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Abstract— We consider the problem of providing QoS guar-
antees to Grid users through advance reservation of resources.
Advance reservation mechanisms provide the ability to allocate
resources to users based on agreed-upon QoS requirements and
increase the predictability of a Grid system, yet incorporating
such mechanisms into current Grid environments has proven to
be a challenging task due to the resulting resource fragmentation.
We use concepts from computational geometry to present a
framework for tackling the resource fragmentation, and for
formulating a suite of scheduling strategies. We also develop
efficient implementations of the scheduling algorithms that scale
to large Grids. We conduct a comprehensive performance eval-
uation study using simulation, and we present numerical results
to demonstrate that our strategies perform well across several
metrics that reflect both user- and system-specific goals. Our
main contribution is a timely, practical, and efficient solution
to the problem of scheduling resources in emerging on-demand
computing environments.

I. INTRODUCTION

Grids have emerged as an essential infrastructure for
resource-intensive scientific and commercial applications [12],
[15]. Grid technology enables the sharing and dynamic alloca-
tion of distributed, high-performance computational resources
while minimizing the associated ownership and operating
costs; it also facilitates access to such resources and pro-
motes flexibility and collaboration among diverse organiza-
tions. More recently, the concept of on-demand computing [5],
[16] has emerged as a viable model in which a wide range of
finer grain commercial, business, and scientific applications
would tap into the Grid resources on an as-needed basis,
extending the reach and utility of Grid computing far beyond
its current user base to society as a whole; for instance, Sun
Microsystems recently started offering the Sun Grid compute
utility [18] and more such service offerings are expected in the
near future. This vision of computing as utility is expected to
change not only the way scientists and businesses work, but
also the way they think about computing resources. However,
its realization depends on the development of sophisticated
resource management systems capable of allocating resources
to users based on agreed upon quality of service (QoS) re-
quirements [1], while satisfying certain system level objectives
(e.g., high utilization, economic constraints, etc.) [3], [4].

Scheduling and management of Grid resources is an area
of ongoing research and development. Several open source
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or proprietary schedulers have been developed for clusters
of servers, including Maui [13], [14], portable batch system
(PBS) [2], and load sharing facility (LSF) [9]; they typically
run in batch mode, can be customized to specific policies,
and attempt to balance the load among the various servers.
However, the primary objective of most existing approaches is
to improve overall system performance (e.g., utilization), while
the QoS experienced by Grid users is at best of secondary
consideration [15]. For instance, batch systems typically al-
locate resources to jobs as they become available, without
consideration of applications that need to obtain results within
a strict deadline [1]. In general, the schedulers process jobs in
order of priority, which is determined based on job attributes
such as job class and time in queue [13], [14], but also employ
backfilling operations, i.e., run jobs out of order, to make
better use of the available resources. Unfortunately, backfilling
often interferes with the ability of the system to provide QoS
guarantees, as in its attempt to improve utilization it may
bypass the job priorities set by the system administrator [14].

Advance reservation of resources is one mechanism that
Grid providers may employ in order to offer specific QoS
guarantees to application users. Advance reservation, i.e.,
the ability of the scheduler to guarantee the availability of
resources at a particular time in the future, increases the
predictability of the system and it has been an area of
interest [1], [11], [12], [15], [19]–[21] in the Grid community.
Although some schedulers, including Maui [13], provide some
sort of advance reservation mechanisms, existing approaches
to making reservations in the future lack sophistication, are
expensive, and do not scale well. This lack of scalability is due
primarily to two factors. First, as the number of resources in
the Grid increases, the overhead of maintaining and updating
the set of advance reservations can be significant, especially if
appropriate attention is not paid to the design of the relevant
data structures. Second, making advance reservations tends
to fragment the available resources. If this fragmentation is
not taken into account by the scheduling algorithm, the result
will be poor utilization and high job rejection rate; on the
other hand, algorithms which attempt to utilize the fragmented
capacity but are not properly designed will suffer from un-
acceptably high running times as the number of resources
increases. For these reasons, incorporating QoS mechanisms
into current Grid environments has proven to be a challenging
task [1], [12]. In practice, most systems tackle the complexity
by limiting both the pool of resources available for advance
reservation and the number of users with permission to request



reservations.
We believe that the ability to offer and guarantee QoS to

users is of utmost importance to Grid providers. Without QoS
guarantees, users may be reluctant to pay for Grid services or
contribute resources to Grids, hindering further development
of the Grid model and limiting its economic significance.
Mechanisms for support of QoS also enable service providers
to differentiate themselves by offering an optimized menu of
services. Therefore, in this paper we present a framework
for designing effective and efficient scheduling algorithms
that employ advance reservations to guarantee QoS to users.
Specifically, we consider an environment where users submit
jobs dynamically, and these jobs may start at a future time and
must be completed within a certain deadline. Using concepts
from computational geometry [10], we show how to manage
efficiently the fragmentation of resources due to advance
reservations by maintaining an appropriate set of balanced
search trees. We also present a set of scheduling strategies
for making advance reservations. Each strategy corresponds
to a different optimization objective, and requires that the
information on the advance reservations be organized and
maintained in a slightly different variant of the search tree
structure. Our algorithms scale to large Grid systems, and
simulation results demonstrate that they perform well across
several performance metrics that reflect both user- and system-
specific goals.

The rest of the paper is organized as follows. In Section II
we describe the online scheduling problem we study in this
work, and in Section III we present a framework for reasoning
about advance reservations that borrows ideas from computa-
tional geometry; we also describe a suite of scheduling strate-
gies that arise naturally within the framework. In Section IV
we provide additional details on the implementation of the
scheduling algorithms and of the data structures related to
managing the fragmentation of resources. In Section V we
present simulation results to evaluate the various strategies in
terms of several performance metrics, and we conclude the
paper in Section VI.

