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Abstract 

 
 

Main memory in many tera-scale systems requires tens of 
kilowatts of power. The resulting energy consumption 
increases system cost and the heat produced reduces reli-
ability. Emergent memory technologies will provide sys-
tems the ability to dynamically turn-on (online) and turn-
off (offline) memory devices at runtime. This technology, 
coupled with slack in memory demand, offers the poten-
tial for significant energy savings in clusters of servers. 
However, to realize these energy savings, OS-level mem-
ory allocation and management techniques must be modi-
fied to minimize the number of active memory devices 
while satisfying application demands.  We propose sev-
eral page shaping techniques and structural enhance-
ments to proactively and reactively direct allocations to a 
minimal number of devices. To evaluate these techniques 
on real systems, we implemented these shaping tech-
niques in the Linux kernel.  Experiments using our OS 
extensions coupled with a simple history-based heuristic 
(to track demand and control state transitions) yield up to 
60% energy savings with less than 1% performance loss 
for various benchmarks including lmbench and SPEC.1 
 

1. Introduction 

Scientific computing platforms are rapidly approaching 
petascale. Such systems may have thousands or tens of 
thousands of processors, tens or hundreds of terabytes of 
memory, and hundreds of petabytes of disk space [1]. The 
power consumption of petascale systems, therefore, will 
likely be tens to hundreds of megawatts, requiring spe-
cially designed facilities to house, cool, and power these 
systems. Power and cooling budgets may soon rival the 
cost of the hardware. 

A key design challenge for HPC is to reduce the power 
consumption of emergent systems while maintaining 
stringent performance constraints at reasonable cost. 
Processors typically account for the largest amount of 
power in a high-performance cluster, yet memory power 

                                                
1 1-4244-0910-1/07/$20.00 ©2007 IEEE 

is significant [3, 16]. For example, the IBM Bluegene at 
LLNL uses 32 terabytes of main memory that consume 
approximately 70 kilowatts of peak power. That’s a 
maximum of $1200 per week for memory energy alone 
excluding cooling costs. 

Several methods for reducing the power consumption 
of the processor have been proposed, such as DVS, DFS, 
and clock gating, [2]. These techniques all rely on the 
concept of slack in processor utilization for a given work-
load. When processor demand decreases, during I/O or 
network traffic for instance, the supply voltage or fre-
quency is decreased to conserve power. Numerous studies 
have shown that clever scheduling of low power modes 
during computationally slack periods results in reduced 
energy consumption with minimal performance loss. 

As in processor utilization, slack in system memory 
demand provides opportunities for energy savings in the 
memory subsystem through power-mode scheduling. The 
key to conserving energy in memory is to offline memory 
devices whenever possible without impacting perform-
ance.  During slack periods, if we minimize the number of 
online memory devices we reduce the total energy con-
sumption of the system.  However, to avoid degrading 
performance we must be able to adapt to increasing de-
mand by quickly turning on additional memory.  There-
fore, by dynamically adapting the amount of online sys-
tem memory according to workload demand, we can 
minimize the energy consumption of memory.   

Previous mechanisms for decreasing the power con-
sumption of the memory subsystem have been hardware-
centric and focused primarily on mobile devices [9, 15].  
Other approaches have extended the operating system 
scheduler to manage power state transitions through per-
process memory reference accounting [8]. Huang et al. 
leveraged NUMA memory management infrastructure to 
reduce memory energy consumption on a per-process 
basis [13]. Li et al. proposed control algorithms to reduce 
the energy consumption without hurting performance in 
memory hierarchies and disks [17]. 

Emergent memory technology provide systems with 
the ability to dynamically turn-on (onlining) and com-
pletely turn-off (offlining) memory devices at runtime 



[11]. Unfortunately, direct application of previous power-
aware memory approaches to onlining and offlining 
memory devices are problematic. First, a device can only 
be powered off if it contains no allocations. Since many 
operating systems do not support transparent page migra-
tion, this is not typically possible. Second, even with sup-
port for directed page migration, the performance-driven 
allocation policies of the OS may stripe data across de-
vices making offlining impractical since performance 
penalties will be severe. Third, monitoring memory usage 
per process to schedule device transitions is not scalable 
to HPC systems with tens of thousands of processes. 

