
 Abstract

With the continuous advances in optical
communications technology, the link transmission speed of
Internet backbone has been increasing rapidly. This in
turn demands more powerful IP address lookup engine. In
this paper, we propose a power-efficient parallel
TCAM-based lookup engine with a distributed logical
caching scheme for dynamic load-balancing. In order to
distribute the lookup requests among multiple TCAM chips,
a smart partitioning approach called pre-order splitting
divides the route table into multiple sub-tables for parallel
processing. Meanwhile, by virtual of the cache-based load
balancing scheme with slow-update mechanism, a speedup
factor of N-1 can be guaranteed for a system with N (N>2)
TCAM chips, even with unbalanced bursty lookup
requests.

1. Introduction

IP address lookup is one of the key issues in Internet
core routers. Today, an Internet core router, such as the
Juniper T640, processes 640G bits per second (Gbps). On
condition that each packet is at its minimum size of 40
bytes, such router should complete a packet lookup every
0.5ns. In light of the Moore’s law, the growing pace of
link transmission speed expects much higher lookup
throughput in the near future.

Ternary Content Addressable Memory (TCAM) is a

I This work is supported by NSFC (No. 60373007, 60573121 and
60625201), the Cultivation Fund of the Key Scientific and Technical
Innovation Project, Ministry of Education of China (No. 705003), the
Specialized Research Fund for the Doctoral Program of Higher
Education of China (No. 20040003048 and 20060003058), China/Ireland
Science and Technology Collaboration Research Fund (2006DFA11170),
and the Tsinghua Basic Research Foundation (JCpy2005054).
1-4244-0910-1/07/$20.00 ©2007 IEEE.

fully associative memory that allows a "don't care" state to
be stored in each memory cell in addition to 0's and 1's. It
returns the matching result within only one memory access,
which is much faster than algorithmic approaches [18] that
require multiple memory accesses. As a result, TCAM is
widely utilized for the IP lookup nowadays.

Nevertheless, TCAM is not a panacea in that: the
memory access speed is slower than SRAM while the
power consumption is high. The state-of-the-art 18Mb
TCAM can only operate at a speed of up to 266MHz and
performs 133 millions lookup per second [4], barely
enough to keep up with the 40Gbps line rate today. On the
other hand, the size of the route table has been increasing at
a rate of about 10-50k entries per year in the past few years
[1]. When IPv6 is widely deployed, even more storage
space is needed. In pursuit of an ultra-high lookup
throughput matching the ever-increasing link transmission
speed and the rapidly growing route table, multi-chips
system is necessary.

Given multiple TCAM chips in the system, we strive to
multiply the lookup rate by using parallel processing
techniques with minimal overhead. There are some major
concerns in chip-level parallel lookup system design:

1) A partitioning method is needed here to split the
entire route table into multiple sub-tables that could be
stored in separate TCAMs. It should support dynamic
lookup requests distributions, efficient incremental updates,
high memory utilization and economical power dissipation.

2) A dynamic load balancing is required for the sake of
higher and robust throughput performance in parallel
system.

The subject of this paper mainly focuses on the above
two issues. The proposed lookup engine is cost-effective
and it guarantees a speedup factor of at least N-1 by using
N (N>2) TCAM chips, even when the lookup requests can
be unevenly distributed. When four TCAMs are used with
a partitioning factor of 32, the power consumption is
reduced by over 93.75% compared to the naive mode

Route Table Partitioning and Load Balancing for Parallel Searching with TCAMsI

Dong Lin1, Yue Zhang1, Chengchen Hu1, Bin Liu1, Xin Zhang2, and Derek Pao3

2Dept. of Computer Science
Carnegie Mellon University, USA

xzhang1@cmu.edu

1Dept. of Computer Science and Technology
Tsinghua University, China
lindong05@tsinghua.org.cn

zhang-yue@mails.tsinghua.edu.cn
huc@ieee.org

liub@tsinghua.edu.cn

3Dept. of Electronic Engineering
City University of Hong Kong, Hong Kong

d.pao@cityu.edu.hk

while the storage redundancy is less than 2%.
The rest of the paper is organized as follows. In Section

2, we describe prior works and some useful observations
of the Internet traffic. In Section 3, we propose a table
partitioning algorithm which evenly distributes the route
table entries among the TCAM chips to ensure high
memory utilization. In Section 4, we describe the
hardware architecture of the lookup engine and the
dynamic load balancing scheme. We present our
theoretical performance evaluation in Section 5 and
simulation results in Section 6 respectively. Finally, we
conclude our work in Section 7.

2. Related Works and Investigation

2.1. Algorithms Based on TCAM

Chip-level parallel TCAMs were deployed to

circumvent the limitation of a single TCAM， where
issues should be appropriately addressed: 1) high memory
efficiency, 2) economical power dissipation and 3)
balanced traffic load distribution among parallel TCAMs.