II. PROBLEM DESCRIPTION

Consider a scheduler S for a Grid with n servers which
may be geographically distributed in a network.We make the
assumption that all servers are identical in terms of their
processing capacity C; extending the algorithms we present
here to non-identical resources is the topic of ongoing research
in our group. A user with job j requiring service submits a
request to the scheduler. The request is characterized by a
three-parameter tuple (rj , lj , dj), where:

1) rj is the ready time of the job, i.e., the earliest the job
can be made available to the grid for processing;

2) lj is the length of the job, i.e, the amount of work the
job requires; and

3) dj(≥ rj + lj) is the deadline of the job, i.e., the latest
time by which the job can be completed.

The deadline is a measure of the quality of service required
by the user. We assume that deadlines are hard, in that a
user receives utility only if the job completes service by its
deadline. Therefore if S determines that the deadline cannot
be met, it drops the job and notifies its user accordingly.
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Fig. 1. (a) Advance reservations in a 2-server system: jobs scheduled and idle
periods, (b) equivalent geometric representation of the schedule: idle periods
as points in the plane

We consider the online scheduling problem whereby users
submit service requests to S at random instants. We assume
that S maintains a schedule which records, for each server
i, the time periods in the future during which the server
is reserved for jobs that have already been accepted to the
system. In essence, this schedule represents the set of advance
reservations that have been made, and it guarantees that server
resources will be available to the accepted jobs at specific
future times. Figure 1(a) shows an example schedule for a
2-server system. The schedule shows that at the current time
(i.e., time t = 0 in the figure), there are three jobs scheduled
for server 1: the job currently in service which will end at
time t1, job A which has reserved the server from time t3 to
t5, and job D which has reserved the server from time t9 to
t11; similarly, three jobs have been scheduled for server 2. The
figure also shows a service request for scheduling a new job
j with ready time rj = t6 and length lj = t8 − t6.

When a service request (rj , lj , dj) for a new job j arrives,
S immediately runs an algorithm to determine whether it
is feasible to schedule the job so as to meet its deadline.
If so, then S uses a set of criteria to select one of the
(possibly multiple) servers who can handle this job, updates
its schedule, and returns a reference to this server to the
user; otherwise, the job is dropped. The scheduling decision
impacts the performance perceived by users as reflected by the
fraction of jobs meeting (or missing) their deadlines and the
turnaround times of the jobs. It also impacts the overall system
performance as reflected by the system utilization, which is a
measure of how well the overall service capacity of the system
is used. The challenge, therefore, is to develop efficient online
scheduling algorithms that minimize the fraction of dropped
jobs while maximizing utilization.

Several variants of this scheduling problem with advanced
reservations and/or deadlines have been studied in multipro-
cessor and Grid systems [6], [7], [19], [20], [22]. However, the
heuristic solution approaches that have been proposed may not
scale well and may not utilize the available system capacity
efficiently [1], [12]. In the next section, we present a new
framework for developing efficient algorithms for this problem
taking into account a range of optimization criteria.

Before we proceed to address the general scheduling prob-
lem, let us consider a restricted version in which jobs must be
scheduled as soon as they are ready. In this case, deadlines
are immediate (i.e., dj = rj + lj), and we refer to this
problem as resource scheduling with immediate deadlines.
One straightforward approach for tackling this problem is



for the scheduler S to keep track of the completion time of
each server, defined as the latest time at which the server
becomes free based on the existing advanced reservations. The
scheduler then assigns an arriving job to the server with the
latest completion time that is earlier than the ready time of
the new job. This latest available completion time (LACT)
algorithm takes time O(log n) to schedule a job. However,
it can be inefficient in terms of both capacity utilization and
job drop rate, as it does not consider the idle periods created
at each server between the times reserved for jobs whose
requests were submitted earlier. For instance, in the scenario
shown in Figure 1(a) for a 2-server system, the completion
time for server 1 is t11 (the service completion time of job
D), while the completion time for server 2 is t10. Therefore,
the LACT algorithm will reject the service request for the new
job with arrival time t6 < t10 < t11, although the job can be
accommodated on server 1 within the idle period Y created
between jobs A and D.

An algorithm that considers the idle periods when making
decisions was developed in [23] in the context of scheduling
bursts in optical burst switched networks. The algorithm uses
concepts from computational geometry [10] to represent the
time intervals corresponding to idle periods as points in a
plane, as illustrated in Figure 1(b). Since the ending time
of an idle period must be greater than its starting time, all
points will always be above the diagonal in Figure 1(b). Then,
the problem of finding a feasible idle period for scheduling
a new job (also represented as a point P in the plane) is
equivalent to finding a point that completely contains1 point
P . In Figure 1(b), it is seen that point Y completely contains
the point corresponding to the new job, thus the latter can be
scheduled within idle period Y on server 1. By maintaining
a balanced priority search tree data structure [17] containing
all the idle periods on all servers, finding an idle period for
a new job, or determining that one does not exist, takes time
O(log K), where K is the number of idle periods. Updating
the data structure to add new idle periods (created when a
new job is scheduled) or remove ones in the data structure
(as time advances), also takes time O(log K). The value of
K, however, can be significantly larger than the number n
of servers, and we have found that its value increases rapidly
with the offered load of jobs; in other words, in moderately
to highly loaded systems, in which it is important to make
scheduling decisions quickly, the running time of the algorithm
is longer.

III. SCHEDULING WITH GENERAL JOB DEADLINES

We now present a general framework that provides new
insight into the problem of online scheduling with advance
reservations in Grid environments. Our approach extends
previous work in three directions: (1) it allows for general
job deadlines (i.e., the deadline of a job j may take any
value dj ≥ rj + lj , ∀j); (2) it provides the foundation for
formulating a range of scheduling strategies based on a variety
of optimization criteria; and (3) it leads to highly efficient
algorithms for these strategies.

