns the matching result within only one memory access, 
which is much faster than algorithmic approaches [18] that 
require multiple memory accesses. As a result, TCAM is 
widely utilized for the IP lookup nowadays. 

Nevertheless, TCAM is not a panacea in that: the 
memory access speed is slower than SRAM while the 
power consumption is high. The state-of-the-art 18Mb 
TCAM can only operate at a speed of up to 266MHz and 
performs 133 millions lookup per second [4], barely 
enough to keep up with the 40Gbps line rate today. On the 
other hand, the size of the route table has been increasing at 
a rate of about 10-50k entries per year in the past few years 
[1]. When IPv6 is widely deployed, even more storage 
space is needed. In pursuit of an ultra-high lookup 
throughput matching the ever-increasing link transmission 
speed and the rapidly growing route table, multi-chips 
system is necessary. 

Given multiple TCAM chips in the system, we strive to 
multiply the lookup rate by using parallel processing 
techniques with minimal overhead. There are some major 
concerns in chip-level parallel lookup system design: 

1) A partitioning method is needed here to split the 
entire route table into multiple sub-tables that could be 
stored in separate TCAMs. It should support dynamic 
lookup requests distributions, efficient incremental updates, 
high memory utilization and economical power dissipation. 

2) A dynamic load balancing is required for the sake of 
higher and robust throughput performance in parallel 
system. 

The subject of this paper mainly focuses on the above 
two issues. The proposed lookup engine is cost-effective 
and it guarantees a speedup factor of at least N-1 by using 
N (N>2) TCAM chips, even when the lookup requests can 
be unevenly distributed. When four TCAMs are used with 
a partitioning factor of 32, the power consumption is 
reduced by over 93.75% compared to the naive mode 
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while the storage redundancy is less than 2%. 
The rest of the paper is organized as follows. In Section 

2, we describe prior works and some useful observations 
of the Internet traffic. In Section 3, we propose a table 
partitioning algorithm which evenly distributes the route 
table entries among the TCAM chips to ensure high 
memory utilization. In Section 4, we describe the 
hardware architecture of the lookup engine and the 
dynamic load balancing scheme. We present our 
theoretical performance evaluation in Section 5 and 
simulation results in Section 6 respectively. Finally, we 
conclude our work in Section 7. 

 
2. Related Works and Investigation 
 
2.1. Algorithms Based on TCAM 

 
Chip-level parallel TCAMs were deployed to 

circumvent the limitation of a single TCAM， where 
issues should be appropriately addressed: 1) high memory 
efficiency, 2) economical power dissipation and 3) 
balanced traffic load distribution among parallel TCAMs.  

Many researchers have strived to optimize the 
TCAM-based lookup engines with respect to 1) and 2): 
Liu et al. [6] used both pruning and logic minimizing 
algorithms to reduce the forwarding table sizes, which in 
turn reduced the memory cost and power consumption of 
the TCAM. Many other studies [7, 9] developed more 
power-efficient lookup engines benefiting from a new 
feature of some TCAMs called “partition-disable”. The 
key idea is to split the entire routing table into multiple 
sub-tables or buckets, where each bucket is laid out over 
one or more TCAM blocks. During a parallel lookup 
operation, only the block(s) containing the prefixes that 
match the incoming IP address is (are) triggered instead of 
all the entries in the original table. In this fashion, 
TCAM’s power consumption can be dramatically reduced. 
As a key component of such design, generally three kinds 
of algorithms for partitioning the entire routing table were 
proposed, i.e., key-ID based [3, 7, 9], prefix trie-based [7] 
and range-based [8] partitioning. The key-ID approach 
suffered from uneven sub-table sizes and uncontrolled 
redundancy, which result in a higher memory and power 
cost. Trie-based partitioning in [7] can lower the 
redundancy and unify sub-table sizes, but it required an 
extra index TCAM to perform the block selection. As a 
result, two TCAM accesses are occupied for each lookup 
request. Panigrahy et al. [8] introduced a range-based 
partitioning framework where they expected to split the 
routing table into multiple buckets with identical size 
(number of prefixes). However, the algorithm to determine 
the partitions which is a vital implemental concern in 
practice was not presented in [8]. 

When it comes to 3), few truly effective algorithms 
have been proposed so far to the best of our knowledge. 

Without any load balancing mechanisms, eight or more 
parallel TCAM chips were employed in [8]. But only a 
speedup factor of five was achieved if the lookup requests 
were not evenly distributed. A load balancing mechanism 
was introduced in [9] based on some “pre-selected” 
redundancy. It assumed that the lookup traffic distribution 
among IP prefixes can be derived from the traffic traces. 
In their optimized system evaluation with simulated traffic, 
a speedup factor of nearly four can be achieved.  
However, when a certain range of route prefixes, or a 
certain TCAM block, receives more traffic than others or 
when the traffic is temporarily or permanently biased to a 
limited number of route prefixes, multiple selectors 
frequently try to access the same block. Under such a 
contentious situation, the system can only fulfill one of the 
requests. This greatly hampers the average throughput. 