Many researchers have strived to optimize the
TCAM-based lookup engines with respect to 1) and 2):
Liu et al. [6] used both pruning and logic minimizing
algorithms to reduce the forwarding table sizes, which in
turn reduced the memory cost and power consumption of
the TCAM. Many other studies [7, 9] developed more
power-efficient lookup engines benefiting from a new
feature of some TCAMs called “partition-disable”. The
key idea is to split the entire routing table into multiple
sub-tables or buckets, where each bucket is laid out over
one or more TCAM blocks. During a parallel lookup
operation, only the block(s) containing the prefixes that
match the incoming IP address is (are) triggered instead of
all the entries in the original table. In this fashion,
TCAM’s power consumption can be dramatically reduced.
As a key component of such design, generally three kinds
of algorithms for partitioning the entire routing table were
proposed, i.e., key-ID based [3, 7, 9], prefix trie-based [7]
and range-based [8] partitioning. The key-ID approach
suffered from uneven sub-table sizes and uncontrolled
redundancy, which result in a higher memory and power
cost. Trie-based partitioning in [7] can lower the
redundancy and unify sub-table sizes, but it required an
extra index TCAM to perform the block selection. As a
result, two TCAM accesses are occupied for each lookup
request. Panigrahy et al. [8] introduced a range-based
partitioning framework where they expected to split the
routing table into multiple buckets with identical size
(number of prefixes). However, the algorithm to determine
the partitions which is a vital implemental concern in
practice was not presented in [8].

When it comes to 3), few truly effective algorithms
have been proposed so far to the best of our knowledge.

Without any load balancing mechanisms, eight or more
parallel TCAM chips were employed in [8]. But only a
speedup factor of five was achieved if the lookup requests
were not evenly distributed. A load balancing mechanism
was introduced in [9] based on some “pre-selected”
redundancy. It assumed that the lookup traffic distribution
among IP prefixes can be derived from the traffic traces.
In their optimized system evaluation with simulated traffic,
a speedup factor of nearly four can be achieved.
However, when a certain range of route prefixes, or a
certain TCAM block, receives more traffic than others or
when the traffic is temporarily or permanently biased to a
limited number of route prefixes, multiple selectors
frequently try to access the same block. Under such a
contentious situation, the system can only fulfill one of the
requests. This greatly hampers the average throughput.

2.2. Analysis on Internet traffic

Recall that the performance of a parallel search engine

depends heavily on the distribution of lookup requests.
Based on the data collected from [10], we observed that the
average overall bandwidth utilization was very low but the
Internet traffic could be very bursty. In April 2006, the
average bandwidth utilization among more than 140
backbone routers was only about 3.1134% and 3.1234% for
inbound and outbound traffic respectively II . However,
workload of individual router can be great bursty during
bulk date transfer. Taking router Chin-CERN (40Gbps) as
an example, on May 12, 2006, its workload fluctuated
between 10Mpkt/sIII (8%) and 50Mpkt/s (40%), and in the
week of 24/04-2006 the workload was increased to over
113Mpkt/s (90%) during peak periods. Jiang et al. [15]
suggested that bursts from large TCP flows were the major
source of the overall bursty Internet traffic. They
identified nine most common causes of source-level IP
traffic bursts, one for UDP and eight for TCP flows. Most
of these were due to anomalies or auxiliary mechanisms in
TCP and applications. It is indicated that TCP’s
window-based congestion control itself leads to bursty
traffic. As long as a TCP flow cannot fill the pipe between
the sender and the receiver, bursts always occur. Hence,
mapping route table partitions into TCAM chips based on
long-term traffic distribution [9] cannot effectively
balance the workload of individual TCAM chip during
bursty periods.

Instead of mapping route table partitions into TCAM
chips relying on long-term traffic statistics, our adaptive
load balancing scheme will capture the locality property of
Internet traffic using the concept of cache. Locality

II As the minimum packet size is 40 bytes, concerning the average packet
size of these routers (804 bytes), the average work load of the search
engine will be less than 0.16% for both inbound and outbound.
III Mpkt/s means million packets per second. When the minimum packet
size is 40 bytes, 40Gbps means 125Mpkt/s at maximum.

property of Internet traffic had been widely studied in
[11-14]. Analyses on real traces revealed that the
conversationIV counts were lower than the packet counts,
which indicated the existence of the temporal locality. For a
real trace, in case of 100-second time interval, top 10% of
the highest-activity conversations accounted for over 74%
of the packets [11].

3. Smart Route table Partition

In this section, we propose a range-based partitioning

algorithm that can evenly allocate the route entries among
the TCAM chips to ensure high memory utilization.

To achieve the range-based partitioning, one needs to
divide the whole route table into N independent parts by
range [8]. Taking IPv4 as an example, an IP address could
lay in the space from 0 to (232-1). We partition this space
into N disjoint ranges so that each range maps to about 1/N
of the total number of prefixes. We say a prefix falls into a
range if any IP address from that prefix can match the range.
Formally, a prefix P* falls in a range [a, b] if the range
[P0...0, P1...1] intersects with the range [a, b]. To make the
route partitioning work well, two points should be
addressed here. First, a smart method should be explored to
determine the appropriate range boundaries simply. Second,
LPM must be guaranteed, because some prefixes may fall
into multiple ranges simultaneously.