1We say that point x = (x1, x2) completely contains point y = (y1, y2)
iff x1 ≤ y1 and x2 ≥ y2.
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Fig. 2. (a) Jobs scheduled and idle periods in a 3-server system, (b) idle
periods as points in the plane, plane partitioned into strips of width 2× lmin,
and feasible regions R1, R2 for the new job

Let us return to the representation of idle periods as points
in the plane that we illustrated in Figure 1. Assuming that the
current time t = 0, Figure 2(a) shows the current schedule
of advance reservations for a 3-server system, along with a
request to schedule a new job j with the tuple (rj = t6, lj =
t8 − t6, dj = t12). Figure 2(b) is the geometric representation
of this schedule. The fact that job j has a general deadline
is represented in Figure 2(b) by the line segment between
points P and P ′, where point P = (rj , rj + lj) (respectively,
P ′ = (dj − lj , dj)) corresponds to the earliest (respectively,
latest) possible pair of starting and ending times for this job.
Consequently, the scheduler may select any point on this line
segment as the starting/ending times of the job, as long as
there is an idle period completely containing this point.

Consider the new job j and its geometric representation in
the plane, as shown in Figure 2(b). The feasible region of job
j refers to the part of the plane where all idle periods that
can accommodate this job may lie. The feasible region is the
part of the plane above and to the right of the line segment
between P and P ′, since only any idle periods in that region
will fully contain some point of the line segment. The feasible
region can be partitioned into two subregions, R1 and R2, as
in Figure 2(b). Any idle period lying in R1 (e.g., idle periods
Y an V in the figure) starts at or before the new job’s ready
time rj (= t6 in the figure), and ends after the earliest time the
job can be completed (= t8 in the figure). Therefore, any idle
period in this region can accommodate the new job without
delaying its execution, i.e., the job can start execution at its
ready time rj . Any idle period lying in R2, on the other hand
(e.g., idle period Z in Figure 2(b)), starts later than the job’s
ready time but is large enough for it. Hence, the job may be
assigned to any idle period in R2 at the cost of delaying its
execution beyond its ready time.

A. Partitioning of the Idle Periods
Our objective is to obtain efficient algorithms for the online

scheduling problem with general deadlines. We note that the
work in [23] was developed for the special case of immediate
deadlines. Recall also that the algorithm developed in [23]
maintains a single priority search tree that contains all K
points in the plane, i.e., all K idle periods on all servers. A
single tree structure is appropriate for immediate deadlines,
in which case each job is represented by a single point
in the plane. However, it cannot be directly applied to the
more general problem we are considering, in which jobs are
represented by a line segment, such as the one between points



P and P ′ in Figure 2(b). With a single tree structure, the only
way to handle a job with a general deadline is to perform
multiple searches for multiple points along the line segment
representing this job. Such an approach is inefficient if the
points on the line segment are selected close to each other,
since each search takes O(log K) time; whereas it may fail
to find feasible idle periods if the points are selected far from
each other to lower the worst-case running time.

In order to obtain efficient scheduling algorithms for the
problem at hand, we partition the area of the plane above the
diagonal into strips of width equal to twice the minimum job
size lmin.Figure 2(b) shows the partitioning of the plane into
horizontal strips. Alternatively, one might partition the plane
into vertical strips of width 2 × lmin; the choice of direction
depends on the optimization strategy selected, as we discuss
shortly. Doing so in effect partitions the set of K idle periods
into a number H of subsets, where subset h, h = 1, · · · , H ,
contains the idle periods falling within the h-th strip.

Rather than maintaining a single tree data structure as
in [23], we maintain H priority search trees, one for each
strip. We also ignore (i.e., do not keep any information about)
any idle period of length less than lmin, as it cannot be used
for scheduling any job. Maintaining one tree structure for each
strip is based on the observation that a given strip may contain
at most one idle period from each server. To see that this is
true, note that two consecutive idle periods on the same server
must be separated by a job of length at least lmin, and that
the length of each idle period is at least lmin (otherwise the
idle period is discarded); therefore, the starting (and ending)
times of two idle periods on any given server are at least
2 × lmin time units apart from each other. In other words,
the number of idle periods in a strip is bounded above by
the number n of servers. Consequently, updating the schedule
(i.e., adding or removing idle periods) takes time O(log n),
rather than O(log K), where typically n � K.

Since each priority search tree structure contains only a
subset of the set of idle periods, it may be necessary to
search several trees to find a feasible idle period for a new
job request2. Consider point P in Figure 2(b), representing
the earliest time the new job may start execution. In this
example, the new job can be scheduled either in the idle period
represented by point V or the one represented by Y . Point V
can be found by searching the tree structure corresponding to
the strip in which point P lies; however, if point V (i.e., the
corresponding idle period) did not exist, one would have to
continue searching strips above the one in which P lies (i.e.,
those with starting times earlier than the new job) in order
to find an idle period (in this case, point Y ) that would not
delay the start of the job. On the other hand, if neither V or
Y existed, the search would have to continue in strips below

2To improve the scalability of the algorithm, in terms of both running time
and memory usage, we may partition the plane in strips of length M × 2 ×

lmin, where M is an integer greater than one. In this case, there will be no
more than M idle periods from each server within each strip, or no more than
nM idle periods in all. Consequently, the complexity of searching each tree
becomes O(log(nM)), or O(log M + log n), but the number of strips (and
corresponding trees) to be maintained decreases to H/M , where H is the
number of strips for M = 1. Letting M = nk, where k is a small integer,
reduces the number of trees by a factor of nk compared to the case M = 1,
while the time to search each tree increases only by a factor of k + 1, i.e.,
becomes O((k + 1) log n).

the one in which P lies, to identify idle periods (e.g., Z) that
could accommodate this job at some starting time along the
line segment from P to P ′.

