

An Implementation of Page Allocation Shaping for Energy Efficiency

Matthew E. Tolentino, Joseph Turner, and Kirk W. Cameron

Department of Computer Science
Virginia Polytechnic Institute and State University

2200 Kraft Drive, Blacksburg, VA, 24060
{metolent, turnerj9, cameron}@cs.vt.edu

Abstract

Main memory in many tera-scale systems requires tens of
kilowatts of power. The resulting energy consumption
increases system cost and the heat produced reduces reli-
ability. Emergent memory technologies will provide sys-
tems the ability to dynamically turn-on (online) and turn-
off (offline) memory devices at runtime. This technology,
coupled with slack in memory demand, offers the poten-
tial for significant energy savings in clusters of servers.
However, to realize these energy savings, OS-level mem-
ory allocation and management techniques must be modi-
fied to minimize the number of active memory devices
while satisfying application demands. We propose sev-
eral page shaping techniques and structural enhance-
ments to proactively and reactively direct allocations to a
minimal number of devices. To evaluate these techniques
on real systems, we implemented these shaping tech-
niques in the Linux kernel. Experiments using our OS
extensions coupled with a simple history-based heuristic
(to track demand and control state transitions) yield up to
60% energy savings with less than 1% performance loss
for various benchmarks including lmbench and SPEC.1

1. Introduction

Scientific computing platforms are rapidly approaching
petascale. Such systems may have thousands or tens of
thousands of processors, tens or hundreds of terabytes of
memory, and hundreds of petabytes of disk space [1]. The
power consumption of petascale systems, therefore, will
likely be tens to hundreds of megawatts, requiring spe-
cially designed facilities to house, cool, and power these
systems. Power and cooling budgets may soon rival the
cost of the hardware.

A key design challenge for HPC is to reduce the power
consumption of emergent systems while maintaining
stringent performance constraints at reasonable cost.
Processors typically account for the largest amount of
power in a high-performance cluster, yet memory power

1 1-4244-0910-1/07/$20.00 ©2007 IEEE

is significant [3, 16]. For example, the IBM Bluegene at
LLNL uses 32 terabytes of main memory that consume
approximately 70 kilowatts of peak power. That’s a
maximum of $1200 per week for memory energy alone
excluding cooling costs.

Several methods for reducing the power consumption
of the processor have been proposed, such as DVS, DFS,
and clock gating, [2]. These techniques all rely on the
concept of slack in processor utilization for a given work-
load. When processor demand decreases, during I/O or
network traffic for instance, the supply voltage or fre-
quency is decreased to conserve power. Numerous studies
have shown that clever scheduling of low power modes
during computationally slack periods results in reduced
energy consumption with minimal performance loss.

As in processor utilization, slack in system memory
demand provides opportunities for energy savings in the
memory subsystem through power-mode scheduling. The
key to conserving energy in memory is to offline memory
devices whenever possible without impacting perform-
ance. During slack periods, if we minimize the number of
online memory devices we reduce the total energy con-
sumption of the system. However, to avoid degrading
performance we must be able to adapt to increasing de-
mand by quickly turning on additional memory. There-
fore, by dynamically adapting the amount of online sys-
tem memory according to workload demand, we can
minimize the energy consumption of memory.

Previous mechanisms for decreasing the power con-
sumption of the memory subsystem have been hardware-
centric and focused primarily on mobile devices [9, 15].
Other approaches have extended the operating system
scheduler to manage power state transitions through per-
process memory reference accounting [8]. Huang et al.
leveraged NUMA memory management infrastructure to
reduce memory energy consumption on a per-process
basis [13]. Li et al. proposed control algorithms to reduce
the energy consumption without hurting performance in
memory hierarchies and disks [17].

Emergent memory technology provide systems with
the ability to dynamically turn-on (onlining) and com-
pletely turn-off (offlining) memory devices at runtime

[11]. Unfortunately, direct application of previous power-
aware memory approaches to onlining and offlining
memory devices are problematic. First, a device can only
be powered off if it contains no allocations. Since many
operating systems do not support transparent page migra-
tion, this is not typically possible. Second, even with sup-
port for directed page migration, the performance-driven
allocation policies of the OS may stripe data across de-
vices making offlining impractical since performance
penalties will be severe. Third, monitoring memory usage
per process to schedule device transitions is not scalable
to HPC systems with tens of thousands of processes.