Our partitioning scheme works in two steps. First, a
routing trie is constructed using the route table. LC-trie [17]
can be certainly used here to save memory space, but for
the sake of clear description we use 1-bit trie for
demonstration (Figure 1 is an example of 1-bit trie built
from a route table.) Second, sub-trees or collections of the
1-bit trie are successively carved out and mapped into an
individual routing group.

3.1. Pre-order Splitting

Here is the description of the trie-based partitioning

algorithm called pre-order splitting and Figure 2 is the
pseudo-code of this algorithm. This algorithm takes a
parameter b that denotes the number of TCAM buckets as
input. The output is a set of b sub-tables with equal size and
a set of (b-1) reference nodes which are depicted in Figure
2. During the partitioning step, the entire trie is traversed in
pre-order looking for a prefix node. Every time a prefix

IV A conversation was defined as a sequence of packets toward the same
destination address within a fixed time interval [11].
V The prefixes of only the black nodes are in the route table. A “*” in the
prefixes denotes the start of don’t-care bits.
VI Here count is the number of prefixes in the 1-bit trie, root is the root
node of the 1-bit trie, prefix (p) is the prefix of node p, parent (p) is the
parent node of p in the 1-bit trie, push (p) means to save p into stack, pop
means to load an element from stack, and delete (p) means to delete node
p from 1-bit trie.

Figure 1. An example route table and the

corresponding 1-bit trie built from it. V

Preorder-split (b)
{

m=count/b; j=b; u=1;
while (j! =1){

p=root；
for (i =0; i<=m; i++){

p=next prefix node in pre-order;
push(p);
put prefix(p) in bucket[u];

}
p=next prefix node in pre-order;
save prefix(p) as the reference_node[u];
u++;
while (stack is not empty){

 p=pop;
while（node p has no children node）{

delete(p);
p=parent(p);

}
}
j--;

}
save the rest prefix nodes as bucket[b];

}
Figure 2. Pre-order splittingVI.

No. Bucket
 Prefixes

Ref.
Node

Range
Low

Range
High

1 000*,000000,
00001*,00010*

000111 000000 000110

2 000*,000111,
00111*,01*

1* 000111 011111

3 1*,110*,
1100*,1111*

111101 100000 111100

4 1*,1111*,
111101,11111*

 111101 111111

Figure 3. Four iterations of the pre-order
splitting algorithm.

node is encountered, it will be saved in a TCAM bucket and
pushed into a stack at same time. When the program gets an
average number of prefix nodes, it will pop an element
from the stack and delete the corresponding prefix node
(remount to its parent node) which has no child nodes from
the entire trie. This step will continue until the stack is
empty. After this step, some parts of the tire are carved out.
The program will get a sub-table with equal size fitting to a
TCAM bucket in each loop. Finally, the rest of the prefix
nodes in the last loop will be saved in the last TCAM
bucket. During the whole process, the reference nodes will
be saved too. Figure 3 instantiates how prefix nodes are
divided into four buckets from the 1-bit trie depicted in
Figure 1. It is obvious that the first TCAM bucket’s low
range point must be (0…0) and the last TCAM bucket’s
high range point must be (1…1). We will use the reference
nodes to calculate the other boundary points of each TCAM
bucket. For instance, P* is the reference node of TCAM
bucket u (not the last one). So its high range point will be
(P0…0 - 1) while the TCAM bucket [u+1]’s low range
point will be (P0…0). In this way, we have b TCAM
buckets and each of them has a pair of boundary points.

To lookup the route for an input address a, only the
TCAM bucket [u] is activated, where the value of a lies
within the low and high range of bucket [u]. To ensure
correct lookup result, prefixes lying along the boundary of
2 adjacent buckets are duplicated in the 2 buckets
concerned automatically. Furthermore, the default prefix
(0.0.0.0/0) will be copied to all the buckets initially. We
refer to this prefix duplication as the redundancy. As
shown in Figure 1, level of prefix nesting in the routing
table is no more than 6, i.e. there are at most 6 valid
prefixes along a path from the root to a leaf in the 1-bit trie.
Hence, the amount of redundancy is no more than 6*b. In
IPv4, length of prefixes can be between 8 to 32, whereas
in IPv6 length of prefixes can be between 16 to 64, and
128 [5]. If there are b buckets in the system, then the
redundancy is no more than 24*b for IPv4, and no more
than 50*b for IPv6.

The prefix update is very simple. During an insertion
operation, a prefix P will be compared with the boundary
points and be copied to the corresponding buckets. During a
deleting operation, there will be no extra operation for a
non-boundary prefix. For a boundary prefix, the new ranges
of its TCAM bucket should be re-calculated. Since the
boundary points are only determined by the reference node,
we just need to find a new reference node. It can be
determined by a simple pre-order searching in the 1-bit trie
that costs only a few clock cycles. As shown in Figure 1,
when the prefix node 1* is deleted, the new reference
node for bucket No.2 will be 110* (the next prefix node of
01* in pre-order). As a result, the range for both bucket
No.2 and No.3 will be changed into (000111, 101111) and
(110000, 111100), respectively. Another advantage is that
it is not difficult to balance the size of two adjacent TCAM

⎡ ⎤b2log/

Figure 4. Schematics of the indexing logic.