 
2.2. Analysis on Internet traffic 

 
Recall that the performance of a parallel search engine 

depends heavily on the distribution of lookup requests. 
Based on the data collected from [10], we observed that the 
average overall bandwidth utilization was very low but the 
Internet traffic could be very bursty. In April 2006, the 
average bandwidth utilization among more than 140 
backbone routers was only about 3.1134% and 3.1234% for 
inbound and outbound traffic respectively II . However, 
workload of individual router can be great bursty during 
bulk date transfer. Taking router Chin-CERN (40Gbps) as 
an example, on May 12, 2006, its workload fluctuated 
between 10Mpkt/sIII (8%) and 50Mpkt/s (40%), and in the 
week of 24/04-2006 the workload was increased to over 
113Mpkt/s (90%) during peak periods. Jiang et al. [15] 
suggested that bursts from large TCP flows were the major 
source of the overall bursty Internet traffic. They 
identified nine most common causes of source-level IP 
traffic bursts, one for UDP and eight for TCP flows. Most 
of these were due to anomalies or auxiliary mechanisms in 
TCP and applications. It is indicated that TCP’s 
window-based congestion control itself leads to bursty 
traffic. As long as a TCP flow cannot fill the pipe between 
the sender and the receiver, bursts always occur. Hence, 
mapping route table partitions into TCAM chips based on 
long-term traffic distribution [9] cannot effectively 
balance the workload of individual TCAM chip during 
bursty periods. 

Instead of mapping route table partitions into TCAM 
chips relying on long-term traffic statistics, our adaptive 
load balancing scheme will capture the locality property of 
Internet traffic using the concept of cache. Locality 
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property of Internet traffic had been widely studied in 
[11-14]. Analyses on real traces revealed that the 
conversationIV counts were lower than the packet counts, 
which indicated the existence of the temporal locality. For a 
real trace, in case of 100-second time interval, top 10% of 
the highest-activity conversations accounted for over 74% 
of the packets [11].  

 
3. Smart Route table Partition 

 
In this section, we propose a range-based partitioning 

algorithm that can evenly allocate the route entries among 
the TCAM chips to ensure high memory utilization.  

To achieve the range-based partitioning, one needs to 
divide the whole route table into N independent parts by 
range [8]. Taking IPv4 as an example, an IP address could 
lay in the space from 0 to (232-1). We partition this space 
into N disjoint ranges so that each range maps to about 1/N 
of the total number of prefixes. We say a prefix falls into a 
range if any IP address from that prefix can match the range. 
Formally, a prefix P* falls in a range [a, b] if the range 
[P0...0, P1...1] intersects with the range [a, b]. To make the 
route partitioning work well, two points should be 
addressed here. First, a smart method should be explored to 
determine the appropriate range boundaries simply. Second, 
LPM must be guaranteed, because some prefixes may fall 
into multiple ranges simultaneously.  

Our partitioning scheme works in two steps. First, a 
routing trie is constructed using the route table. LC-trie [17] 
can be certainly used here to save memory space, but for 
the sake of clear description we use 1-bit trie for 
demonstration (Figure 1 is an example of 1-bit trie built 
from a route table.) Second, sub-trees or collections of the 
1-bit trie are successively carved out and mapped into an 
individual routing group. 
 
3.1. Pre-order Splitting 

 
Here is the description of the trie-based partitioning 

algorithm called pre-order splitting and Figure 2 is the 
pseudo-code of this algorithm. This algorithm takes a 
parameter b that denotes the number of TCAM buckets as 
input. The output is a set of b sub-tables with equal size and 
a set of (b-1) reference nodes which are depicted in Figure 
2. During the partitioning step, the entire trie is traversed in 
pre-order looking for a prefix node. Every time a prefix 

                                                        
IV A conversation was defined as a sequence of packets toward the same 
destination address within a fixed time interval [11]. 
V The prefixes of only the black nodes are in the route table. A “*” in the 
prefixes denotes the start of don’t-care bits. 
VI Here count is the number of prefixes in the 1-bit trie, root is the root 
node of the 1-bit trie, prefix (p) is the prefix of node p, parent (p) is the 
parent node of p in the 1-bit trie, push (p) means to save p into stack, pop 
means to load an element from stack, and delete (p) means to delete node 
p from 1-bit trie. 