In this paper, we address the problems of extending the
operating system to support onlining and offlining mem-
ory devices for systems with dense memory topologies.
Inspired by network traffic flow research, we propose
several OS-level page allocation and management shap-
ing techniques to proactively and reactively direct alloca-
tions to a minimal number of devices. We also review the
structural changes necessary to enable memory to be
onlined and offlined at runtime. We extend the Linux
operating system to support these shaping techniques and
structural enhancements. Using our kernel implementa-
tion on real systems, we evaluate the performance impact
of our modifications against an unmodified kernel. Ex-
periments using a simple history-based heuristic for con-
trolling the power state transitions of memory devices,
our techniques yield up to 60% energy savings in memory
with less than 1% performance loss.

2. Structural Changes

Collectively, the set of memory devices in a system
forms the usable physical address space managed by op-
erating systems. Due to electrical constraints, memory
devices (e.g. DIMMs) are usually only added or removed
when a system is powered off. So from the OS perspec-
tive, the size of the physical address space or aggregate
capacity of all memory devices is fixed at boot time. Ac-
cordingly, memory related data structures within the ker-
nel have been traditionally designed to manage a fixed
memory device set at runtime. To reduce power con-
sumption, we modified these data structures to cope with
transient memory devices, enabling devices to be easily
onlined or offlined with minimal overhead. This section
highlights these changes.

2.1 Traditional Page Frame Accounting

Most operating systems use a frame table to track the
state of usable page frames within the physical address
space. The frame table is generally organized as a con-
tiguous linear array such as the cmap in BSD [19], the
Ram Tab in Nemesis [12], the resident page structure in
Mach [20], and the memory map in Linux [10]. Because
memory capacity is not expected to change at runtime, a
statically sized frame table is used that covers the usable
physical address space [4]. This simplifies the implemen-

tation of frame state lookup logic as the page frame num-
ber can be used as an index within the frame table.

2.2 Mapping Page Frame Sets to Devices

To effectively manage the power states of memory de-
vices we need to track and manage page frame allocations
by device. Since devices are mapped into the physical
address space and frame tables are used to track frame
state, we partition the traditional frame table into sets of
frame tables, one for each power-manageable, memory
device. For example, in a system that has 8GB of system
memory with a power-managed memory granularity of
1GB (i.e. memory device size), the system-level frame
table would be composed of eight 1GB page frame sets.

By partitioning the frame table into discrete sets, we
accomplish several objectives. First, we gain the capabil-
ity of tracking page utilization of each memory device
capable of being power managed; that is, we can easily
discern how many frames are currently allocated or free
by simply scanning individual frame tables. Second, we
do not waste memory on structures for memory devices
that are offline. If we offline a memory device, we can
easily free the memory consumed by the associated frame
table. Since large frame tables can have a significant
memory footprint [10], we minimize the spatial overhead
of managing offline memory devices by only allocating
sufficient space for online memory devices. This maxi-
mizes the memory available for applications in any given
memory configuration. Third, each frame table may be
dynamically sized to account for memory devices of any
capacity or even multiple memory devices with interde-
pendent power states.

3. Page Allocation Shaping

To minimize the energy consumption of dense memory
topologies, we need to be able to transition memory de-
vices into lower power states. However, devices that sat-
isfy page allocations may not be transitioned into lower
power states without incurring significant latencies upon
subsequent accesses. Because lower power states cause
higher access latencies, the mapping of pages to frames
becomes critical to performance.

In this section, we first briefly discuss page frame allo-
cation in several operating systems and identify the chal-
lenges involved in transitioning memory devices into low
power states. We then propose and compare three ap-
proaches to aggregate page allocations to a minimal set of
memory devices.

3.1 Current Allocation Policies

Most operating systems maintain several lists to track
page frame state as memory demand changes. For exam-
ple, BSD variants use active, inactive, cached, and free
lists [19], Solaris uses free and cache lists [18], and Linux
uses active, inactive, and free lists [10]. Page frames trav-
erse the lists according to their state and reference fre-

quency. Using multiple lists for currently allocated page
frames allows for further delineation between allocated
types and has been the focus of memory management
research for decades [5-7, 12, 14, 20, 21]. As evidenced
by the lists used in these operating systems, page frames
are fundamentally either allocated or free; thus for the
purposes of our discussion we shall refer to page frames
as being in one of these two states.