In this paper, we address the problems of extending the 
operating system to support onlining and offlining mem-
ory devices for systems with dense memory topologies.  
Inspired by network traffic flow research, we propose 
several OS-level page allocation and management shap-
ing techniques to proactively and reactively direct alloca-
tions to a minimal number of devices.  We also review the 
structural changes necessary to enable memory to be 
onlined and offlined at runtime.  We extend the Linux 
operating system to support these shaping techniques and 
structural enhancements.  Using our kernel implementa-
tion on real systems, we evaluate the performance impact 
of our modifications against an unmodified kernel.  Ex-
periments using a simple history-based heuristic for con-
trolling the power state transitions of memory devices, 
our techniques yield up to 60% energy savings in memory 
with less than 1% performance loss.     

2. Structural Changes  

Collectively, the set of memory devices in a system 
forms the usable physical address space managed by op-
erating systems.  Due to electrical constraints, memory 
devices (e.g. DIMMs) are usually only added or removed 
when a system is powered off.  So from the OS perspec-
tive, the size of the physical address space or aggregate 
capacity of all memory devices is fixed at boot time.  Ac-
cordingly, memory related data structures within the ker-
nel have been traditionally designed to manage a fixed 
memory device set at runtime.  To reduce power con-
sumption, we modified these data structures to cope with 
transient memory devices, enabling devices to be easily 
onlined or offlined with minimal overhead.  This section 
highlights these changes.    

2.1 Traditional Page Frame Accounting 

Most operating systems use a frame table to track the 
state of usable page frames within the physical address 
space.  The frame table is generally organized as a con-
tiguous linear array such as the cmap in BSD [19], the 
Ram Tab in Nemesis [12], the resident page structure in 
Mach [20], and the memory map in Linux [10].  Because 
memory capacity is not expected to change at runtime, a 
statically sized frame table is used that covers the usable 
physical address space [4].  This simplifies the implemen-

tation of frame state lookup logic as the page frame num-
ber can be used as an index within the frame table.   

2.2 Mapping Page Frame Sets to Devices 

To effectively manage the power states of memory de-
vices we need to track and manage page frame allocations 
by device.   Since devices are mapped into the physical 
address space and frame tables are used to track frame 
state, we partition the traditional frame table into sets of 
frame tables, one for each power-manageable, memory 
device.   For example, in a system that has 8GB of system 
memory with a power-managed memory granularity of 
1GB (i.e. memory device size), the system-level frame 
table would be composed of eight 1GB page frame sets.   

By partitioning the frame table into discrete sets, we 
accomplish several objectives.  First, we gain the capabil-
ity of tracking page utilization of each memory device 
capable of being power managed; that is, we can easily 
discern how many frames are currently allocated or free 
by simply scanning individual frame tables.  Second, we 
do not waste memory on structures for memory devices 
that are offline.  If we offline a memory device, we can 
easily free the memory consumed by the associated frame 
table.  Since large frame tables can have a significant 
memory footprint [10], we minimize the spatial overhead 
of managing offline memory devices by only allocating 
sufficient space for online memory devices.  This maxi-
mizes the memory available for applications in any given 
memory configuration.  Third, each frame table may be 
dynamically sized to account for memory devices of any 
capacity or even multiple memory devices with interde-
pendent power states.     

3. Page Allocation Shaping  

To minimize the energy consumption of dense memory 
topologies, we need to be able to transition memory de-
vices into lower power states.  However, devices that sat-
isfy page allocations may not be transitioned into lower 
power states without incurring significant latencies upon 
subsequent accesses.  Because lower power states cause 
higher access latencies, the mapping of pages to frames 
becomes critical to performance.   

In this section, we first briefly discuss page frame allo-
cation in several operating systems and identify the chal-
lenges involved in transitioning memory devices into low 
power states.  We then propose and compare three ap-
proaches to aggregate page allocations to a minimal set of 
memory devices.     

3.1 Current Allocation Policies 

Most operating systems maintain several lists to track 
page frame state as memory demand changes. For exam-
ple, BSD variants use active, inactive, cached, and free 
lists [19], Solaris uses free and cache lists [18], and Linux 
uses active, inactive, and free lists [10]. Page frames trav-
erse the lists according to their state and reference fre-



quency. Using multiple lists for currently allocated page 
frames allows for further delineation between allocated 
types and has been the focus of memory management 
research for decades [5-7, 12, 14, 20, 21]. As evidenced 
by the lists used in these operating systems, page frames 
are fundamentally either allocated or free; thus for the 
purposes of our discussion we shall refer to page frames 
as being in one of these two states.   