Bucket Range Low Range High Size
1 0.0.0.0 32.113.255.255 5807
2 32.114.0.0 62.101.191.255 5807
3 62.101.192.0 64.76.75.255 5807
4 64.76.76.0 65.164.213.255 5807
5 65.164.214.0 66.187.243.255 5807
6 66.187.244.0 68.166.255.255 5807
7 68.167.0.0 70.169.57.255 5807

…
30 213.182.109.0 216.158.137.255 5807
31 216.158.138.0 218.103.47.255 5807
32 218.103.48.0 255.255.255.255 5110

Figure 5. The detail result with b=32 on
Equinix.

Figure 6. Partition redundancy.

Figure 7.Comparasion on key-ID and range

partition.

Figure 8. Cache organizations:

(a) centralized cache;(b) distributed caches

buckets dynamically.
Figure 4 illustrates the pipelined structure of the

Indexing Logic for TCAM block selection. It is composed
of pairs of parallel comparing logics and an index table.
Each pair of parallel comparing logic corresponds to one
TCAM bucket and is composed of two registers which
store the boundary points of each TCAM bucket. Next to
the parallel comparing logics is an index table with encoder.
The index table which stores the bucket distribution
information returns a partition number indicating which
bucket may contain the prefix matching the IP address by
the encoded information. Because the data width of the
Indexing Logic is fixed and only simple “compare”
operation is executed, it can work at a very high speed. In
this paper, the Indexing Logic has been set as the entry of
the entire parallel system.

3.2. Evaluate the Pre-order Splitting

We have analyzed the route tables VII provided by

route-views [2]. We chose different b for test. In order to
prevent the large size of the last bucket, we chose

count/b +24 as the average size instead of count/b .
Figure 5 shows some detail results partitioned on Equinix
with b=32 and the redundancy of the entire system is only
51. Figure 6 shows the relationship between bucket number
b and the whole redundancy among four route tables. The
redundancy for all route tables is less than 2b and it is much
less than the theoretical worst-case estimation (24b).

We also have a comparison between our range-based
partitioning method and the key-ID approach [9]. Since
the key-ID approach can only based on 10-13bit (which is
the best configuration for both redundancy and even
sub-table size), we chose b as 16 and chose count/16 +24
as the average size of each bucket. Figure 7 shows that
besides more redundancy, the key-ID approach suffers
from uneven sub-table sizes seriously while our
partitioning method can guarantee precisely even size of
each bucket and little redundancy.

4. Logical Cache for Load Balancing

4.1. Cache Organization

As mentioned in Section 2.2, temporal locality of the

Internet traffic is much stronger in the core routers due to
the greater effect of heavy flow aggregations. To achieve
higher lookup throughput, a straightforward design with
cache is to deploy a first stage caches working in front of a

VII They are Equinix located in Ashburn, VA on 2006-05-02 00:42(UTC)
with a size of 185076; ISC located in Palo Alto CA, USA on 2006-05-02
00:14(UTC) with a size of 186843; LINX located in London, GB on
2006-05-02 00:36(UTC) with a size of 186582; NSPIXP located in
Tokyo, Japan on 2006-05-02 00:17(UTC) with a size of 188526.

second stage data TCAMs. An obvious drawback of this
conventional approach is that the cache is required to
operate at N times the speed of TCAM if there are N
parallel TCAMs in the system, which is impractical.

As we have mentioned in Section 1, TCAM vendors
have started providing mechanisms called TCAM blocks.
Since there are multiple TCAM chips, we can use some
blocks to create logical caches. In this case, the commercial
TCAMs can be competent for supporting such a cache
mechanism. No additional cache module implies fewer
pins and less packaging cost. Furthermore, employing the
existing TCAM cells as logical caches exhibits a better
performance cost ratio. So we propose a parallel system
with distributed logical caches as Figure 8(b) depicts.

Based on our partitioning algorithm, we partition each
TCAM into small buckets with a size of count/b +24 so
that each bucket can store in one single partition. Now we
use the partition as a basic unit to allocate the prefixes
among the TCAMs. We also select some blocks from each
TCAM to serve as logical caches. Suppose there are 4
TCAMs and each one has 8 partitions plus 1 logical cache.
Therefore, there are totally 32 partitions, so b equals to 32.

4.2. Logical Caches for Load Balancing

The detailed implementation architecture of the parallel

lookup engine is presented in Figure 9. Given an incoming
IP packet to be searched, the IP address is extracted and
delivered to the Indexing Logic (see Figure 4) for a
comparison. The Indexing Logic will return a partition
number indicating the “home” TCAM that may contain the
matching prefixes. The Adaptive Load Balance Logic
sends the IP address to the home TCAM or an alternate
TCAM for processing based on the length of the FIFO
queues. A feed back logic is also settled to operate the
cache-missed packets. Since multiple input queues and
feeding back exist in the proposed scheme, the incoming IP
addresses can be processed in a non-FIFO order. The
Re-ordering logic maintains the original sequence by using
the time stamp attached.