Allocated page frames are those that are currently in
use. These could include frames mapped into the address
space of processes as a result of malloc allocations,
frames used for I/O transfers or to hold file system data,
or even those used for device drivers or kernel data struc-
tures. Once a frame is allocated it is removed from the
pool of free frames and placed onto a list that tracks its
state. Allocated frames are returned to the free pool once
explicitly freed or remain unreferenced for some interval.

Frames are often not immediately moved to the free list
based on the prediction the page will be referenced again
in the future. For example, the buffer and page caches
retain previously referenced pages in memory rather than
flushing data and returning frames to the free lists. By
retaining pages in memory, future references are satisfied
quickly by simply mapping the frame into the address
space of the requesting process. Such in-memory caches
improve performance for workloads that read or modify
pages repeatedly. However, workloads with minimal file
system I/O interaction, such as computationally-intensive
scientific codes, do not tax these caches. For these work-
loads, these caches often consume significant memory
and do not yield significant performance benefits.

Controlling the allocation of all free page frames in the
system is the responsibility of a frames allocator [12].
When a page frame allocation request arrives, the frames
allocator determines which page frame shall satisfy the
request. As page frames are continually allocated and
freed by the frames allocator, a new allocation request
may be satisfied from any valid region in the physical
address space. Since the location of each allocation is
based on the dynamic memory allocation characteristics
of all applications executing on the system preceding the
arrival of the request, two back-to-back requests may be
mapped to different memory devices.

This behavior is evidenced by the binary buddy alloca-
tor used in Linux [10]. The buddy allocator maintains
blocks of contiguous page frames by power-of-two size.
Several lists are used to aggregate blocks of increasingly
larger contiguous page frames. When an allocation re-
quest arrives, the request size determines which lists will
be searched to satisfy the request. If the list with the op-
timal order is empty the next list of higher order is
searched. Assuming the next list is not empty, a free
block (e.g. set of frames) is extracted from the list and
split in half. One half is used to satisfy the allocation
request and the other half is moved to the next lower or-
der list. As blocks are continuously allocated, partitioned,
freed, and moved between lists, contiguous memory re-

gions become fragmented. Since each list is unordered
with respect to the address space, allocated frames are
selected based solely on request arrival relative to previ-
ous allocation and free operations. The effect of this sys-
tem is that allocated pages are scattered throughout the
physical address space. In the worst-case, all memory
devices must be retained in a high power state even
though only the capacity of a few devices is necessary to
satisfy page demand.

Figure 1a illustrates this scattering effect. There are 8
memory devices in this system, each containing 2 pages
for a total of 16 pages. Consider an application that allo-
cates a total of 8 pages. As a result of page faults, page
frames are allocated individually at regular intervals, re-
sulting in the total allocation of 8 frames by the frames
allocator. In the pathological case the memory allocated
to the application is scattered across the entire physical
address space as depicted by the gray page frames. Be-
cause of the distributed allocation pattern, all memory
devices must be retained online even though page demand
requires only half of the system’s capacity.

Given this worst case page frame allocation pattern, we
observe several potential solutions: 1) we could migrate
pages from frames in sparsely populated memory devices
to frames in more densely populated devices. By con-
solidating frame allocation to a subset of memory devices,
unused devices could be transitioned into low power
states or even offlined. In our above example, this would
reduce the energy consumption of memory by 50% and
preserve the existing performance without adding com-
plexity to the frames allocator. However, on real systems
we must consider allocation requests that may not be eas-
ily migrated, such as those used by device drivers for
DMA operations. 2) We could dynamically direct page
frame allocation requests to specific regions of physical
memory based on the intended use of the page frame. For
example, if we knew a set of frames were going to be
used for DMA, we could allocate frames from a memory
device that we will never try to remove. Similarly, we
could direct user-level, dynamically allocated application
page frames to regions that are more likely to be removed.
3) We could combine the two approaches and proactively
direct page frame allocation to specific regions as well as
reactively migrate or swap out currently allocated pages
in sparsely allocated devices. The remainder of this sec-
tion discusses each of these alternatives.

3.2 Reactive Shaping

One approach to the allocation scattering problem is to
preserve the allocation characteristics of the frames allo-
cator, but reactively compact allocated page frames into a
subset of memory devices. Figure 1 illustrates this ap-
proach. Recall the upper half of the figure (1a) shows the
worst case frame allocation scheme where pages are scat-
tered throughout devices. Figure 1b shows page place-
ment after migration. Prior to migration all devices were
required to remain in a high-power state; however, after

migration four devices (half of system capacity) may be
offlined or transitioned into a lower power state.