Allocated page frames are those that are currently in 
use. These could include frames mapped into the address 
space of processes as a result of malloc allocations, 
frames used for I/O transfers or to hold file system data, 
or even those used for device drivers or kernel data struc-
tures. Once a frame is allocated it is removed from the 
pool of free frames and placed onto a list that tracks its 
state.  Allocated frames are returned to the free pool once 
explicitly freed or remain unreferenced for some interval.   

Frames are often not immediately moved to the free list 
based on the prediction the page will be referenced again 
in the future. For example, the buffer and page caches 
retain previously referenced pages in memory rather than 
flushing data and returning frames to the free lists.  By 
retaining pages in memory, future references are satisfied 
quickly by simply mapping the frame into the address 
space of the requesting process. Such in-memory caches 
improve performance for workloads that read or modify 
pages repeatedly. However, workloads with minimal file 
system I/O interaction, such as computationally-intensive 
scientific codes, do not tax these caches. For these work-
loads, these caches often consume significant memory 
and do not yield significant performance benefits.   

Controlling the allocation of all free page frames in the 
system is the responsibility of a frames allocator [12].  
When a page frame allocation request arrives, the frames 
allocator determines which page frame shall satisfy the 
request.  As page frames are continually allocated and 
freed by the frames allocator, a new allocation request 
may be satisfied from any valid region in the physical 
address space.   Since the location of each allocation is 
based on the dynamic memory allocation characteristics 
of all applications executing on the system preceding the 
arrival of the request, two back-to-back requests may be 
mapped to different memory devices.    

This behavior is evidenced by the binary buddy alloca-
tor used in Linux [10].  The buddy allocator maintains 
blocks of contiguous page frames by power-of-two size.  
Several lists are used to aggregate blocks of increasingly 
larger contiguous page frames.  When an allocation re-
quest arrives, the request size determines which lists will 
be searched to satisfy the request.  If the list with the op-
timal order is empty the next list of higher order is 
searched.  Assuming the next list is not empty, a free 
block (e.g. set of frames) is extracted from the list and 
split in half.  One half is used to satisfy the allocation 
request and the other half is moved to the next lower or-
der list.  As blocks are continuously allocated, partitioned, 
freed, and moved between lists, contiguous memory re-

gions become fragmented.  Since each list is unordered 
with respect to the address space, allocated frames are 
selected based solely on request arrival relative to previ-
ous allocation and free operations.  The effect of this sys-
tem is that allocated pages are scattered throughout the 
physical address space.  In the worst-case, all memory 
devices must be retained in a high power state even 
though only the capacity of a few devices is necessary to 
satisfy page demand.   

Figure 1a illustrates this scattering effect.  There are 8 
memory devices in this system, each containing 2 pages 
for a total of 16 pages. Consider an application that allo-
cates a total of 8 pages.  As a result of page faults, page 
frames are allocated individually at regular intervals, re-
sulting in the total allocation of 8 frames by the frames 
allocator.  In the pathological case the memory allocated 
to the application is scattered across the entire physical 
address space as depicted by the gray page frames.  Be-
cause of the distributed allocation pattern, all memory 
devices must be retained online even though page demand 
requires only half of the system’s capacity.   

Given this worst case page frame allocation pattern, we 
observe several potential solutions: 1) we could migrate 
pages from frames in sparsely populated memory devices 
to frames in more densely populated devices.  By con-
solidating frame allocation to a subset of memory devices, 
unused devices could be transitioned into low power 
states or even offlined.  In our above example, this would 
reduce the energy consumption of memory by 50% and 
preserve the existing performance without adding com-
plexity to the frames allocator.  However, on real systems 
we must consider allocation requests that may not be eas-
ily migrated, such as those used by device drivers for 
DMA operations.  2) We could dynamically direct page 
frame allocation requests to specific regions of physical 
memory based on the intended use of the page frame.  For 
example, if we knew a set of frames were going to be 
used for DMA, we could allocate frames from a memory 
device that we will never try to remove.  Similarly, we 
could direct user-level, dynamically allocated application 
page frames to regions that are more likely to be removed.  
3) We could combine the two approaches and proactively 
direct page frame allocation to specific regions as well as 
reactively migrate or swap out currently allocated pages 
in sparsely allocated devices.  The remainder of this sec-
tion discusses each of these alternatives.   