The adaptive load balance logic distributes a new
lookup request to the TCAM chip with the shortest input
queue. With the feedback mechanism depicted in Figure 9,
there are three different alternatives. 1) If the incoming IP
address has been sent to its home TCAM, it will get a
search operation on the partition indicated by the Indexing
Logic and the final result is done. 2) If the incoming IP
address has been sent to a non-home TCAM, it will get a
search operation on the logical cache. When it is
cache-matched, the result is guaranteed by the RRC-ME,
so the final result is done. 3) The logical cache of the
TCAMs only holds a small number of prefixes. When a
cache miss occurs, it must be sent back to the home
TCAM via the feedback to the corresponding FIFO and
case 1) happens again.

4.3. Cache IPs or Cache Prefixes

Generally two kinds of algorithms for cache mechanism

are proposed in route loopup literatures, caching
destination addresses (IPs) [11-13] and caching prefixes
[14]. Binary CAM can be used if IPs are cached. However,
using BCAMs imposes a much higher overhead in the
proposed system. The second disadvantage of caching IPs
is that a much larger cache size is required. A number of
papers [11-13] have demonstrated that the cache hit rate
can be over 90% with 8,192 cache entries by caching IPs,
while the cache hit rate can easily achieve 96.2% with 256
cache entries by caching prefixes [14].

For caching prefix, one important issue is worth being
mentioned here. Suppose p and q are two prefixes where q
is a subrange of p, i.e. p is a prefix of q. If there is a
lookup request r redirected to the cache and p is the LMP
of r, then p will be added to the cache. However, in some
later time if another request r’ (whose LMP is q) is
redirected to the cache, then the cache will return p as the
lookup result (where the correct result should be q). To
resolve this problem, we adopt the RRC-ME algorithm [14]
in managing the cache. In the above example, the shorter
prefix p will be expanded into a longer prefix, based on
the Minimal Expansion Prefix (MEP) method in [14]. For
instance, there are only two prefixes in a route table, i.e.
1* and 111*. Hence, the MEP for request 1111 is 111*,
the MEP for request 1000 is 10*(it has the same next hop
as 1*), the MEP for request 1100 is 110*(it has the same
next hop as 1*). Since the expanded prefixes are disjoint,
there is one and only one possible match result for every
input address. Thus, the match result, if any, returned by
looking up a cache is valid. Another advantage of prefix
expansion method is that any update to the cache block
only requires one TCAM cycle because the prefixes need
not be ordered.

4.4. Slow-update

In the proposed logical cache organization, a TCAM

chip is not available to perform IP lookup during cache
updates. Hence, a high cache update frequency will
seriously affect the system performance. Moreover,
immediate cache update in the event of cache miss is very
difficult since the system has to evaluate the MEP
decomposition of the corresponding prefix. We shall show
that a slow-update mechanism with LRU algorithm can
achieve nearly the same cache-hit rate as immediate update
when the cache size is large enough.

Slow-update mechanism can be considered as a
sampling update. Only one cache-missed element is
updated within a predefined interval, i.e. D clock cycles.
During this period, the other cache-missed elements are
ignored. For instance, a cache-missed element is detected at
time t and the cache update module is free, then the MEP of
this cache-missed element will be updated to the cache at
time t+D. The other cache-missed elements detected during
time t+1 to t+D are ignored. Since the slow-update
mechanism is very easy to implement, a commercial CPU
is competent for the processing.

We have evaluated our slow-update mechanism with
traces. Unlike the “pretreated”VIII traces published on [16],
we collect un-pretreated and representative traffic traces
from one backbone router of the China Education and
Research Network (CERNetIX).

The monitoring router is located in the network center
of Tsinghua University which belongs to Beijing Regional

VIII Due to the commercial secret, both the destination and
source IP addresses have been changed. Most of them are
10.*.*.*.
IX CERNet is one of the biggest networks in China with over 18
millions users. There are over 1300 schools, research or
government institutions among 31 provinces connected to
CERNet via 8 regional network centers.

Figure 9. Schematics of the complete implementation architecture.

Network Center. It operates at 1Gbps of the Ethernet link
bandwidth. The trace is collected from 10:15 to 10:30 on
Sep. 19, 2006 and only outbound packets were recorded.

As mentioned in Section 2.2 that the average overall
bandwidth utilization is very low but the Internet traffic
could be very bursty. In order to simulate the most serious
situation, the trace is first sorted according to the packet
arrival timestamp to ensure each packet appears in the
correct time order. Then it is changed into back-to-back
mode but we still measure the statistic per second by the
timestamps. This kind of treatment deteriorates the
experimental environment and the experimental result can
be well guaranteed even in the other serious situations.
Then only the information in the middle 200 seconds (500
to 700) of this 15-minute trace is reserved to avoid the
possible warm-up and trail interference. The route table
(Equinix) used for this experiment was borrowed from [2]
and contains 185,076 entries.