Migrating pages between devices is achieved through
several steps. First, a new page frame is allocated. Then
the page to be migrated is locked to prevent further access
during migration. The page is then copied to the new
frame and all references to the old frame are adjusted to
point to the new frame. For example, for pages allocated
by an application, the page table entry pointing to the old
frame is updated to point to the new frame. The page is
then unlocked and the old frame is freed.

Randomly moving pages between devices can be
costly when devices contain many allocated page frames.
For example, consider a system with two devices, each
containing 1000 frames. If 900 frames are currently allo-
cated on device 1 and only 50 frames are allocated in de-
vice 2, migrating pages from device 1 to device 2 would
be suboptimal. To minimize migration costs the pages on
device 2 should be migrated to device 1. Consequently,
judicious control of page migration is required to mini-
mize overhead.

To avoid this scenario, we scan each memory device to
determine how many allocated frames each device con-
tains. We then sort the devices to form two sets. The first
set is composed of devices that contain the fewest allo-
cated frames. We migrate pages from these devices to
devices in the second set, composed of devices with the
most allocated page frames.

Although theoretically, any page can be simply mi-
grated to a different frame on other device, real-system
constraints may prevent some pages from being migrated.
For example, pages used for DMA operations or perform-
ance-centric regions such as those that contain kernel text
may incur significant performance penalties to migrate.
Considering the first example, frames allocated by a de-
vice driver for DMA operations could be freed by tempo-
rarily disabling and subsequently restarting the device.

However, if the system or application depends on the de-
vice for proper operation, such as a storage controller or
network interface card, performance could be severely
impacted while the device is being reinitialized. Al-
though migration may be possible for all page frames,
performance and reliability constraints often limit
whether a page may be pragmatically migrated.

In light of these real-world constraints, we further clas-
sify pages in terms of their potential for migration. Many
operating systems maintain per-page state information
that indicates how the page is currently used. We exploit
this information to classify pages in terms of those that
are pinned (P) and others that are easy to move (E).
Pages classified as easy-to-move can almost always be
moved on demand while pinned pages may never be
movable. Generally, pinned pages reduce the opportunity
to minimize the number of online memory devices.
These classifications also affect our groupings of memory
devices as devices that contain pages that may not be
moved will not be targets for page migration.

After determining if the set of allocated pages residing
on a memory device can be moved, we migrate sets of
pages to other areas of the physical address space that
map to other memory devices. In essence, we dynami-
cally compact page utilization to a subset of the total
number of devices when the number of allocated page
frames is less than the total number of page frames.

Figure 2a shows how this approach works using the
same memory device configuration as figure 1. In this
example, the frame allocator has allocated page frames
across 6 of the 8 devices. Gray frames contain allocated
pages and white frames are unused. Allocated pages are
further marked as P and E, for pinned and easy to move
respectively. While the frames allocator distributed page
frame allocations across several memory devices, two
memory devices, d1 and d7, have not been used to satisfy
any allocations and can be immediately transitioned into a
low power state. However, since only 8 of 16 frames are
currently allocated, we could optimally turn off 4 of the
eight memory devices. We use migration to move the
page at frame 7 (an E page) to frame 11 as shown by the
solid-line arrow, enabling us to turn off device d3. Simi-
larly, we migrate the page at frame 9 to frame 1 (a P
page) also shown by the solid-line arrow enabling us to
turn off device d4. Although we could have migrated our
two example pages to any of the available free frames we
attempt to move them to devices that have similar alloca-
tions. This increases the chance of removing the device
later. However, because our approach only moves pages
in a reactive manner and does not change how frames are
allocated within the physical address space, collocating
pages by type may be reversed at the next allocation. For
example, if after migrating the page in frame 7 to frame
11, frame 6 is allocated to an E page, the page in frame 10
is freed and then populated with a P page, then collocat-
ing the E page in frame 7 wouldn’t have been productive.

Figure 1. The default allocation policy often
results in pages distributed throughout all de-
vices as shown in a). After migration, pages
are compacted into a minimal device set ena-
bling devices to be transitioned into lower
power states as shown in b). After migration,
actual page demand (50% of capacity) is satis-
fied from the minimal set of memory devices.