In addition to allowing the scheduler to handle jobs with
general deadlines efficiently, the partition of idle periods into
subsets also enables the natural implementation of a variety
of strategies for selecting one among multiple feasible idle
periods. This unique feature of our approach, due to its
inherent flexibility in terms of partitioning the plane either
horizontally or vertically, and in terms of the order in which the
strips are searched, is discussed in detail in the next subsection.

B. Scheduling Strategies

We now describe a suite of scheduling strategies which
make use of the approach we outlined in the previous sub-
section. These strategies are based on the observation that
a job scheduled in an idle period will create at most two
new idle periods: one between the start of the original idle
period and the start of the job (the leading idle period), and
one between the end of the job and the end of the original
idle period (the trailing idle period). The creation of these
new, smaller idle periods results in further fragmentation of
the available capacity, and may prevent future job requests
from being accommodated. Therefore, it may be desirable to
schedule a new job within the idle period such that the size of
either the leading or trailing idle periods created is optimized,
since doing so is likely to increase the chances that future jobs
will fit in these new idle periods.

To illustrate how the partitioning of the plane into strips
can facilitate the implementation of such scheduling strategies,
consider again the new job in Figure 2. This job can be
accommodated by three idle periods, corresponding to points
Y , V , and Z. Selecting either point V or point Z will result
in a leading idle period of zero length (in fact, any point in
the feasible region R2 will have the same effect). On the other
hand, selecting point Y in region R1 will result in a leading
idle period of length (t6 − t5); furthermore, the higher up
in region R1 a point lies, the larger the leading period that
will be created if the job is assigned to it. Based on these
observations, if the objective is to minimize the leading idle
period, the search must start in strips within region R2 first;
if that fails, the search should continue with the bottom strip
within region R1, and proceed upwards until a feasible idle
period is found. If, however, the objective is to maximize the
leading idle period, then the search must start at the topmost
strip of region R1, and proceed downwards. Note also that
while all points in region R2 will result in a leading period
of zero length, the later the starting time of a point the longer
the execution of the new job will be delayed. This suggests
that the strips of region R2 should be searched from top to
bottom to minimize the job turnaround time.

Similar observations can be made regarding the goal of
optimizing the length of the trailing idle period created when
scheduling a new job. This objective can be achieved by
partitioning the plane in vertical strips (as opposed to the
horizontal ones shown in Figure 2(b)), and following a similar
search strategy.

The following strategies for the scheduling problem with
general job deadlines arise naturally within this framework:



1) Min-LIP, which minimizes the leading idle period;
2) Min-TIP, which minimizes the trailing idle period;
3) First-fit, which returns the first (i.e., earliest) feasible

idle period, regardless of the sizes of the leading and
trailing idle periods.

We discuss the implementation of these strategies in the next
section. We have also considered the maximization versions of
the first two strategies (i.e., max-LIP and max-TIP), but due to
space constraints we do not discuss them here. We also note
that another related strategy, best-fit, would minimize the sum
of the leading and trailing idle periods. We have determined
that the implementation of best-fit is significantly different
than that of the three strategies listed above, in that it involves
more complex, two-dimensional balanced tree structures. The
best-fit strategy is the subject of ongoing research within
our group, and we plan to report our results in a separate
submission in the near future.

IV. ALGORITHM DESCRIPTION AND IMPLEMENTATION

We now describe in detail the algorithm and related
balanced tree data structure for implementing the min-LIP
scheduling strategy, and we analyze its worst-case running
time. At the end of the section, we discuss the modifications
required to implement the min-TIP and first-fit strategies.

A. Balanced Tree Structure for the Min-LIP Strategy

Recall from Section III-A that we partition the set of idle pe-
riods on all servers into H subsets, each subset corresponding
to one of the horizontal strips in the geometric representation
of the schedule of advance reservations (refer to Figure 2(b))
and consisting of the idle periods in this strip. Each subset is of
size at most n, where n is the number of servers. The number
H of subsets (equivalently, of horizontal strips) depends on
how far in the future users are allowed to make advance
reservations. For a given system, the value of H is fixed.

By construction, each subset h, h = 1, · · · , H , contains
all idle periods with starting times in the interval [2(h −
1)lmin, 2hlmin). The idle periods in subset h are stored in
a priority balanced search tree Th; in our implementation, we
use augmented red-black trees [8]. Whenever the scheduling
algorithm (described in the next subsection) needs to search
subset h to find an idle period for a new job, tree Th is
searched; as we explain shortly, the manner in which the tree
is searched depends on the part of the feasible region (R1 or
R2 in Figure 2(b)) in which the corresponding strip lies. The
search of tree Th will be unsuccessful if and only if no feasible
idle period for the new job exists in this strip. Otherwise, the
search will return a feasible idle period that optimizes a given
objective; for the min-LIP strategy we are considering, it will
return the idle period that will result in the minimum leading
idle period among all feasible idle periods in the strip.

In tree Th, the actual idle periods are in the leaf nodes,
arranged in ascending order of their starting time. For the min-
LIP strategy, a leaf node corresponding to idle period X stores
the following information:

• the starting time of X ;
• the ending time of X ; and
• other auxiliary data, such as the identity of the corre-

sponding server.
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Fig. 3. (a) Schedule of advance reservations, (b) balanced tree structure
storing the idle periods in the second strip from the top

Internal tree nodes store information regarding the idle
periods in their subtree. This information is used to navigate
the tree and locate idle periods appropriate for the new job
to be scheduled. In the case of the min-LIP strategy, the
information stored in internal node v consists of:

• the median of the starting times of the idle periods stored
in the subtree of Th rooted at v;

• a pointer to the idle period in v’s subtree with the latest
ending time; and

• a pointer to the idle period in v’s subtree with the
maximum length.