Figure 10 shows the detail results. We observe that the
update-delay does not affect so much if the cache size is
large. Figure 10 (a) demonstrates that when the cache size
is 64, the immediate update (D=0) outperforms the
slow-update approach, the cache hit rate is about 5%
higher than the others. Figure 10 (b) draws the results of
caching 128 prefixes. Though the immediate update still
outperforms than the others (the cache hit rate is about 3%

higher than the others), the cache hit rate line with D=50 is
even worse than the D=5000’s one. When the cache size is
256 (Figure 10 (c)), the immediate update’s cache hit rate
is only 1.5% higher then the others. We go on increasing
the cache size. When there are 512 cache entries (Figure 10
(d)) and D is 5000, the cache hit-rate can still achieve over
90%. In this case it is truly hard to distinguish them
(immediate update and slow-update) clearly. When the
cache size is increased to 1024 (Figure 10 (e)), the
slow-update mechanism may even outperform the
immediate update, the cache hit rate is also increased to
95%. For the sake of clear illustration, we put Figure 10
(a)(b)(c)(d)(e) together. As shown in Figure 10 (g), the
cache hit rate with different D is getting closer as the
cache size increases. So we conclude that: 1)It is hard to
say that bigger or smaller D is absolutely good or not for
the performance when the cache is quite large. 2)As the
cache size is increased, impact of D becomes less
significant. 3)By increasing the cache size, we can achieve
a higher cache hit rate while the system can also tolerate a
larger D.

We acknowledge that the slow-update mechanism has
its drawbacks. First, it takes a long time for the system to
reach steady state in a cold start. As shown in Figure 10(f),
when the cache size is 1024 and D equals 5000, the cache
needs about 100 seconds to warm-up and this is obviously

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 10. Cache hit-rate of Slow-update policies.

unacceptable. But we can suggest some strategy to resolve
this problem. For example, we can use a small D value at
the beginning to achieve a reasonable cache hit rate
quickly. As shown in Figure 10(f), when D equals to 50,
the cache can be full filled in one second. After the
warm-up period, D could be set back to a big value again.
Since we cache prefixes not IPs, the un-updated prefixes
may still have a great chance to be matched by the other
flows. And some prefixes that are frequently accessed can
stay in the cache by LRU. By combining LRU with
slow-update mechanism, a nice performance can be
achieved when the cache size is large enough.

Second, slow-update mechanism leads to much
fluctuation. Figure 10(h) is an amplificatory demonstration
of Figure 10(e), the statistic interval has been reduced to 1
ms. We find that the cache hit-rate fluctuates seriously.
The cache hit rate may even drop to 79% at 500022 ms
when D equals 5000. Generally speaking, larger D leads to
more fluctuations. Hence, bigger buffers are needed for
the slow-update mechanism.

5. Performance Analysis

5.1. Lower Bound of the System Performance

As mentioned above in Section 4, a practical parallel

lookup system should be able to handle bursty traffic
efficiently. We discuss the lower bound of the system
performance in this section. Because the update cost of
proposed system is only N/D, when D is larger enough, i.e.
5000, the update cost can be ignored. Thus, we shall
neglect the update cost in the analysis.

For the sake of clear description, let us consider the
following scenario. There are N (N>2) TCAMs with the
aforementioned structure. Suppose the maximum
bandwidth of one TCAM is MWmax (M stands for the
speedup factor of TCAM), and the average hit rate of cache
is x. In a practical parallel system, the most serious
situation would be that all the workload has been sent to a
single TCAM. As a result, the performance of entire
system would be much worse than the theoretical
maximum. Therefore, we shall address such a problem
that in order to guarantee NWmax throughput in a system
with N TCAMs, what kind of equation (concerning x and
M) should be hold true.

In the case above, with the operation of load balancing,
the other N-1 TCAMs will work as logical caches. And the
TCAM which supposes to finish all the workload itself
becomes “second stage” spontaneously. It just needs to
operate the cache-missed packets from the other N-1
TCAMs. In the stable state with finite buffer, the following
equation should hold true.

() max max-1 ()N MW NW≥ (1)

max max(1)NW x MW− ≤ (2)

 Thus,

-1
NM

N
≥ (3)

1 Mx
N

− ≤ (4)

Since M stands for the speedup factor of each TCAM,
we choose its minimal value. Therefore, we could further
derive the average cache hit rate x as follows.

2
1

Nx
N

−
≥

−
 (5)

Further, we can obtain the system speedup S from
bandwidth utilization as follows.

max

max

1
NW NS N N

NMW M
= = ≥ − (6)

From (3)(5)(6), we find that M can be decreased as the
growing N. But x should be increased. For illustration,
when N=4, M and x should be 4/3 and 2/3 at least. Hence,
S could be 3. When N=8, M and x should be 8/7 and 6/7
respectively. Here, S could be 7. In such cases, the system
can tackle NWmax throughput in despite of the bursty
traffic.

5.2. Buffer & Power Consumption

In previous part, a clear scenario shows the result of

load balancing while the input traffic is very bursty. The
over-loaded cache-missed packets due to the slow-update
mechanism can also be identified as a special case of burst
traffic. As a result, x depends on not only the cache size
but also the length of buffer. For example, there will be no
packet drop when x measured with a statistical interval L
is higher than (N-2)/(N-1) at any time.