0 1 3 4 10 11 12 13 14 1587652

d0 d1 d2 d5d3 d4 d7d6

page frame

memory device

Application

9

Free Allocated

0 1 3 4 10 11 12 13 14 1587652

d0 d1 d2 d5d3 d4 d7d6

page frame

memory device

9

Compaction/migration

b) After compaction

a) Default frame allocation

Instead of migrating pages, we could also free frames
by paging pages to disk. As shown in figure 2a rather
than migrating the page at frame 7 we could have paged it
out to disk. We plan to explore that alternative in future
work.

3.3 Proactive Shaping

An alternative approach to page migration is to proac-
tively direct the allocation of frames from specific devices
based on the characteristics of the occupying page. To
direct allocations, we modify the frames allocator to man-
age frames in pools according to page type. As before,
we differentiate between P and E pages, and loosely di-
vide the online device set into two sets; one for E pages
and one for P pages. We also add flags to the allocation
call interface to distinguish between the page types. By
requiring the requester to specify the page type, the
frames allocator can direct the allocation to specific de-
vices. For example, when an allocation request for a P
page arrives, the frames allocator will allocate a frame
from the P device set. Similarly, when a request for an E
page arrives, a frame from the E device set will be se-
lected.

An example using proactive shaping is shown in figure
3. We divide the available set of frames into two sets,
one for P pages and one for E pages. As in previous ex-
amples, page demand is 50% of capacity, but we deter-
mine that only two pages are classified as P pages, while
the remaining 6 allocation requests are for E pages. We
aggregate the allocated pages into the two frame sets
when they are allocated, such that only the minimal de-
vice set is consumed by all allocation requests. As a re-
sult, half of the memory capacity in the system may be
transitioned into lower power states. Since we performed
the delineation at allocation time, page migration is not
required.

Limitations. Although proactive shaping avoids the over-
head of migration, it does have limitations. For example,
when unused devices are transitioned into lower power
states (such as offline), the number of frames for each
type of allocation is reduced. Since we segregate P pages
from E pages and offlining devices creates artificial
memory limitations, subsequent allocation requests for P
pages may be satisfied from the E device set. This condi-
tion can lead to fragmentation similar to that originally
depicted in figure 1a.

Figure 2b shows how this effect manifests. Unlike fig-
ure 2a, we see the P pages and E pages are aggregated
similar to figure 3. However, we also see that device d2
contains a page that would be better placed on device d1;
similarly, we observe that there is only a single E page on
devices d3 and d6. If all these pages were migrated onto
common devices, two additional devices could be transi-
tioned into lower power states.

Implementation Details. For historical reasons, physical
memory is coarsely grouped by zone in Linux [10]. How-
ever, many supporting architectures use only a subset of
the available zones. Consequently, for this discussion we
consider an architecture that primarily uses a single zone.
Each zone uses a buddy system as the frame allocator to
manage free page frames. To direct page frame allocation
requests to specific memory devices by allocation type,
we use two buddy systems: one for backing E pages and
one for P pages. The free area list from which a frame is
allocated is determined by checking a flag bit passed into
the allocation request. Because this requires only one ad-
ditional bit-wise comparison and branch instruction, the
overhead is trivial. We incorporated this allocation-time
direction within the interface functions for allocating and
freeing sets of page frames. All other aspects of the buddy
allocation algorithm remain unchanged.

Even though this approach minimizes the probability
pinned pages will prevent memory removal, it does intro-
duce the possibility of a balancing problem between allo-
cation types. For example, if the number of free frames of
either type becomes scarce, this could cause allocation
failures for the requested type. To prevent this scenario,
we allow for large contiguous areas to be transitioned
from one buddy system to the depleted buddy system. If a
page frame set is transitioned from buddy system for the
E frame set to the P frame set, the capability of turning
off the memory device may be compromised due to
pinned pages. However, transferring frame sets between
the two systems prevents artificial memory shortages
solely because of the delineation between memory request
types. A side effect of this approach is a lower bound on
the amount of memory that may be de-allocated. How-
ever, immovable kernel pages account for a small amount

Figure 2. Comparison of three shaping ap-
proaches. Reactive shaping uses page mi-
gration to aggregate pages onto the minimal
device set. Proactive shaping avoids migra-
tion costs by placing pages on the minimal
number of devices at allocation time. Hybrid
shaping combines allocation time placement
with page migration to aggregate pages onto
the minimal device set.