 

Figure 1. An example route table and the 

corresponding 1-bit trie built from it. V 
 

Preorder-split (b) 
{ 

m=count/b; j=b; u=1; 
while (j! =1){ 

p=root； 
for (i =0; i<=m; i++){ 

p=next prefix node in pre-order; 
push(p); 
put prefix(p) in bucket[u]; 

} 
p=next prefix node in pre-order; 
save prefix(p) as the reference_node[u]; 
u++; 
while (stack is not empty){ 

      p=pop; 
while（node p has no children node）{ 

delete(p); 
p=parent(p); 

} 
} 
j--; 

} 
save the rest prefix nodes as bucket[b]; 

} 
Figure 2. Pre-order splittingVI. 

 

 
 

No. Bucket 
 Prefixes 

Ref. 
Node 

Range 
Low 

Range 
High 

1 000*,000000, 
00001*,00010*

000111 000000 000110

2 000*,000111, 
00111*,01* 

1* 000111 011111

3 1*,110*, 
1100*,1111* 

111101 100000 111100

4 1*,1111*, 
111101,11111*

 111101 111111

Figure 3. Four iterations of the pre-order 
splitting algorithm. 



node is encountered, it will be saved in a TCAM bucket and 
pushed into a stack at same time. When the program gets an 
average number of prefix nodes, it will pop an element 
from the stack and delete the corresponding prefix node 
(remount to its parent node) which has no child nodes from 
the entire trie. This step will continue until the stack is 
empty. After this step, some parts of the tire are carved out. 
The program will get a sub-table with equal size fitting to a 
TCAM bucket in each loop. Finally, the rest of the prefix 
nodes in the last loop will be saved in the last TCAM 
bucket. During the whole process, the reference nodes will 
be saved too. Figure 3 instantiates how prefix nodes are 
divided into four buckets from the 1-bit trie depicted in 
Figure 1. It is obvious that the first TCAM bucket’s low 
range point must be (0…0) and the last TCAM bucket’s 
high range point must be (1…1). We will use the reference 
nodes to calculate the other boundary points of each TCAM 
bucket. For instance, P* is the reference node of TCAM 
bucket u (not the last one). So its high range point will be 
(P0…0 - 1) while the TCAM bucket [u+1]’s low range 
point will be (P0…0). In this way, we have b TCAM 
buckets and each of them has a pair of boundary points.  

To lookup the route for an input address a, only the 
TCAM bucket [u] is activated, where the value of a lies 
within the low and high range of bucket [u]. To ensure 
correct lookup result, prefixes lying along the boundary of 
2 adjacent buckets are duplicated in the 2 buckets 
concerned automatically. Furthermore, the default prefix 
(0.0.0.0/0) will be copied to all the buckets initially. We 
refer to this prefix duplication as the redundancy. As 
shown in Figure 1, level of prefix nesting in the routing 
table is no more than 6, i.e. there are at most 6 valid 
prefixes along a path from the root to a leaf in the 1-bit trie. 
Hence, the amount of redundancy is no more than 6*b. In 
IPv4, length of prefixes can be between 8 to 32, whereas 
in IPv6 length of prefixes can be between 16 to 64, and 
128 [5]. If there are b buckets in the system, then the 
redundancy is no more than 24*b for IPv4, and no more 
than 50*b for IPv6.  

The prefix update is very simple. During an insertion 
operation, a prefix P will be compared with the boundary 
points and be copied to the corresponding buckets. During a 
deleting operation, there will be no extra operation for a 
non-boundary prefix. For a boundary prefix, the new ranges 
of its TCAM bucket should be re-calculated. Since the 
boundary points are only determined by the reference node, 
we just need to find a new reference node. It can be 
determined by a simple pre-order searching in the 1-bit trie 
that costs only a few clock cycles. As shown in Figure 1, 
when the prefix node 1* is deleted, the new reference 
node for bucket No.2 will be 110* (the next prefix node of 
01* in pre-order). As a result, the range for both bucket 
No.2 and No.3 will be changed into (000111, 101111) and 
(110000, 111100), respectively. Another advantage is that 
it is not difficult to balance the size of two adjacent TCAM 

⎡ ⎤b2log/

 

Figure 4. Schematics of the indexing logic. 
 

Bucket Range Low Range High Size
1 0.0.0.0 32.113.255.255 5807
2 32.114.0.0 62.101.191.255 5807
3 62.101.192.0 64.76.75.255 5807
4 64.76.76.0 65.164.213.255 5807
5 65.164.214.0 66.187.243.255 5807
6 66.187.244.0 68.166.255.255 5807
7 68.167.0.0 70.169.57.255 5807

… 
30 213.182.109.0 216.158.137.255 5807
31 216.158.138.0 218.103.47.255 5807
32 218.103.48.0 255.255.255.255 5110

Figure 5. The detail result with b=32 on 
Equinix. 
 