3.2 Reactive Shaping 

One approach to the allocation scattering problem is to 
preserve the allocation characteristics of the frames allo-
cator, but reactively compact allocated page frames into a 
subset of memory devices.  Figure 1 illustrates this ap-
proach.  Recall the upper half of the figure (1a) shows the 
worst case frame allocation scheme where pages are scat-
tered throughout devices.  Figure 1b shows page place-
ment after migration.   Prior to migration all devices were 
required to remain in a high-power state; however, after 



migration four devices (half of system capacity) may be 
offlined or transitioned into a lower power state.      

Migrating pages between devices is achieved through 
several steps.  First, a new page frame is allocated.  Then 
the page to be migrated is locked to prevent further access 
during migration.  The page is then copied to the new 
frame and all references to the old frame are adjusted to 
point to the new frame.  For example, for pages allocated 
by an application, the page table entry pointing to the old 
frame is updated to point to the new frame.  The page is 
then unlocked and the old frame is freed.   

Randomly moving pages between devices can be 
costly when devices contain many allocated page frames.  
For example, consider a system with two devices, each 
containing 1000 frames.  If 900 frames are currently allo-
cated on device 1 and only 50 frames are allocated in de-
vice 2, migrating pages from device 1 to device 2 would 
be suboptimal.  To minimize migration costs the pages on 
device 2 should be migrated to device 1.  Consequently, 
judicious control of page migration is required to mini-
mize overhead.       

To avoid this scenario, we scan each memory device to 
determine how many allocated frames each device con-
tains.  We then sort the devices to form two sets.  The first 
set is composed of devices that contain the fewest allo-
cated frames.  We migrate pages from these devices to 
devices in the second set, composed of devices with the 
most allocated page frames.     

Although theoretically, any page can be simply mi-
grated to a different frame on other device, real-system 
constraints may prevent some pages from being migrated.  
For example, pages used for DMA operations or perform-
ance-centric regions such as those that contain kernel text 
may incur significant performance penalties to migrate.  
Considering the first example, frames allocated by a de-
vice driver for DMA operations could be freed by tempo-
rarily disabling and subsequently restarting the device.  

However, if the system or application depends on the de-
vice for proper operation, such as a storage controller or 
network interface card, performance could be severely 
impacted while the device is being reinitialized.  Al-
though migration may be possible for all page frames, 
performance and reliability constraints often limit 
whether a page may be pragmatically migrated.   

In light of these real-world constraints, we further clas-
sify pages in terms of their potential for migration.  Many 
operating systems maintain per-page state information 
that indicates how the page is currently used.  We exploit 
this information to classify pages in terms of those that 
are pinned (P) and others that are easy to move (E).   
Pages classified as easy-to-move can almost always be 
moved on demand while pinned pages may never be 
movable.  Generally, pinned pages reduce the opportunity 
to minimize the number of online memory devices.  
These classifications also affect our groupings of memory 
devices as devices that contain pages that may not be 
moved will not be targets for page migration.   

After determining if the set of allocated pages residing 
on a memory device can be moved, we migrate sets of 
pages to other areas of the physical address space that 
map to other memory devices.  In essence, we dynami-
cally compact page utilization to a subset of the total 
number of devices when the number of allocated page 
frames is less than the total number of page frames.   

Figure 2a shows how this approach works using the 
same memory device configuration as figure 1.  In this 
example, the frame allocator has allocated page frames 
across 6 of the 8 devices. Gray frames contain allocated 
pages and white frames are unused. Allocated pages are 
further marked as P and E, for pinned and easy to move 
respectively.  While the frames allocator distributed page 
frame allocations across several memory devices, two 
memory devices, d1 and d7, have not been used to satisfy 
any allocations and can be immediately transitioned into a 
low power state.  However, since only 8 of 16 frames are 
currently allocated, we could optimally turn off 4 of the 
eight memory devices.   We use migration to move the 
page at frame 7 (an E page) to frame 11 as shown by the 
solid-line arrow, enabling us to turn off device d3.  Simi-
larly, we migrate the page at frame 9 to frame 1 (a P 
page) also shown by the solid-line arrow enabling us to 
turn off device d4.  Although we could have migrated our 
two example pages to any of the available free frames we 
attempt to move them to devices that have similar alloca-
tions.  This increases the chance of removing the device 
later.  However, because our approach only moves pages 
in a reactive manner and does not change how frames are 
allocated within the physical address space, collocating 
pages by type may be reversed at the next allocation.  For 
example, if after migrating the page in frame 7 to frame 
11, frame 6 is allocated to an E page, the page in frame 10 
is freed and then populated with a P page, then collocat-
ing the E page in frame 7 wouldn’t have been productive.    