E E

PEEP P P

E EPP P

E PP

E

E

EE

P

P E

P

0 1 3 4 109 11 12 13 14 1587652

0 1 3 4 9 10 11 12 13 14 1587652

0 1 3 4 9 10 11 12 13 14 1587652

d0 d1 d2 d5d3 d4 d7d6

d0 d1 d2 d5d3 d4 d7d6

d0 d1 d2 d5d3 d4 d7d6

page frame

page frame

page frame

memory device

memory device

memory device

c.) Hybrid Shaping:

b.) Proactive Shaping:

a.) Reactive Shaping:

disk

disk

disk

Free Allocated

of total physical memory and at least one memory device
must remain powered on to maintain reasonable perform-
ance on any static or dynamic memory system.

3.4 Hybrid Shaping

To maximize energy efficiency we propose a third ap-
proach called hybrid shaping. Hybrid shaping combines
the allocation-time page placement of proactive shaping
with the migration capability of reactive shaping. Since
proactive shaping directs allocations to devices with
minimal overhead, the need for migration is minimized.
However, as previously discussed, relying solely on pro-
active shaping can result in suboptimal allocations across
devices over time. Hybrid shaping uses reactive shaping
to avoid these inefficiencies by periodically aggregating
pages onto a minimal device set.

Figure 2c shows how hybrid shaping work relative
proactive and reactive shaping. In this example, page
demand is again 50% of system capacity (8 pages, 16
frames). We observe that allocation time placement has
aggregated pages by type onto common devices with the
exception of device d7. Pragmatically, only the P page in
device d1 and the E page resident in device d3 are candi-
dates for migration. Because E pages are by definition
easier to migrate than P pages, the page in frame 7 is
moved to frame 2 on device d1. Optionally, the page in
frame 7 may also be paged out to disk; however, this may
incur a performance penalty if the page is in active use.
After migration half of system capacity may be transi-
tioned into a lower power state.

4. Experimental Results

We implemented all of the extensions discussed in the
previous section in a 2.6 x86-64 version of the Linux ker-
nel on a recent Intel 64-bit SMP Xeon processor system
with various amounts of memory. For some of the ex-
periments our system contained 3GB. In later experi-
ments we populated the system with 8GB of memory. To
evaluate our approach, we modified our operating system
extensions slightly to emulate memory topologies by par-
titioning the physical address space into logical devices.
In this way, we can experiment using memory devices of

any granularity, within the limits of actual system mem-
ory capacity. Using emulation, we can evaluate the im-
pact of dynamically adjusting memory device states using
the actual, real-time memory demand of various work-
loads.

Due to space limitations, we only present energy and
performance results using our hybrid approach. Because
hybrid shaping is a combination of proactive and reactive
shaping techniques, the proactive page placement is inte-
grated into the page allocation process. However, in our
implementation page migration is only triggered when a
device is offlined by a system-level controller. So, we
implemented a root-privileged, application-level daemon
using a simple history-based heuristic to monitor page
demand and control the power state of all memory de-
vices.

4.1 lmbench Results

For our first evaluation we configured lmbench to run
the OS-centric set of benchmarks, including the memory-
intensive bandwidth codes, to stress our page allocation
and migration modifications. Each run was configured to
execute the same codes with the same amount of memory.
Additionally, we configured lmbench to use a subset of
total memory in the system. We ensure the page demand
of lmbench is in-core to evaluate page migration.

Our controller uses observed page demand to predict
the number of online memory devices required. Specifi-
cally, we retain a configurable number of prior observa-
tions (10-20) and use those to predict when to offline de-
vices. To ensure a sufficient number of devices were
available to satisfy sudden increases in demand, we re-
tained additional devices online beyond the optimal num-
ber of devices. Consequently, the control application
aggressively on-lines additional devices when demand
increases and off-lines devices only when the number of
online devices is greater than any of the observations re-
tained in the recent history buffer.