 

Figure 6. Partition redundancy. 
 

 

Figure 7.Comparasion on key-ID and range 

partition. 
 

 
Figure 8. Cache organizations: 

(a) centralized cache;(b) distributed caches 



buckets dynamically. 
Figure 4 illustrates the pipelined structure of the 

Indexing Logic for TCAM block selection. It is composed 
of pairs of parallel comparing logics and an index table. 
Each pair of parallel comparing logic corresponds to one 
TCAM bucket and is composed of two registers which 
store the boundary points of each TCAM bucket. Next to 
the parallel comparing logics is an index table with encoder. 
The index table which stores the bucket distribution 
information returns a partition number indicating which 
bucket may contain the prefix matching the IP address by 
the encoded information. Because the data width of the 
Indexing Logic is fixed and only simple “compare” 
operation is executed, it can work at a very high speed. In 
this paper, the Indexing Logic has been set as the entry of 
the entire parallel system. 

 
3.2. Evaluate the Pre-order Splitting 

 
We have analyzed the route tables VII  provided by 

route-views [2]. We chose different b for test. In order to 
prevent the large size of the last bucket, we chose 

count/b +24  as the average size instead of count/b .  
Figure 5 shows some detail results partitioned on Equinix 
with b=32 and the redundancy of the entire system is only 
51. Figure 6 shows the relationship between bucket number 
b and the whole redundancy among four route tables. The 
redundancy for all route tables is less than 2b and it is much 
less than the theoretical worst-case estimation (24b). 

We also have a comparison between our range-based 
partitioning method and the key-ID approach [9]. Since 
the key-ID approach can only based on 10-13bit (which is 
the best configuration for both redundancy and even 
sub-table size), we chose b as 16 and chose count/16 +24  
as the average size of each bucket. Figure 7 shows that 
besides more redundancy, the key-ID approach suffers 
from uneven sub-table sizes seriously while our 
partitioning method can guarantee precisely even size of 
each bucket and little redundancy.  

 
4. Logical Cache for Load Balancing 
 
4.1. Cache Organization 

 
As mentioned in Section 2.2, temporal locality of the 

Internet traffic is much stronger in the core routers due to 
the greater effect of heavy flow aggregations. To achieve 
higher lookup throughput, a straightforward design with 
cache is to deploy a first stage caches working in front of a 

                                                        
VII They are Equinix located in Ashburn, VA on 2006-05-02 00:42(UTC) 
with a size of 185076; ISC located in Palo Alto CA, USA on 2006-05-02 
00:14(UTC) with a size of 186843; LINX located in London, GB on 
2006-05-02 00:36(UTC) with a size of 186582; NSPIXP located in 
Tokyo, Japan on 2006-05-02 00:17(UTC) with a size of 188526. 

second stage data TCAMs. An obvious drawback of this 
conventional approach is that the cache is required to 
operate at N times the speed of TCAM if there are N 
parallel TCAMs in the system, which is impractical. 

As we have mentioned in Section 1, TCAM vendors 
have started providing mechanisms called TCAM blocks. 
Since there are multiple TCAM chips, we can use some 
blocks to create logical caches. In this case, the commercial 
TCAMs can be competent for supporting such a cache 
mechanism. No additional cache module implies fewer 
pins and less packaging cost. Furthermore, employing the 
existing TCAM cells as logical caches exhibits a better 
performance cost ratio. So we propose a parallel system 
with distributed logical caches as Figure 8(b) depicts. 

Based on our partitioning algorithm, we partition each 
TCAM into small buckets with a size of count/b +24 so 
that each bucket can store in one single partition. Now we 
use the partition as a basic unit to allocate the prefixes 
among the TCAMs. We also select some blocks from each 
TCAM to serve as logical caches. Suppose there are 4 
TCAMs and each one has 8 partitions plus 1 logical cache. 
Therefore, there are totally 32 partitions, so b equals to 32. 

 
4.2. Logical Caches for Load Balancing 

 
The detailed implementation architecture of the parallel 

lookup engine is presented in Figure 9. Given an incoming 
IP packet to be searched, the IP address is extracted and 
delivered to the Indexing Logic (see Figure 4) for a 
comparison. The Indexing Logic will return a partition 
number indicating the “home” TCAM that may contain the 
matching prefixes. The Adaptive Load Balance Logic 
sends the IP address to the home TCAM or an alternate 
TCAM for processing based on the length of the FIFO 
queues. A feed back logic is also settled to operate the 
cache-missed packets. Since multiple input queues and 
feeding back exist in the proposed scheme, the incoming IP 
addresses can be processed in a non-FIFO order. The 
Re-ordering logic maintains the original sequence by using 
the time stamp attached.  