Figure 1. The default allocation policy often
results in pages distributed throughout all de-
vices as shown in a).  After migration, pages 
are compacted into a minimal device set ena-
bling devices to be transitioned into lower 
power states as shown in b). After migration, 
actual page demand (50% of capacity) is satis-
fied from the minimal set of memory devices.  
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Instead of migrating pages, we could also free frames 
by paging pages to disk.   As shown in figure 2a rather 
than migrating the page at frame 7 we could have paged it 
out to disk.  We plan to explore that alternative in future 
work.    

3.3 Proactive Shaping 

An alternative approach to page migration is to proac-
tively direct the allocation of frames from specific devices 
based on the characteristics of the occupying page.  To 
direct allocations, we modify the frames allocator to man-
age frames in pools according to page type.  As before, 
we differentiate between P and E pages, and loosely di-
vide the online device set into two sets; one for E pages 
and one for P pages.  We also add flags to the allocation 
call interface to distinguish between the page types.  By 
requiring the requester to specify the page type, the 
frames allocator can direct the allocation to specific de-
vices.  For example, when an allocation request for a P 
page arrives, the frames allocator will allocate a frame 
from the P device set.  Similarly, when a request for an E 
page arrives, a frame from the E device set will be se-
lected.   

An example using proactive shaping is shown in figure 
3.  We divide the available set of frames into two sets, 
one for P pages and one for E pages.  As in previous ex-
amples, page demand is 50% of capacity, but we deter-
mine that only two pages are classified as P pages, while 
the remaining 6 allocation requests are for E pages.  We 
aggregate the allocated pages into the two frame sets 
when they are allocated, such that only the minimal de-
vice set is consumed by all allocation requests.  As a re-
sult, half of the memory capacity in the system may be 
transitioned into lower power states.  Since we performed 
the delineation at allocation time, page migration is not 
required.   
 
Limitations. Although proactive shaping avoids the over-
head of migration, it does have limitations.  For example, 
when unused devices are transitioned into lower power 
states (such as offline), the number of frames for each 
type of allocation is reduced. Since we segregate P pages 
from E pages and offlining devices creates artificial 
memory limitations, subsequent allocation requests for P 
pages may be satisfied from the E device set.  This condi-
tion can lead to fragmentation similar to that originally 
depicted in figure 1a.   

Figure 2b shows how this effect manifests.  Unlike fig-
ure 2a, we see the P pages and E pages are aggregated 
similar to figure 3.  However, we also see that device d2 
contains a page that would be better placed on device d1; 
similarly, we observe that there is only a single E page on 
devices d3 and d6.  If all these pages were migrated onto 
common devices, two additional devices could be transi-
tioned into lower power states.   
 

Implementation Details. For historical reasons, physical 
memory is coarsely grouped by zone in Linux [10]. How-
ever, many supporting architectures use only a subset of 
the available zones. Consequently, for this discussion we 
consider an architecture that primarily uses a single zone.  
Each zone uses a buddy system as the frame allocator to 
manage free page frames. To direct page frame allocation 
requests to specific memory devices by allocation type, 
we use two buddy systems: one for backing E pages and 
one for P pages. The free area list from which a frame is 
allocated is determined by checking a flag bit passed into 
the allocation request. Because this requires only one ad-
ditional bit-wise comparison and branch instruction, the 
overhead is trivial. We incorporated this allocation-time 
direction within the interface functions for allocating and 
freeing sets of page frames. All other aspects of the buddy 
allocation algorithm remain unchanged. 

Even though this approach minimizes the probability 
pinned pages will prevent memory removal, it does intro-
duce the possibility of a balancing problem between allo-
cation types. For example, if the number of free frames of 
either type becomes scarce, this could cause allocation 
failures for the requested type. To prevent this scenario, 
we allow for large contiguous areas to be transitioned 
from one buddy system to the depleted buddy system. If a 
page frame set is transitioned from buddy system for the 
E frame set to the P frame set, the capability of turning 
off the memory device may be compromised due to 
pinned pages. However, transferring frame sets between 
the two systems prevents artificial memory shortages 
solely because of the delineation between memory request 
types.   A side effect of this approach is a lower bound on 
the amount of memory that may be de-allocated. How-
ever, immovable kernel pages account for a small amount 

Figure 2. Comparison of three shaping ap-
proaches.  Reactive shaping uses page mi-
gration to aggregate pages onto the minimal 
device set.  Proactive shaping avoids migra-
tion costs by placing pages on the minimal 
number of devices at allocation time.  Hybrid 
shaping combines allocation time placement 
with page migration to aggregate pages onto 
the minimal device set.   
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of total physical memory and at least one memory device 
must remain powered on to maintain reasonable perform-
ance on any static or dynamic memory system. 