Furthermore, the length of buffer also greatly concerns
the total delayed time in our system which covers both
reordering and queuing. Since there is no blocking or
Round-Robin mechanism in our system, any packet will
be queued for twice at most. In that case, both the queuing
and reordering would cost 2L at most (L denotes the buffer
length of each TCAMs). Our aim is to find a proper L for
the system to achieve a low loss rate, i.e. 10-8. Since L
depends on the characters of traffic, we may only give an
empirical value by experiments in Section 6.

As we know that the main power consumption for
TCAM depends on the entries triggered during a parallel
search processing, assume the power consumption for a
TCAM without partitioning search is P. Since we adopt b
partitioning search zones in TCAM, and the average lookup
times is no more than 2, so the power consumption should
be less than 2P/b X . When b equals to 32, the power

X When b is increased to a larger value, i.e. 200, the partition
size will be less than 1K which is smaller than the logical cache.
As a result, the power consumption will be less than 2000P/Z
where Z denotes the size of route table.

consumption can be reduced by 93.75% at least.

6. Experiments and Simulations

In addition to the theoretical analysis we have run a

series of experiments and simulations to measure the
algorithm’s performance and adaptability on the most
serious traffic load distributions. Here we choose M=4/3,
N=4, D=5000 and b=32 for demonstration.

6.1. Experimental Scheme

We insist that the parallel system must be applicable to

uneven workload distribution caused by the bursty traffic.
Hence, the experiment herein mainly focuses on bursty
traffic. Traces collected from the real world do have some
bursty traffic, but as the low average traffic (stated in
Section 2.2), we will not be able to test a parallel system
with a strong and continuous input. In order to test the
proposed structure and get the buffer length, the following
steps have been taken.

1) We overlap four traces XI to generate a new
15-minute trace. It contains 2.436*108 packets and the
average active connections (measured in 64 second time
out) are over 400K.

2) After the step 1), the timestamp of this new trace is
ignored and this new trace is changed into a back-to-back
mode. In order to guarantee 100% input, we just need to
ensure the proportion of the maximal input traffic (NWmax)
to the maximal throughput of all the TCAMs (N*MWmax)
is 1:M. Suppose N is equal to 4, then M should be 4/3 by
the theoretical analysis presented in Section 5. It means
that each TCAM can serve for one packet every 4 clocks
(every 4 clocks, totally 4 packets are finished by 4
TCAMs) while there are 3 packets arrived in 4 clocks at
most. Analysis shows that the actual utilization of each
TCAM bucket is greatly different. Some of the TCAM
buckets carry the most of the workload. As shown in
Figure 11, the top five TCAM buckets account for over
85% of the total workload. This character can be used to
construct an extremely uneven bucket distribution for the
system.

3) By introducing some “pre-selected” redundancy [9]
to our system, an even workload can be easily constructed
and the system performance can be greatly increased. But
this kind of operation requires that the lookup traffic
distribution among IP prefixes can be derived in real time
and the traffic distribution should be quite stable which
has been proved impractical in practice due to the busty
traffic in Internet. So it is impossible to “optimize” the
partition organization (bucket distribution) which means
the system could face the most serious situation (most of

XI They were collected at 10:15 – 10:30, 14:55 – 15:05, 17:58 –
18:13 and 21:52 – 22:07 on 2006-09-19 respectively.

Bucket Range Low Range High Proportion
32 218.103.48.0 255.255.255.255 33.0951%
28 209.215.80.0 211.144.215.255 17.0767%
2 32.114.0.0 62.101.191.255 14.2720%

21 202.56.193.0 202.169.219.255 11.7201%
22 202.169.220.0 203.101.67.255 8.24875%
13 161.222.160.0 192.44.143.255 2.88938%
31 216.158.138.0 218.103.47.255 2.88427%
20 200.150.240.0 202.56.192.255 1.84324%
12 144.243.208.0 161.222.159.255 1.65799%
10 85.120.78.0 130.117.255.255 1.62507%
11 130.118.0.0 144.243.207.255 0.83727%
29 211.144.216.0 213.182.108.255 0.76708%
9 81.7.109.0 85.120.77.255 0.63909%

…
14 192.44.144.0 193.5.115.255 0.02988%
18 198.179.209.0 200.3.213.255 0.01591%
24 204.27.185.0 205.172.15.255 0.00934%

Figure 11. Workload of different TCAM buckets.

TCAM No. Bucket No. Total Traffic
1 32,28,2,21,22,13,31,20 92.030％
2 1,3,4,5,6,7,8,9 2.0902％
3 10,11,12,14,15,16,17,18 4.3540％
4 19,23,24,25,26,27,29,30 1.5263％
Figure 12. Mapping of buckets and

 workload of TCAM chips.

Figure 13. Result on bursty traffic.

Figure 14. Loss rate and buffer length.

the traffic has been sent to a single TCAM) sometimes. In
this paper, the most serious situation is created in the
experiment to demonstrate the great load balancing of
proposed solution. The partition organization on four
TCAMs has been shown in Figure 12. The TCAM No.1
accounts for 92.03% of the total traffic which means the
parallel system suffers from uneven workload seriously.