The adaptive load balance logic distributes a new 
lookup request to the TCAM chip with the shortest input 
queue. With the feedback mechanism depicted in Figure 9, 
there are three different alternatives. 1) If the incoming IP 
address has been sent to its home TCAM, it will get a 
search operation on the partition indicated by the Indexing 
Logic and the final result is done. 2) If the incoming IP 
address has been sent to a non-home TCAM, it will get a 
search operation on the logical cache. When it is 
cache-matched, the result is guaranteed by the RRC-ME, 
so the final result is done. 3) The logical cache of the 
TCAMs only holds a small number of prefixes. When a 
cache miss occurs, it must be sent back to the home 
TCAM via the feedback to the corresponding FIFO and 
case 1) happens again. 



4.3. Cache IPs or Cache Prefixes 
 
Generally two kinds of algorithms for cache mechanism 

are proposed in route loopup literatures, caching 
destination addresses (IPs) [11-13] and caching prefixes 
[14].  Binary CAM can be used if IPs are cached. However, 
using BCAMs imposes a much higher overhead in the 
proposed system. The second disadvantage of caching IPs 
is that a much larger cache size is required. A number of 
papers [11-13] have demonstrated that the cache hit rate 
can be over 90% with 8,192 cache entries by caching IPs, 
while the cache hit rate can easily achieve 96.2% with 256 
cache entries by caching prefixes [14]. 

For caching prefix, one important issue is worth being 
mentioned here. Suppose p and q are two prefixes where q 
is a subrange of p, i.e. p is a prefix of q. If there is a 
lookup request r redirected to the cache and p is the LMP 
of r, then p will be added to the cache. However, in some 
later time if another request r’ (whose LMP is q) is 
redirected to the cache, then the cache will return p as the 
lookup result (where the correct result should be q). To 
resolve this problem, we adopt the RRC-ME algorithm [14] 
in managing the cache. In the above example, the shorter 
prefix p will be expanded into a longer prefix, based on 
the Minimal Expansion Prefix (MEP) method in [14]. For 
instance, there are only two prefixes in a route table, i.e. 
1* and 111*. Hence, the MEP for request 1111 is 111*, 
the MEP for request 1000 is 10*(it has the same next hop 
as 1*), the MEP for request 1100 is 110*(it has the same 
next hop as 1*). Since the expanded prefixes are disjoint, 
there is one and only one possible match result for every 
input address. Thus, the match result, if any, returned by 
looking up a cache is valid. Another advantage of prefix 
expansion method is that any update to the cache block 
only requires one TCAM cycle because the prefixes need 
not be ordered. 

 

4.4. Slow-update 
 
In the proposed logical cache organization, a TCAM 

chip is not available to perform IP lookup during cache 
updates. Hence, a high cache update frequency will 
seriously affect the system performance. Moreover, 
immediate cache update in the event of cache miss is very 
difficult since the system has to evaluate the MEP 
decomposition of the corresponding prefix. We shall show 
that a slow-update mechanism with LRU algorithm can 
achieve nearly the same cache-hit rate as immediate update 
when the cache size is large enough. 

Slow-update mechanism can be considered as a 
sampling update. Only one cache-missed element is 
updated within a predefined interval, i.e. D clock cycles. 
During this period, the other cache-missed elements are 
ignored. For instance, a cache-missed element is detected at 
time t and the cache update module is free, then the MEP of 
this cache-missed element will be updated to the cache at 
time t+D. The other cache-missed elements detected during 
time t+1 to t+D are ignored. Since the slow-update 
mechanism is very easy to implement, a commercial CPU 
is competent for the processing.  

We have evaluated our slow-update mechanism with 
traces. Unlike the “pretreated”VIII traces published on [16], 
we collect un-pretreated and representative traffic traces 
from one backbone router of the China Education and 
Research Network (CERNetIX). 

The monitoring router is located in the network center 
of Tsinghua University which belongs to Beijing Regional 

                                                        
VIII Due to the commercial secret, both the destination and 
source IP addresses have been changed. Most of them are 
10.*.*.*. 
IX CERNet is one of the biggest networks in China with over 18 
millions users. There are over 1300 schools, research or 
government institutions among 31 provinces connected to 
CERNet via 8 regional network centers. 

 
Figure 9. Schematics of the complete implementation architecture. 

 



Network Center. It operates at 1Gbps of the Ethernet link 
bandwidth. The trace is collected from 10:15 to 10:30 on 
Sep. 19, 2006 and only outbound packets were recorded.  