3.4 Hybrid Shaping 

To maximize energy efficiency we propose a third ap-
proach called hybrid shaping.  Hybrid shaping combines 
the allocation-time page placement of proactive shaping 
with the migration capability of reactive shaping.  Since 
proactive shaping directs allocations to devices with 
minimal overhead, the need for migration is minimized. 
However, as previously discussed, relying solely on pro-
active shaping can result in suboptimal allocations across 
devices over time.  Hybrid shaping uses reactive shaping 
to avoid these inefficiencies by periodically aggregating 
pages onto a minimal device set.   

Figure 2c shows how hybrid shaping work relative 
proactive and reactive shaping.  In this example, page 
demand is again 50% of system capacity (8 pages, 16 
frames).  We observe that allocation time placement has 
aggregated pages by type onto common devices with the 
exception of device d7.  Pragmatically, only the P page in 
device d1 and the E page resident in device d3 are candi-
dates for migration.  Because E pages are by definition 
easier to migrate than P pages, the page in frame 7 is 
moved to frame 2 on device d1.  Optionally, the page in 
frame 7 may also be paged out to disk; however, this may 
incur a performance penalty if the page is in active use.  
After migration half of system capacity may be transi-
tioned into a lower power state.   

4. Experimental Results  

We implemented all of the extensions discussed in the 
previous section in a 2.6 x86-64 version of the Linux ker-
nel on a recent Intel 64-bit SMP Xeon processor system 
with various amounts of memory.  For some of the ex-
periments our system contained 3GB.  In later experi-
ments we populated the system with 8GB of memory.  To 
evaluate our approach, we modified our operating system 
extensions slightly to emulate memory topologies by par-
titioning the physical address space into logical devices.  
In this way, we can experiment using memory devices of 

any granularity, within the limits of actual system mem-
ory capacity. Using emulation, we can evaluate the im-
pact of dynamically adjusting memory device states using 
the actual, real-time memory demand of various work-
loads. 

Due to space limitations, we only present energy and 
performance results using our hybrid approach.  Because 
hybrid shaping is a combination of proactive and reactive 
shaping techniques, the proactive page placement is inte-
grated into the page allocation process.  However, in our 
implementation page migration is only triggered when a 
device is offlined by a system-level controller.  So, we 
implemented a root-privileged, application-level daemon 
using a simple history-based heuristic to monitor page 
demand and control the power state of all memory de-
vices.  

4.1  lmbench Results 

For our first evaluation we configured lmbench to run 
the OS-centric set of benchmarks, including the memory-
intensive bandwidth codes, to stress our page allocation 
and migration modifications.  Each run was configured to 
execute the same codes with the same amount of memory.  
Additionally, we configured lmbench to use a subset of 
total memory in the system.  We ensure the page demand 
of lmbench is in-core to evaluate page migration.   

Our controller uses observed page demand to predict 
the number of online memory devices required.  Specifi-
cally, we retain a configurable number of prior observa-
tions (10-20) and use those to predict when to offline de-
vices.  To ensure a sufficient number of devices were 
available to satisfy sudden increases in demand, we re-
tained additional devices online beyond the optimal num-
ber of devices.  Consequently, the control application 
aggressively on-lines additional devices when demand 
increases and off-lines devices only when the number of 
online devices is greater than any of the observations re-
tained in the recent history buffer.   