Figure 4 plots memory demand and online memory as
directed by the controller. For this experiment, we first
started the controller, after which we started lmbench.
At the beginning of the run all memory devices are online
and available. After starting the controller, devices are
incrementally off-lined to conserve energy due to low
memory demand. When lmbench starts there is a spike in
memory demand which causes the controller to online
additional memory devices quickly, preventing paging.
During the initial execution phase, memory demand re-
mains near constant, but then oscillates towards the end.
However, because we are using a simplistic history-based
heuristic to control power state transitions, some effi-
ciency is lost as noted by the gap between online memory
and actual memory demand. We plan to investigate alter-
native control policies in future work. Despite this effi-
ciency gap, retaining additional memory online preserves
performance and still reduces energy consumption. For

Figure 3. Proactive shaping aggregates pages
onto a minimal number of devices at allocation
time, avoiding migration overhead. Using pro-
active shaping, actual page demand (50% of
capacity) is satisfied from a minimal set of
memory devices.

Free Allocated

P EEP E E E E

0 1 3 4 10 11 12 13 14 1587652

d0 d1 d2 d5d3 d4 d7d6

page frame

memory device

9

P E

this experiment, using the hybrid shaping, the controller
achieved 56.26% energy savings within the memory sub-
system, largely attributable to the limited memory de-
mand of lmbench.

We also ran lmbench against an unmodified base ker-
nel to characterize the performance implications of our
changes. For nearly all of the specific codes, there was no
discernable difference. The only observable differences
were in the memory bandwidth codes. Figure 5 compares
the bandwidth results of the memory intensive lmbench
codes of our kernel modified to include hybrid shaping
and a base kernel. There was less than a 1% difference as
a result of our changes.

4.2 SPEC CPU2000 Results

We also experimented using the SPEC CPU2000
benchmarks. In this case, our system was populated with
8GB of memory. Figure 6 shows how memory devices
are dynamically scaled to meet memory demand of the
SPEC benchmarks using our history-based heuristic. Ini-
tially, the full 8GB memory capacity was online and
available for use; however, because the SPEC bench-
marks do not require significant memory, the controller

offlined most of the unnecessary memory devices as also
shown in figure 4. Thus, we have omitted the first 5 min-
utes of the trace in figure 6.

As shown, systemic memory demand increases when
SPEC is started and additional devices are onlined to meet
the demand. The memory demand of the benchmarks
oscillates slightly while executing but never exceeds
about 400MB. In this case, a total of about 512MB is
more than sufficient to satisfy the demand of all the SPEC
benchmarks while executing. Once the benchmarks com-
plete executing, the number of online memory devices is
further minimized. This resulted in 81.25% energy sav-
ings within the memory subsystem. Our energy savings
are significant using SPEC codes due to the low memory
demand relative to system capacity. As before, we also
ran the SPEC benchmarks on an unmodified base kernel
to characterize the performance implications of our
changes. Figure 7 shows the performance of several
SPEC codes using our kernel with hybrid shaping normal-
ized to the base kernel. The performance loss for these
codes is maximally about 1%.

0

200

400

600

800

1000

10 30 50 70 90 110

Time (30 second interval)

M
em

or
y

(M
B

)

Online Memory Memory Demand

0

50

100

150

200

250

300

350

400

gzip vpr mcf crafty bzip2

Benchmarks

B
as

e
R

un
tim

e

No Power Management With Power Management

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60

Time (minutes)

M
em

or
y

(G
B

)

Online Memory Memory Demand

Figure 4. Online memory scaling using hy-
brid page shaping and simple heuristics while
running lmbench. The lower line is the actual
memory demand observed and the upper line
constitutes the online memory device set
which closely tracks memory demand and
reduces energy consumption of memory.

0

0.2

0.4

0.6

0.8

1

Bcopy (libc) Bcopy (hand) Mem Read Mem Write

No
rm

al
iz

ed
 B

an
dw

id
th

No Power Management With Power Management

Figure 7. Performance result comparison of
SPEC CPU2000 codes with our kernel modi-
fied to use hybrid page shaping and an un-
modified base kernel. For all codes, there is
less than 1% difference.

Figure 5. Performance result comparison of
lmbench codes with our kernel modified to
use hybrid page shaping and an unmodified
base kernel. For all codes, there is less than
1% difference.

Figure 6. Online memory scaling using hybrid
page shaping and simple heuristics while
running SPEC CPU2000 benchmarks. The
lower line shows actual memory demand and
the upper line shows online memory which is
adjusted based on memory demand.

5. Conclusions

We have quantified the performance and energy for
several workloads using a kernel with hybrid page shap-
ing and shown that there are significant opportunities to
minimize energy consumption on large systems by taking
advantage of variable slack in system memory demand.
By combining proactive page placement at allocation time
and reactive page migration on demand, we achieved sig-
nificant energy savings (56% for lmbench and 81% for
SPEC) with less than 1% performance penalty. Applying
these techniques on large memory-dense systems could
yield significant cost savings by dynamically scaling
online memory based on actual memory demand.