As mentioned in Section 2.2 that the average overall 
bandwidth utilization is very low but the Internet traffic 
could be very bursty. In order to simulate the most serious 
situation, the trace is first sorted according to the packet 
arrival timestamp to ensure each packet appears in the 
correct time order. Then it is changed into back-to-back 
mode but we still measure the statistic per second by the 
timestamps. This kind of treatment deteriorates the 
experimental environment and the experimental result can 
be well guaranteed even in the other serious situations. 
Then only the information in the middle 200 seconds (500 
to 700) of this 15-minute trace is reserved to avoid the 
possible warm-up and trail interference. The route table 
(Equinix) used for this experiment was borrowed from [2] 
and contains 185,076 entries. 

Figure 10 shows the detail results. We observe that the 
update-delay does not affect so much if the cache size is 
large. Figure 10 (a) demonstrates that when the cache size 
is 64, the immediate update (D=0) outperforms the 
slow-update approach, the cache hit rate is about 5% 
higher than the others. Figure 10 (b) draws the results of 
caching 128 prefixes. Though the immediate update still 
outperforms than the others (the cache hit rate is about 3% 

higher than the others), the cache hit rate line with D=50 is 
even worse than the D=5000’s one. When the cache size is 
256 (Figure 10 (c)), the immediate update’s cache hit rate 
is only 1.5% higher then the others. We go on increasing 
the cache size. When there are 512 cache entries (Figure 10 
(d)) and D is 5000, the cache hit-rate can still achieve over 
90%. In this case it is truly hard to distinguish them 
(immediate update and slow-update) clearly. When the 
cache size is increased to 1024 (Figure 10 (e)), the 
slow-update mechanism may even outperform the 
immediate update, the cache hit rate is also increased to 
95%. For the sake of clear illustration, we put Figure 10 
(a)(b)(c)(d)(e) together. As shown in Figure 10 (g), the 
cache hit rate with different D is getting closer as the 
cache size increases. So we conclude that: 1)It is hard to 
say that bigger or smaller D is absolutely good or not for 
the performance when the cache is quite large. 2)As the 
cache size is increased, impact of D becomes less 
significant. 3)By increasing the cache size, we can achieve 
a higher cache hit rate while the system can also tolerate a 
larger D. 

We acknowledge that the slow-update mechanism has 
its drawbacks. First, it takes a long time for the system to 
reach steady state in a cold start. As shown in Figure 10(f), 
when the cache size is 1024 and D equals 5000, the cache 
needs about 100 seconds to warm-up and this is obviously 

 
(a)              (b)         (c) 

 
(d)       (e)        (f) 

 
(g)              (h) 

Figure 10. Cache hit-rate of Slow-update policies. 
 



unacceptable. But we can suggest some strategy to resolve 
this problem. For example, we can use a small D value at 
the beginning to achieve a reasonable cache hit rate 
quickly. As shown in Figure 10(f), when D equals to 50, 
the cache can be full filled in one second. After the 
warm-up period, D could be set back to a big value again. 
Since we cache prefixes not IPs, the un-updated prefixes 
may still have a great chance to be matched by the other 
flows. And some prefixes that are frequently accessed can 
stay in the cache by LRU. By combining LRU with 
slow-update mechanism, a nice performance can be 
achieved when the cache size is large enough.  

Second, slow-update mechanism leads to much 
fluctuation. Figure 10(h) is an amplificatory demonstration 
of Figure 10(e), the statistic interval has been reduced to 1 
ms. We find that the cache hit-rate fluctuates seriously. 
The cache hit rate may even drop to 79% at 500022 ms 
when D equals 5000. Generally speaking, larger D leads to 
more fluctuations. Hence, bigger buffers are needed for 
the slow-update mechanism. 

 
5. Performance Analysis 
 
5.1. Lower Bound of the System Performance 

 
As mentioned above in Section 4, a practical parallel 

lookup system should be able to handle bursty traffic 
efficiently. We discuss the lower bound of the system 
performance in this section. Because the update cost of 
proposed system is only N/D, when D is larger enough, i.e. 
5000, the update cost can be ignored. Thus, we shall 
neglect the update cost in the analysis. 

For the sake of clear description, let us consider the 
following scenario. There are N (N>2) TCAMs with the 
aforementioned structure. Suppose the maximum 
bandwidth of one TCAM is MWmax (M stands for the 
speedup factor of TCAM), and the average hit rate of cache 
is x. In a practical parallel system, the most serious 
situation would be that all the workload has been sent to a 
single TCAM. As a result, the performance of entire 
system would be much worse than the theoretical 
maximum. Therefore, we shall address such a problem 
that in order to guarantee NWmax throughput in a system 
with N TCAMs, what kind of equation (concerning x and 
M) should be hold true.   