Figure 3(b) shows the balanced tree Th associated with the
second strip from the top of the schedule shown in Figure 3(a).
This strip contains four idle periods with starting and ending
times: X = (s1, e1), Y = (s3, e2), Z = (s3, e5), and V =
(s4, e4). Since s1 < s3 < s4, the idle periods are stored in this
order as the leaves of the tree in Figure 3(b). Internal node B
of the tree stores the median s1 of the starting times of idle
periods X and Y stored in its subtree, along with pointers to
the idle period with the latest ending time (i.e., Y ) and the
largest one (i.e, X); similar information is stored in node C
and the root A of the tree.

Note that as time advances, idle periods expire (i.e., their
ending time passes) and must be discarded. Our approach of
partitioning the plane into strips and maintaining a separate
tree structure for the idle periods within each strip makes it
easy to handle expired idle periods. Let us assume that the
system starts operation at time t = 0, and that we maintain H
strips, each of width 2lmin. Since the scheduling horizon (i.e.,
the time in the future during which a job can be scheduled) is
H × 2× lmin time units, then no idle period can end at time
t′ > t + H × 2 × lmin, where t is the current time. Consider
the topmost strip with index h = 1. Initially, the latest time at
which an idle period in this strip may end (expire) is at time
t′ = (H+1)×2×lmin−ε, corresponding to the scheduling, at
time t = 2×lmin−ε, of a job with ready time H×2×lmin time
units in the future. Therefore, at time t = (H+1)×2×lmin, the
tree corresponding to strip with index h = 1 is discarded, since
all idle periods recorded in that tree have already expired. At
the same time, all strips (and corresponding trees) with indices
h, h = 2, · · · , H , are renumbered to h′ = h − 1, and a new
empty tree is created to record idle periods falling in the new
strip with index h′ = H . This discard operation is repeated
every 2lmin time units thereafter. All the operations involved
in discarding a tree can be performed in O(1) time with no



extra memory cost by using (1) a circular queue to record
the tree indices, and (2) modulo-H arithmetic. If a single tree
structure were used instead to store all idle periods, deleting
expired idle times would require additional information to be
kept at internal nodes, as well as costly periodic operations to
locate all idle times with past ending times.

B. Min-LIP Algorithm

Consider a request to schedule a new job j with parameters
(rj , lj , dj). Let P and P ′ be the points in the geometric
representation of the schedule that correspond to the earliest
and latest times, respectively, at which the new job can be
scheduled (refer also to Figure 3(a)). Let p, 1 ≤ p ≤ H , be the
index of the horizontal strip in which point P lies; let p′ ≥ p
be the index of the strip where point P ′ lies. Similar to our
earlier discussion, we also let R1 (respectively, R2) denote the
part of the feasible region for the new job j containing idle
periods with starting times earlier (respectively, later) than the
job’s ready time rj .

The min-LIP algorithm to find a feasible idle period for the
new job j that minimizes the length of the leading idle period
created consists of two steps: a search in region R2, followed
by a search in region R1, if necessary. Next, we describe these
two steps in detail.
Step 1: Search in region R2. The algorithm first searches for
a feasible idle period in region R2. Any such idle period has
starting time s ≥ rj ; hence, we schedule job j to start at time
s, avoiding the creation of a leading idle period. Although
any feasible idle period in this region is optimal in terms of
the objective we consider, assigning the new job to an idle
period with starting time s will delay the execution of the job
by an amount of time equal to s − rj units beyond its ready
time. In order to minimize this delay, the min-LIP algorithm
explores the horizontal strips in this region in top-to-bottom
fashion, i.e., by examining the corresponding trees in the order
Tp, Tp+1, · · · , Tp′ .

The min-LIP algorithm exploits the observation that any
feasible idle period in region R1 is optimal in order to examine
each tree Th, h = p, · · · , p′, in this region in O(1) time.
Recall that the root of Th maintains a pointer to the largest
idle period in the tree (refer to Figure 3(b)). If this idle
period is smaller than the new job, then we know that no
idle period in this tree can accommodate this job, and the
algorithm proceeds to examine the next tree in the region;
otherwise, the algorithm assigns the job to this largest idle
period. Consequently, each horizontal strip that contains no
feasible idle period is eliminated in O(1) time. At most one
strip with a feasible idle period (the first such strip in the
sequence) is examined, and the assignment of a job to the
largest idle period in this strip takes time O(1). In this case,
the corresponding tree Th must also be updated (to delete
the largest idle period); this operation takes O(log n) time,
where n is the number of servers in the system. If a trailing
idle period that is larger than the minimum job size lmin is
created, it has to be inserted in the appropriate tree (which
may be different than Th). Locating the appropriate tree from
the trailing idle period’s starting time takes constant time, and
the insert operation takes O(log n) time. Since the number of
strips that fall within region R2 is at most k = d

dj

2lmin
e, where

dj is the deadline of the new job, the worst-case running time
of this step is O(k + log n) if the region contains a feasible
idle period, and O(k) if it does not.
Step 2: Search in region R1. If Step 1 fails (i.e., no feasible
idle period for the new job exists in region R2), the algorithm
proceeds to explore region R1. If any feasible period in this
region starting at time s is selected, the job will start execution
at its ready time rj , creating a leading idle period of length
rj −s. Since our goal is to minimize this length, the algorithm
examines the horizontal strips in this region in bottom-to-top
fashion, i.e., it searches the corresponding trees in the order
Tp−1, Tp−2, · · · , T1. Note also that in this step of the algorithm
we may safely ignore the line segment representing the job
(e.g., the segment from point P to point P ′ in Figure 3(a)), and
simply focus on the single point representing the job starting
at its ready time (i.e., point P ).