Finally, there is significant work we plan to do on this
subject. For example, we want to explore the role of pag-
ing to disk in power-aware memory, as it is clear there
will be active pages that will not be used for long periods.
We also plan to study the tradeoffs for using alternative
controllers to monitor page demand and direct the power
state transitions of memory devices. Further, we want to
study the impact of device off-lining granularity and
memory interleaving on controller design. Another study
we hope to conduct is implementation of our controllers
in hardware.

References

[1] D. H. Bailey, "Performance of Future High-end Com-
puters," in DOE Mission Computing Conference,
2003.

[2] L. Benini and G. De Micheli, "System-level power
optimization: techniques and tools," ACM TODAES,
vol. 5, pp. 115-192, 1999.

[3] R. Bianchini and R. Rajamony, "Power and Energy
Management for Server Systems," IEEE Computer,
vol. 37, pp. 68-74, 2004.

[4] W. Bolosky, R. Fitzgerald, and M. Scott, "Simple But
Effective Techniques for NUMA Memory Manage-
ment," presented at SOSP-12, 1989.

[5] A. R. Butt, C. Gniady, and Y. C. Hu, "The Perform-
ance Impact of Kernel Prefetching on Buffer Cache
Replacement Algorithms," presented at SIGMET-
RICS'05, Banff, Alberta Canada, 2005.

[6] R. W. Carr and J. L. Hennessey, "WSCLOCK - A
Simple and Effective Algorithm for Virtual Memory
Management," presented at SOSP-08, 1981.

[7] F. J. Corbato, "A Paging Experiment with the Multics
System," MIT MAC Report MAC-M-384, Boston
May 1968.

[8] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A.
Sivasubramaniam, and M. J. Irwin, "Hardware and
Software Techniques for Controlling DRAM Power
Modes," IEEE Transactions On Computers, vol. 50,
pp. 1154-1173, 2001.

[9] X. Fan, C. S. Ellis, and A. R. Lebeck, "Memory con-
troller policies for DRAM power management," pre-
sented at ISPLED, 2001.

[10] M. Gorman, Understanding the Linux Virtual Memory
Manager. NJ: Prentice Hall, 2004.

[11] J. Haas and P. Vogt, "Fully-buffered DIMM Technol-
ogy Moves Enterprise Platforms to the Next Level," in
Technology@Intel Magazine, vol. 3, 2005.

[12] S. Hand, "Self-paging in the Nemesis Operating Sys-
tem," presented at OSDI-3, 1999.

[13] H. Huang, P. Pillai, and K. Shin, "Design and Imple-
mentation of Power-aware Virtual Memory," pre-
sented at Usenix 2003 ATC, 2003.

[14] S. Jiang, F. Chen, and X. Zhang, "CLOCK-Pro: An
Effective Improvement of the CLOCK Replacement,"
presented at USENIX ATC, 2005.

[15] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis, "Power
Aware Page Allocation," presented at ASPLOS, 2002.

[16] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M.
Kistler, and T. Keller, "Energy Management for
Commercial Servers," IEEE Computer, vol. 36, pp.
39-48, 2003.

[17] X. Li, Z. Li, F. Danvid, Y. Zhou, and S. Kumar, "Per-
formance Directed Energy Management for Main
Memory and Disks," presented at ASPLOS, 2004.

[18] R. McDougall and J. Mauro, Solaris Internals. Menlo
Park, CA: Sun Microsystems Press, 2001.

[19] J. Quarterman, A. Silberschatz, and J. Peterson,
"4.2BSD and 4.3BSD as Examples of the UNIX Sys-
tem," Computing Surveys, vol. 17, pp. 379-418, 1985.

[20] R. Rashid, A. Tevanian, M. Young, D. Golub, R.
Baron, D. Black, W. Bolosky, and J. Chew, "Machine-
Independent Virtual Memory Management for Paged
Uniprocessor and Multiprocessor Architectures," pre-
sented at ASPLOS '87, 1987.

[21] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman,
Y. Zhou, and S. Kumar, "Dynamic Tracking of Page
Miss Ratio Curve for Memory Management," pre-
sented at ASPLOS '04, Boston, 2004.