In the case above, with the operation of load balancing, 
the other N-1 TCAMs will work as logical caches. And the 
TCAM which supposes to finish all the workload itself 
becomes “second stage” spontaneously. It just needs to 
operate the cache-missed packets from the other N-1 
TCAMs. In the stable state with finite buffer, the following 
equation should hold true.    

( ) max max-1 ( )N MW NW≥  (1)

max max(1 )NW x MW− ≤  (2)

 Thus, 

-1
NM

N
≥  (3)

1 Mx
N

− ≤  (4)

Since M stands for the speedup factor of each TCAM, 
we choose its minimal value. Therefore, we could further 
derive the average cache hit rate x as follows.  

2
1

Nx
N

−
≥

−
 (5)

Further, we can obtain the system speedup S from 
bandwidth utilization as follows. 

max

max

1
NW NS N N

NMW M
= = ≥ −  (6)

From (3)(5)(6), we find that M can be decreased as the 
growing N. But x should be increased. For illustration, 
when N=4, M and x should be 4/3 and 2/3 at least. Hence, 
S could be 3. When N=8, M and x should be 8/7 and 6/7 
respectively. Here, S could be 7. In such cases, the system 
can tackle NWmax throughput in despite of the bursty 
traffic.  

 
5.2. Buffer & Power Consumption 

 
In previous part, a clear scenario shows the result of 

load balancing while the input traffic is very bursty. The 
over-loaded cache-missed packets due to the slow-update 
mechanism can also be identified as a special case of burst 
traffic. As a result, x depends on not only the cache size 
but also the length of buffer. For example, there will be no 
packet drop when x measured with a statistical interval L 
is higher than (N-2)/(N-1) at any time. 

Furthermore, the length of buffer also greatly concerns 
the total delayed time in our system which covers both 
reordering and queuing. Since there is no blocking or 
Round-Robin mechanism in our system, any packet will 
be queued for twice at most. In that case, both the queuing 
and reordering would cost 2L at most (L denotes the buffer 
length of each TCAMs). Our aim is to find a proper L for 
the system to achieve a low loss rate, i.e. 10-8. Since L 
depends on the characters of traffic, we may only give an 
empirical value by experiments in Section 6.  

As we know that the main power consumption for 
TCAM depends on the entries triggered during a parallel 
search processing, assume the power consumption for a 
TCAM without partitioning search is P. Since we adopt b 
partitioning search zones in TCAM, and the average lookup 
times is no more than 2, so the power consumption should 
be less than 2P/b X . When b equals to 32, the power 
                                                        
X When b is increased to a larger value, i.e. 200, the partition 
size will be less than 1K which is smaller than the logical cache. 
As a result, the power consumption will be less than 2000P/Z 
where Z denotes the size of route table. 



consumption can be reduced by 93.75% at least.  
 

6. Experiments and Simulations 
 
In addition to the theoretical analysis we have run a 

series of experiments and simulations to measure the 
algorithm’s performance and adaptability on the most 
serious traffic load distributions. Here we choose M=4/3, 
N=4, D=5000 and b=32 for demonstration. 

 
6.1. Experimental Scheme  

 
We insist that the parallel system must be applicable to 

uneven workload distribution caused by the bursty traffic. 
Hence, the experiment herein mainly focuses on bursty 
traffic. Traces collected from the real world do have some 
bursty traffic, but as the low average traffic (stated in 
Section 2.2), we will not be able to test a parallel system 
with a strong and continuous input. In order to test the 
proposed structure and get the buffer length, the following 
steps have been taken. 

1) We overlap four traces XI  to generate a new 
15-minute trace. It contains 2.436*108 packets and the 
average active connections (measured in 64 second time 
out) are over 400K. 

2) After the step 1), the timestamp of this new trace is 
ignored and this new trace is changed into a back-to-back 
mode. In order to guarantee 100% input, we just need to 
ensure the proportion of the maximal input traffic (NWmax) 
to the maximal throughput of all the TCAMs (N*MWmax) 
is 1:M. Suppose N is equal to 4, then M should be 4/3 by 
the theoretical analysis presented in Section 5. It means 
that each TCAM can serve for one packet every 4 clocks 
(every 4 clocks, totally 4 packets are finished by 4 
TCAMs) while there are 3 packets arrived in 4 clocks at 
most. Analysis shows that the actual utilization of each 
TCAM bucket is greatly different. Some of the TCAM 
buckets carry the most of the workload. As shown in 
Figure 11, the top five TCAM buckets account for over 
85% of the total workload. This character can be used to 
construct an extremely uneven bucket distribution for the 
system.  