Each tree Th, h = p − 1, · · · , 1, in region R1 is searched
using a standard algorithm for red-black trees [8] to find the
idle period (if any) with the latest starting time that is large
enough to accommodate the new job. This search takes time
O(log n). If a feasible idle period is found in some tree Th, at
most three update operations must be performed: to delete the
idle period from Th, and to insert the newly created leading
and trailing idle periods (as long as they are larger than lmin)
into the appropriate trees; all these operations take O(log n)
time [8], [10]. The number of strips within region R1 is at
most m = d

rj

2lmin
e, where rj is the ready time of job j. The

worst-case running time of this step is O(m log n) and occurs
when either no feasible idle period exists, or one exists in the
topmost strip. Similarly, the worst-case running time of the
overall algorithm is O(k + m log n).

Let us illustrate how the tree search algorithm operates by
considering the second strip from the top in Figure 3(a), i.e.,
the one containing the idle periods X , Y , Z, and V . It is clear
from the figure that only Y , Z, and V can accommodate the
new job; of these, V is optimal in terms of minimizing the
leading idle period for the job represented by point P , as it
has the latest starting time.

The algorithm starts at the root A of the tree in Figure 3(b)
that stores the idle periods in this strip. It compares the ready
time (rj = s5) of the new job j to the median (= s3) of the
starting times of the idle periods in this tree stored at the root.
In this case, s3 < s5, which implies that some idle periods
in the left subtree of A, as well as some idle periods in the
right subtree, start before rj , hence both subtrees may have to
be examined further (if the reverse were true, the algorithm
would have eliminated the right subtree of A immediately).
The algorithm then compares the ending time of the job (= e2)
to the maximum ending time of the idle periods in the left
subtree of A; this value (= e2) can be obtained by following
the pointer to the idle period Y with the maximum ending
time that is stored in the root B of the left subtree. Since the
two values are equal, a feasible idle period may exist for this
job in the subtree rooted in B. Therefore, the algorithm marks
node B for possible consideration in the future, and proceeds
to examine the right subtree of A.

The search continues in a recursive manner until a leaf node
is reached. In this example, the ready time (rj = s5) of the
job is compared to the median starting time s3 stored in node



C. Since s3 < s5, the algorithm compares the ending time
(= e5) of the left child of C to the ending time e2 of the
job. Since e5 > e2, the idle period Z in the left child of C
is feasible, and the algorithm marks the leaf node Z. It then
similarly examines the right child of C, and determines that it
also represents a feasible idle period; since this is the one with
the latest starting time, it is optimal and is the one returned
by the algorithm. In general, once the algorithm reaches a leaf
node, all idle periods with starting time earlier than or equal
to rj are to its left. If the idle period represented by this leaf
is feasible, then it is returned and the algorithm terminates.
Otherwise, it is sufficient to continue the search recursively
from the last marked node. Due to space constraints, we are
unable to include a formal description of the algorithm.

C. Implementation of Other Scheduling Strategies

The scheduling strategies we defined in Section III-B can be
implemented by appropriately modifying either the tree data
structure or the search algorithm we described above for the
min-LIP strategy. In order to optimize the trailing idle period,
the plane must be partitioned into vertical strips of length M×
2 × lmin, M ≥ 1, and each tree must store the idle periods
in the corresponding strip in increasing order of their ending,
rather than starting, times; the search algorithm is similar to
the corresponding algorithm for min-TIP. Finally, the first fit
strategy can be implemented by exploring the horizontal strips
in increasing order of index h, and selecting from each tree
the first feasible idle period found.

V. PERFORMANCE EVALUATION

We use simulation to evaluate the performance of the
various scheduling strategies. We use the method of batch
means to estimate the performance parameters we consider
(and which we discuss shortly), with each batch consisting of
thirty simulation runs and each run lasting until 106 jobs have
been submitted to the Grid scheduler. We have also obtained
95% confidence intervals for all the results, which are shown
in the figures.

In our simulation, we assume that job requests arrive as a
Poisson process with rate λ. Job sizes are distributed according
to a bounded Pareto distribution. The minimum job size is set
equal to 1, and is taken as the unit of time. The maximum job
size is set to 50 time units, and we vary the mean job size x̄ by
changing the value of the parameters of the Pareto distribution.
We let L denote the amount of time that the scheduler S can
look “into the future”; in other words, a job may request to
be scheduled at most L units of time in the future. We let the
deadline dj of job j be uniformly distributed in the interval
(rj + lj , rj + lj + q(L − rj − lj)), where q, 0 ≤ q ≤ 1 is a
parameter that controls the “tightness” of the job deadlines. In
our simulations, we let L = 200.

We use four performance metrics in our study. The loss rate
is the fraction of jobs that are dropped due to the fact that their
deadline cannot be met. The system utilization is the fraction
of time the n servers are busy serving jobs. The average delay
is the mean amount of time that a job has to wait beyond its
ready time until it starts execution; note that dropped jobs do
not contribute to the average delay. Finally, the fairness ratio
is a measure of how fairly jobs of different sizes fare in terms

of drop probability under a given scheduling algorithm. To
compute the fairness index, we partition the domain [1, 50]
of the job size distribution into B = 100 bins of equal size.
Let zi be the number of arriving jobs that fall into the i-th
bin during a certain simulation run, and let z ′

i ≤ zi be the
number of these jobs that are scheduled successfully. Let wi

be the fraction of jobs in the Pareto distribution that fall in
the i-th bin. The fairness index F of a scheduling strategy is
calculated as:

0 ≤ F =

B∑

i=1

wi

z′i
zi

≤ 1. (1)

Clearly, the closer the value of the fairness index is to one,
the more fair the scheduling discipline is.