Figure 4 plots memory demand and online memory as 
directed by the controller.  For this experiment, we first 
started the controller, after which we started lmbench. 
At the beginning of the run all memory devices are online 
and available.  After starting the controller, devices are 
incrementally off-lined to conserve energy due to low 
memory demand.  When lmbench starts there is a spike in 
memory demand which causes the controller to online 
additional memory devices quickly, preventing paging.  
During the initial execution phase, memory demand re-
mains near constant, but then oscillates towards the end.  
However, because we are using a simplistic history-based 
heuristic to control power state transitions, some effi-
ciency is lost as noted by the gap between online memory 
and actual memory demand.  We plan to investigate alter-
native control policies in future work.  Despite this effi-
ciency gap, retaining additional memory online preserves 
performance and still reduces energy consumption. For 

Figure 3. Proactive shaping aggregates pages 
onto a minimal number of devices at allocation 
time, avoiding migration overhead. Using pro-
active shaping, actual page demand (50% of 
capacity) is satisfied from a minimal set of 
memory devices.  
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this experiment, using the hybrid shaping, the controller 
achieved 56.26% energy savings within the memory sub-
system, largely attributable to the limited memory de-
mand of lmbench.   

We also ran lmbench against an unmodified base ker-
nel to characterize the performance implications of our 
changes.  For nearly all of the specific codes, there was no 
discernable difference.  The only observable differences 
were in the memory bandwidth codes.  Figure 5 compares 
the bandwidth results of the memory intensive lmbench 
codes of our kernel modified to include hybrid shaping 
and a base kernel. There was less than a 1% difference as 
a result of our changes.   

4.2 SPEC CPU2000 Results 

We also experimented using the SPEC CPU2000 
benchmarks.  In this case, our system was populated with 
8GB of memory.  Figure 6 shows how memory devices 
are dynamically scaled to meet memory demand of the 
SPEC benchmarks using our history-based heuristic.  Ini-
tially, the full 8GB memory capacity was online and 
available for use; however, because the SPEC bench-
marks do not require significant memory, the controller 

offlined most of the unnecessary memory devices as also 
shown in figure 4.  Thus, we have omitted the first 5 min-
utes of the trace in figure 6.   

As shown, systemic memory demand increases when 
SPEC is started and additional devices are onlined to meet 
the demand.  The memory demand of the benchmarks 
oscillates slightly while executing but never exceeds 
about 400MB.  In this case, a total of about 512MB is 
more than sufficient to satisfy the demand of all the SPEC 
benchmarks while executing. Once the benchmarks com-
plete executing, the number of online memory devices is 
further minimized.   This resulted in 81.25% energy sav-
ings within the memory subsystem.   Our energy savings 
are significant using SPEC codes due to the low memory 
demand relative to system capacity.  As before, we also 
ran the SPEC benchmarks on an unmodified base kernel 
to characterize the performance implications of our 
changes. Figure 7 shows the performance of several 
SPEC codes using our kernel with hybrid shaping normal-
ized to the base kernel. The performance loss for these 
codes is maximally about 1%.   
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Figure 4.  Online memory scaling using hy-
brid page shaping and simple heuristics while 
running lmbench.  The lower line is the actual 
memory demand observed and the upper line 
constitutes the online memory device set 
which closely tracks memory demand and 
reduces energy consumption of memory.   
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Figure 7. Performance result comparison of 
SPEC CPU2000 codes with our kernel modi-
fied to use hybrid page shaping and an un-
modified base kernel.  For all codes, there is 
less than 1% difference.     

Figure 5. Performance result comparison of 
lmbench codes with our kernel modified to 
use hybrid page shaping and an unmodified 
base kernel.  For all codes, there is less than 
1% difference.     

Figure 6. Online memory scaling using hybrid 
page shaping and simple heuristics while 
running SPEC CPU2000 benchmarks.  The 
lower line shows actual memory demand and 
the upper line shows online memory which is 
adjusted based on memory demand.     



5. Conclusions 

We have quantified the performance and energy for 
several workloads using a kernel with hybrid page shap-
ing and shown that there are significant opportunities to 
minimize energy consumption on large systems by taking 
advantage of variable slack in system memory demand. 
By combining proactive page placement at allocation time 
and reactive page migration on demand, we achieved sig-
nificant energy savings (56% for lmbench and 81% for 
SPEC) with less than 1% performance penalty. Applying 
these techniques on large memory-dense systems could 
yield significant cost savings by dynamically scaling 
online memory based on actual memory demand. 

Finally, there is significant work we plan to do on this 
subject. For example, we want to explore the role of pag-
ing to disk in power-aware memory, as it is clear there 
will be active pages that will not be used for long periods. 
We also plan to study the tradeoffs for using alternative 
controllers to monitor page demand and direct the power 
state transitions of memory devices.   Further, we want to 
study the impact of device off-lining granularity and 
memory interleaving on controller design. Another study 
we hope to conduct is implementation of our controllers 
in hardware. 
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