6.2. Simulation Result

Now, we use the trace generated by step 2) to test the

system organized by step 3), the cache size has been set to
1024 and D=5000. Simulations show that the system can
easily achieve 100% throughput with very low power
consumption. Figure 13 shows part of the result, the
statistic interval is 103 packets. It is shown that the cache
hit rate still achieve 95% in the parallel system while the
average search account on logical caches is over 0.7*103.

With the experiment scheme above, we also test the
proposed system with D=5000 and different cache sizes
(64, 128, 256, 512 and 1024). To avoid the warm-up
interference, the first 107 packets has been ignored. As
shown in Figure 14, the buffer length is also decreased as
the increasing cache size. When the cache size is 64, a
longer buffer (17) is needed to achieve a loss rate about
10-6, while the one with a cache size of 128 can reduce the
buffer length by 6. By increasing the cache size, the
smaller buffer can be achieved. When the cache size is
1024, a loss rate about 10-8 can be easily achieved with a
buffer length about 8 in despite of the bursty traffic.

7. Conclusion

Increasing the lookup throughput and reducing the
power consumption of the TCAM-based lookup engine
while keeping economic memory storage utilization are the
three primary issues in this paper. We first give a simple but
efficient TCAM table partitioning method. It supports
incremental updates efficiently with little redundancy and
could be easily extended to IPv6. Motivated by the analysis
on real-life Internet traffic, we then devised an adaptive
load balance scheme with logical cache to solve the bursty
traffic. Meanwhile, the update mechanism used for the
logical cache is very simple and efficient which is greatly
different from the traditional ones. Both the partitioning
method and the logical cache with slow-update mechanism
are quite flexible. They can be easily modified for different
requirements, such as bigger cache, longer update-delay,
more TCAM buckets and so on. Given 2% more memory
space, the proposed scheme increases the lookup
throughput by a factor of three when a quaternary TCAMs’
structure is implemented and significantly cuts down the
power consumption.

8. Acknowledgment

The authors would like to express their appreciations to

Dr. Huan Liu of Stanford University for his constructive
suggestions on this paper and the DRAGON-Lab
(Distributed Research & Academic Gigabits Open
Network Lab) of Tsinghua University for providing the
real traces.

References

[1] Huston G. Route Table Analysis Reports (March 2006).

http://bgp.potaroo.net/.
[2] Route Views. http://routeviews.org/.
[3] Xin Zhang, Bin Liu, Wei Li, Ying Xi, David Bermingham

and Xiaojun Wang, “IPv6-oriented 4*OC768 Packet
Classification with Deriving-Merging Partition and
Field-Variable Encoding Algorithm”, INFOCOM2006,
April 2006, Spain.

[4] CYRESS. http://www.cypress.com/.
[5] Y. K. Li, D. Pao, “Address Lookup Algorithms for IPv6”,

IEE Proceedings-Communications, Vol.153, No.6,
pp.909-918, Dec 2006.

[6] H. Liu, “Route table Compaction in Ternary CAM”, IEEE
Micro, 22(1):58-64, January-February 2002.

[7] F. Zane, G. Narlikar, A. Basu, “CoolCAMs:
Power-Efficient TCAMs for Forwarding Engines”,
INFOCOM2003,Vol.1, pp.42-52, March/April 2003.

[8] R. Panigrahy, S. Sharma, “Reducing TCAM Power
Consumption and Increasing Throughput”, Proceedings of
HotI 2002, pp.107-112, August 2002.

[9] Kai Zheng, Chengchen Hu, Hongbin Liu, Bin Liu,“An
ultra-high throughput and power efficient TCAM-based IP
lookup engine”, INFOCOM2004, Vol.3, pp1984-1994,
March 2004.

[10] Abilene. http://www.abilene.iu.edu/noc.html.
[11] Woei-Luen Shyu, Cheng-Shong Wu, and Ting-Chao Hou.

“Efficiency Analyses on Routing Cache Replacement
Algorithms”, ICC’2002, Vol.4, pp.2232-2236, April/May
2002.

[12] Tzi-cker Chiueh,Prashant Pradhan, “High-Performance IP
Routing table Lookup Using CPU Caching”, INFOCOM’99,
Vol.3, pp.1421-1428, March 1999.

[13] Bryan Talbot, Timothy Sherwood, Bill Lin,“IP Caching for
Terabit Speed Routers”, GLOBECOM'99, Vol.2,
pp.1565-1569, DEC 1999.

[14] Mohammad J. Akhbarizadeh and Mehrdad Nourani,
“Efficient Prefix Cache for Network Processors”, High
Performance Interconnects 2004, pp.41-46, August 2004.

[15] H. Jiang, C. Dovrolis, “The effect of flow capacities on the
burstiness of aggregated traffic”, PAM2004, Vol.3015,
pp.93-102, April 2004.

[16] Passive Measurement and Analysis (PMA) Project.
http://pma.nlanr.net/

[17] S. Nilsson and G. Karlsson, “IP-Address Lookup Using
LC-Tries”, IEEE Journal on Selected Areas in
Communications, Vol.17, No. 6, pp.1083-1092, June 1999.

[18] M. A. Ruiz-Sanchez, E. W. Biersack and W. Dabbous,
“Survey and Taxonomy of IP Address Lookup Algorithms”,
IEEE Network, pp.8-23, March/April 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