We compare four scheduling strategies: first-fit, min-LIP,
min-TIP, and LACT. The LACT algorithm, which we de-
scribed in Section II, does not consider the idle periods
created at each server, and hence suffers the effects of ca-
pacity fragmentation; we consider this algorithm as a baseline
case. Although we do not show any results for the max-LIP
and max-TIP scheduling algorithms, their overall behavior is
similar to that of min-LIP and min-TIP in that they are efficient
in utilizing the available system capacity.

Figures 4-7 plot the loss rate, utilization, average delay, and
fairness ratio, respectively, for the four scheduling strategies
against the system load ρ. The system load is calculated using
the familiar from queueing theory expression ρ = (λx̄)/n. For
the results shown in these figures, we let the number of servers
n = 20, the mean job size x̄ = 3.28, and the tightness of the
job deadlines q = 0.1. Note that the load values in the figures
range from low (ρ = 0.1) to very high (ρ = 1.1) at which the
system is more than 100% loaded. Also, the 95% confidence
intervals are quite narrow for all curves shown.

From Figure 4 we can see that the loss rate increases with
the system load for all four scheduling algorithms, as expected.
However, the LACT algorithm performs significantly worse
than the other three strategies at all but very low loads; this
result is not surprising given the fact that this algorithm does
not consider the idle periods in the servers. Under the other
three strategies, jobs experience low loss rates even for load
values close to 1; in fact, min-LIP and min-TIP have almost
identical behavior with loss rates close to zero for loads up to
ρ = 0.8. The first-fit algorithm also experiences low loss, but
it performs worse than min-LIP or min-TIP for all load values
less than 1. Therefore, min-LIP and min-TIP are clearly the
best algorithms for typical operating regimes (i.e., at medium
to medium-high loads). Note also that the loss rate for two
algorithms is less than 10% even at a load of ρ = 1.1. This
result can be explained by the fact that when the system is
overloaded, large jobs have higher probability to be dropped
than small jobs, under these two algorithms; hence at ρ = 1.1,
the dropped jobs account for more than 10% of the offered
load.

Figure 5, which plots the system utilization versus the load,
confirms our observations regarding the relative performance
of the four algorithms. As expected, utilization increases with
the system load initially, but at some point the curves level
off. LACT shows the lowest utilization, a result consistent
with the high loss rates we observed in Figure 4. Min-LIP



Fig. 4. Loss rate vs. system load ρ, n = 20, x̄ = 3.28, q = 0.1

Fig. 5. Utilization vs. system load ρ, n = 20, x̄ = 3.28, q = 0.1

Fig. 6. Average delay vs. system load ρ, n = 20, x̄ = 3.28, q = 0.1

and min-TIP again have the best performance, followed by
first-fit. Moreover, the behavior of the min-LIP and min-TIP
curves is almost identical, with utilization increasing almost
linearly with the load values. This result indicates that both
algorithms are capable of identifying and using idle periods
to schedule jobs, thus ensuring that fragmentation of system
capacity does not compromise overall performance. We also
note that the difference in utilization between first-fit, on the
one hand, and min-LIP and min-TIP, on the other hand, is
higher than the difference in loss rates would suggest. The
higher difference in utilization can be explained by the fact that
the first-fit strategy is less fair than the other two, and tends to
drop larger jobs with higher probability; we will discuss this
fairness issue in more detail shortly.

Let us now turn to Figure 6 which plots the average job
delay against the system load. As we can see, jobs experience
the lowest delay under the first-fit strategy. This result agrees
with intuition: first-fit assigns a new job to the earliest feasible
idle period, thus minimizing delay. We also observe that the
average delay for min-LIP is higher than for first-fit but lower
than under min-TIP. Recall that min-LIP first searches for
the earliest feasible idle period in region R2 (i.e., for an idle
period starting after the job’s ready time). Once such an idle
period is found, the job is scheduled to start at the beginning
of this period. Consequently, the starting time of the job can
be no earlier than under first-fit, hence the longer delay. On
the other hand, min-TIP also searches first for the earliest idle
period starting after a job’s ready time. But unlike min-LIP, it
schedules the job at the end of this idle period; shifting the job
so that its completion time coincides with the end of the idle
period causes higher delay than min-LIP. The average delay
curve for the LACT algorithm lies between the corresponding
curves for min-LIP and min-TIP for most system load values
of interest. Note that the average delay for LACT increases
up to ρ = 0.4, at which point LACT losses start to accelerate
(refer to Figure 4). Beyond that point, average delay under
LACT starts to decrease; however, this behavior is a side effect
of the high losses incurred, rather than an indication of an
inherent quality of the algorithm.

Overall, the average delay values in Figure 6 are relatively
low, and correspond to a fraction of the mean job size x̄ = 3.28
for all algorithms. More importantly, average delay for the
three strategies of interest (i.e., first-fit, min-LIP, and min-TIP)
does not vary significantly with load, although it increases
slightly at high loads. One exception is the min-TIP strategy
which shows a moderate decrease in delay as ρ increases from
low to moderate values. This behavior can be explained as
follows. At low loads, min-TIP can find feasible idle periods
starting after the jobs’ ready time, and shifts the jobs to the
end of these idle periods incurring a relatively high delay. At
higher loads, on the other hand, and due to the relatively tight
deadlines, it becomes more difficult to find such idle periods.
In case of failure, min-TIP (similar to min-LIP) then searches
for feasible idle periods that start before the jobs’ ready time.
Since these idle periods start earlier, the average delay under
min-TIP tends to decrease with the load.