3) By introducing some “pre-selected” redundancy [9] 
to our system, an even workload can be easily constructed 
and the system performance can be greatly increased. But 
this kind of operation requires that the lookup traffic 
distribution among IP prefixes can be derived in real time 
and the traffic distribution should be quite stable which 
has been proved impractical in practice due to the busty 
traffic in Internet. So it is impossible to “optimize” the 
partition organization (bucket distribution) which means 
the system could face the most serious situation (most of 

                                                        
XI They were collected at 10:15 – 10:30, 14:55 – 15:05, 17:58 – 
18:13 and 21:52 – 22:07 on 2006-09-19 respectively. 

Bucket Range Low Range High Proportion
32 218.103.48.0 255.255.255.255 33.0951%
28 209.215.80.0 211.144.215.255 17.0767%
2 32.114.0.0 62.101.191.255 14.2720%

21 202.56.193.0 202.169.219.255 11.7201%
22 202.169.220.0 203.101.67.255 8.24875%
13 161.222.160.0 192.44.143.255 2.88938%
31 216.158.138.0 218.103.47.255 2.88427%
20 200.150.240.0 202.56.192.255 1.84324%
12 144.243.208.0 161.222.159.255 1.65799%
10 85.120.78.0 130.117.255.255 1.62507%
11 130.118.0.0 144.243.207.255 0.83727%
29 211.144.216.0 213.182.108.255 0.76708%
9 81.7.109.0 85.120.77.255 0.63909%

… 
14 192.44.144.0 193.5.115.255 0.02988%
18 198.179.209.0 200.3.213.255 0.01591%
24 204.27.185.0 205.172.15.255 0.00934%

Figure 11. Workload of different TCAM buckets.
 

TCAM No. Bucket No. Total Traffic
1 32,28,2,21,22,13,31,20 92.030％ 
2 1,3,4,5,6,7,8,9 2.0902％ 
3 10,11,12,14,15,16,17,18 4.3540％ 
4 19,23,24,25,26,27,29,30 1.5263％ 
Figure 12. Mapping of buckets and 

 workload of TCAM chips. 
 

 
Figure 13. Result on bursty traffic. 

 

 
Figure 14. Loss rate and buffer length. 



the traffic has been sent to a single TCAM) sometimes. In 
this paper, the most serious situation is created in the 
experiment to demonstrate the great load balancing of 
proposed solution. The partition organization on four 
TCAMs has been shown in Figure 12. The TCAM No.1 
accounts for 92.03% of the total traffic which means the 
parallel system suffers from uneven workload seriously. 

 
6.2. Simulation Result 

 
Now, we use the trace generated by step 2) to test the 

system organized by step 3), the cache size has been set to 
1024 and D=5000. Simulations show that the system can 
easily achieve 100% throughput with very low power 
consumption. Figure 13 shows part of the result, the 
statistic interval is 103 packets. It is shown that the cache 
hit rate still achieve 95% in the parallel system while the 
average search account on logical caches is over 0.7*103. 

With the experiment scheme above, we also test the 
proposed system with D=5000 and different cache sizes 
(64, 128, 256, 512 and 1024). To avoid the warm-up 
interference, the first 107 packets has been ignored. As 
shown in Figure 14, the buffer length is also decreased as 
the increasing cache size. When the cache size is 64, a 
longer buffer (17) is needed to achieve a loss rate about 
10-6, while the one with a cache size of 128 can reduce the 
buffer length by 6. By increasing the cache size, the 
smaller buffer can be achieved. When the cache size is 
1024, a loss rate about 10-8 can be easily achieved with a 
buffer length about 8 in despite of the bursty traffic. 

 
7. Conclusion 
 

Increasing the lookup throughput and reducing the 
power consumption of the TCAM-based lookup engine 
while keeping economic memory storage utilization are the 
three primary issues in this paper. We first give a simple but 
efficient TCAM table partitioning method. It supports 
incremental updates efficiently with little redundancy and 
could be easily extended to IPv6. Motivated by the analysis 
on real-life Internet traffic, we then devised an adaptive 
load balance scheme with logical cache to solve the bursty 
traffic. Meanwhile, the update mechanism used for the 
logical cache is very simple and efficient which is greatly 
different from the traditional ones. Both the partitioning 
method and the logical cache with slow-update mechanism 
are quite flexible. They can be easily modified for different 
requirements, such as bigger cache, longer update-delay, 
more TCAM buckets and so on. Given 2% more memory 
space, the proposed scheme increases the lookup 
throughput by a factor of three when a quaternary TCAMs’ 
structure is implemented and significantly cuts down the 
power consumption.  
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