Figure 7 plots the fairness index, calculated by expres-
sion (1), against the system load. As we can see, the fairness
index of the LACT algorithm suffers a precipitous drop start-



Fig. 7. Fairness ratio vs. system load ρ, n = 20, x̄ = 3.28, q = 0.1

ing at ρ = 0.4, the point where its losses begin to accelerate.
This increase in unfairness is primarily due to the fact that
larger jobs experience a significantly larger drop probability
than smaller ones. The first-fit strategy is more fair than LACT,
but it starts being unfair to jobs of larger size at loads as
low as ρ = 0.4, compared to min-LIP and min-TIP; as a
result, its utilization of the system capacity starts suffering
from that point, as illustrated in Figure 5. The min-LIP and
min-TIP strategies, on the other hand, achieve fairness index
values close to 1 even at high system loads, with min-TIP
slightly outperforming min-LIP. The fact that min-LIP and
min-TIP remain fair across a wide range of load values is
an important property of these algorithms, and indicates that
they are capable of exploiting the idle periods in an effective
manner. Moreover, their ability to treat all jobs fairly implies
that users will not need to employ strategies such as splitting
a large job into several smaller ones, to avoid discrimination.
Note that such strategies impose an additional overhead to the
system in the form of additional memory usage (needed to
store the additional idle periods created) and higher running
time (due to the larger number of jobs requests, each request
needing to search a larger data structure).

In addition to providing insight into the relative behavior
of the four strategies due to the different optimization objec-
tives considered, Figures 4-7 illustrate that properly designed
scheduling algorithms can effectively overcome the obstacles
of capacity fragmentation to deliver high performance in
terms of metrics that reflect the requirements of both users
and service providers. Specifically, the min-LIP and min-
TIP algorithms cater to the user needs by ensuring that job
deadlines are met in a fair manner while keeping both loss
rates and average delay low; at the same time, they deliver high
system utilization, an important goal for service providers.

The next three Figures 8-9 illustrate the behavior of the
loss rate as we vary the values of three important system
parameters, namely, mean job size x̄, deadline tightness q, and
number of servers n, respectively; the other parameters in the
experiments take values as specified in the corresponding fig-
ure caption. Due to space constraints, we are unable to present
results for the other three performance metrics; however, when

appropriate, in our discussion below we address the effect of
the various system parameters on these metrics.

Figure 8 plots the loss rate for the four scheduling algo-
rithms against the mean job size for n = 20 servers and system
load ρ = 0.6. Min-LIP and min-TIP clearly outperform the
other two algorithms, and their loss rate remains well below
1% across the range of mean job size values shown in the
figure. In fact, mean job size has little effect on the loss rate for
these algorithms. We have also found that utilization remains
close to 60% for these two algorithms, and the fairness index
close to 1. First-fit has a higher loss rate, which increases
with the mean job size. Furthermore, we have found that
the unfairness of first-fit also increases with the mean job
size, to the degree that system utilization drops much more
than the loss rate suggests, and in fact, it drops below the
utilization of the LACT algorithm for x̄ > 6. Finally, the loss
rate of LACT is the highest, but it decreases as x̄ increases.
While this behavior may seem counter-intuitive, it can be
explained by noting that for constant load, increasing x̄ implies
a lower job arrival rate. Fewer job arrivals result in fewer idle
periods, hence a lower degree of fragmentation of the available
capacity. Since LACT performs worse with increasing degree
of fragmentation, its performance improves as the mean job
size increases.

In Figure 9 we plot the loss rate against the deadline
tightness q. Recall that the larger the value of parameter q,
the further in the future the deadline of each job lies, and the
more flexibility an algorithm has in scheduling jobs. As we
can see in the figure, the loss rate of the min-LIP and min-
TIP strategies decreases as the value of q increases from 0
(the case of immediate deadlines) to 0.1; after that point,
the loss rate remains at zero. The loss rate of first-fit also
decreases initially, and then remains low throughout the range
of values of q. This behavior indicates that these three policies,
which consider the idle periods when scheduling jobs, are
effective throughout the range of deadlines considered in our
study; their performance is affected, although not significantly,
only when deadlines are very “tight.” On the other hand, it
is evident that the LACT algorithm is very sensitive to the
tightness of the deadlines: its performance is poor when q is
small, but it improves dramatically as the value of q increases,
in which case the algorithm can push the starting time of
jobs further in the future without missing their deadlines. Of
course, this improvement in performance comes at the expense
of significantly higher delay (not shown here due to space
constraints).

Finally, Figure 10 plots the loss rate against the number n of
servers in the Grid. The relative behavior of the various curves
is similar to the one observed earlier: min-LIP and min-TIP
clearly outperform the other two strategies and have loss rates
close to zero at larger values of n, while LACT has by far the
worse performance. In general, the loss rate decreases with the
number of servers for all strategies, but shows a significant
improvement for LACT. This behavior can be explained by
noting that at constant load, as the number of servers increases,
the degree of fragmentation tends to decrease, hence the
performance of LACT improves. We also emphasize that the
loss rate for LACT is an order of magnitude higher than the
loss rates of either min-LIP or min-TIP throughout the values



of n used in this experiment.

VI. CONCLUDING REMARKS

We have applied techniques from computational geometry
to develop a suite of scheduling strategies that allocate re-
sources in a Grid environment using a range of optimiza-
tion criteria. We also presented efficient implementation of
the various algorithms that scale to large Grid systems. We
have presented results from extensive simulation experiments
to demonstrate that our algorithms are simultaneously user-
and system-centric: they are able to schedule resources to
meet the deadlines imposed by users and maximize system
utilization, while experiencing low job drop rates and low
delays. Our algorithms also allocate resources to users in a fair
manner. Our work provides a practical and efficient solution
to the problem of scheduling resources in the emerging highly
dynamic Grid environments.
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