
A Resource Allocation Problem in Replicated Peer-to-Peer Storage Systems

Sriram Ramabhadran and Joseph Pasquale
Department of Computer Science & Engineering

University of California, San Diego
{sriram,pasquale}@cs.ucsd.edu

Abstract

This paper focuses on peer-to-peer storage systems that
achieve availability through replication. We study the prob-
lem of resource allocation when the system must replicate
multiple files using a fixed amount of resource. We char-
acterize the optimal allocation that maximizes the average
availability of the files in the system, and also study two
simple, decentralized allocation schemes, viz., uniform al-
location, where each file is allocated equal shares of the
resource, and proportional allocation, where each file is al-
located a share of the resource proportional to its size. We
show that while uniform allocation is fair in terms of al-
locating resources, it may be arbitrarily sub-optimal. On
the other hand, proportional allocation, though unfair in
resource allocation, is competitive with the optimal alloca-
tion.

1 Introduction

Replication is fundamental to building highly available
distributed systems. To guard against unavoidable failures
of system components, applications use redundancy, repli-
cating functionality and state at multiple locations in the
system. This is especially significant when the underly-
ing system components are unreliable, as is the case in
peer-to-peer (P2P) storage systems like PAST [9], CFS [5]
and TRFS [2]. These systems use large-scale replication to
build available storage on top of nodes that are highly un-
reliable. While these systems have addressed the question
of how much redundancy is required to guarantee a certain
level of availability, one important open question concerns
resource allocation: How do constraints on available re-
sources such as storage and bandwidth affect replication in
such systems?

In this paper, we study a resource allocation problem that
arises in the context of such P2P storage systems, where in-

1-4244-0910-1/07/$20.00 c©2007 IEEE.

dividual files are replicated at multiple peers for availabil-
ity. When different files are competing for a limited amount
of resources, how should the available resources be divided
among the files? For example, in a cooperative P2P stor-
age system, each peer contributes some amount of storage,
which limits the total amount of storage in the system. An-
other example of a resource constraint is when there is a
limit on the bandwidth available for long-term repair [3],
which is required to guard against data loss due to the per-
manent departure of peers from the system. In both cases,
the amount of resource consumed by a file is proportional to
both its size, and the number of replicas. Given a constraint
on the total amount of resource available, the problem is to
determine how many replicas of each file to create.

Addressing the resource allocation problem is important
for the following reasons. First, resources may be scarce.
A P2P environment consists of autonomous peers voluntar-
ily donating resources to the system; what limits should be
placed on replication and what limits are there on resource
usage? Second, there may be different demands on the sys-
tem. For example, some peers may have much larger files
relative to those of other peers; how should size factor in the
replication scheme and in the usage of resources? Finally,
peers are competing for the available resources; in general,
a peer is interested in maximizing the availability of its own
files, while the system may try to optimize some overall no-
tion of availability. How is this conflict resolved?

In this paper, we assume that the system attempts to max-
imize the average availability (and not not minimum, as in
prior work [1]) of the files. In a cooperative environment,
where the files belong to the same user, perhaps minimum
availability is a better metric. However, in the context of a
system shared by multiple users, it is desirable that a sin-
gle user does not impose an undue burden on the system
by, for example, storing much larger files. Optimizing aver-
age availability, as opposed to minimum, allows the system
the flexibility to give differentiated levels of service to users
who make different demands on it. This naturally leads
to an inherent tradeoff between efficiency and fairness. A
fair division of resources among multiple files or users may

1

not be optimal in terms of maximizing the availability of
the system, i.e., it is inefficient; conversely, an optimal al-
location of resources may be quite unfair. Finally, alloca-
tion schemes should be decentralized and assume minimal
global knowledge.

2 The Replica Allocation Problem

2.1 Problem Description

There are k files that need to be replicated for availabil-
ity; file i has a size of bi bytes. The system consists of some
number of nodes on which files can be replicated. Nodes
have an unavailability of p, i.e., on average, a node is likely
to be offline a fraction p of the time. The replica allocation
problem is to determine how many replicas of each file to
create subject to a resource constraint. Let xi denote the
number of replicas of file i. The unavailability of file i is
qi = pxi ; therefore, the average unavailability of the k files
is q = 1

k

∑k
i=1 qi = 1

k

∑k
i=1 pxi . 1

We now model the resource constraint by assuming that
the amount of resource consumed by file i is proportional to
bi xi. This models the case where the system is constrained
by storage or by long-term maintainance bandwidth. 2 Let
the total amount of resource in the system be c (henceforth
referred to as the capacity of the system), which is to be al-
located among the k files. Therefore we have the constraint∑k

i=1 bi xi ≤ c. The goal is to minimize the average un-
availability subject to the above constraint. We define the
optimal allocation (x∗

i . . . x∗
k) as the one that minimizes q.

Replica allocation boils down to how to divide the available
capacity among files of different sizes.

The above formulation makes several assumptions that
simplify a more general allocation problem. First, we as-
sume nodes are homogeneous in that they all have the same
availability p. Relaxing this assumption implies that our no-
tion of capacity must somehow incorporate availability as
well; for example, one unit of storage at a highly available
node is not the same as one unit of storage at a node that
is less available. Second, we impose a constraint on the ag-
gregate capacity; in general, replication may be constrained
by capacity constraints at each individual node. Finally, we
consider only a simplistic user model, which essentially as-
sumes that there is a 1-1 correspondence between a user and
a file, and that all files are equally important. 3 Realistically,

1To avoid notational clutter, we are considering the equivalent problem
of minimizing average unavailability.

2The long-term maintainance bandwidth, i.e., the bandwidth used in
creating new replicas to replace replicas lost due to permanent departure
of nodes from the system, is proportional to both the size of the file and the
number of its replicas.

3It may be desirable to associate each file with a weight that models,
for example, the popularity of each file. In this case, the metric to optimize
would be the weighted availability.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

q

p

(2,2,2)
(4,4,1)
(6,6,0)

Figure 1. Unavailability of different alloca-
tions with respect to p

there may be many users, each of which owns multiple files.
In this case, average availability of the files may no longer
be a desirable metric, and secondly, notions of fairness must
be on a per-user basis (as opposed to a per-file basis). In this
paper, we study only the simplified problem as a first step
towards understanding the more general problem.

When all files have the same size, the optimal solution
is simply to create an equal number of replicas for all files,
as determined by the capacity. When files have different
sizes, it may be possible to optimize by creating more repli-
cas of smaller files at the expense of having fewer replicas
of larger files. However, each additional replica of a file
yields diminishing returns; therefore, it is not always useful
to allot capacity to a smaller file, which implies a non-trivial
optimal allocation exists.

What can we say about an optimal allocation? First,
a smaller file will have a larger number of replicas. Sec-
ond, similar-sized files will have roughly the same number
of replicas. In particular, if two files have the same size,
the corresponding number of replicas cannot differ by more
than 1. Finally, when two files differ in size, the difference
in the corresponding number of replicas is bounded by a
quantity independent of the system capacity. Although we
omit proofs for the sake of brevity, it is relatively straight-
forward to verify that these properties are true.

2.2 An Example

To illustrate the problem, consider the simple example
of a system of capacity 12. Suppose there are 3 files to be
replicated with sizes 1, 1 and 4 respectively. Figure 1 shows
the behavior of q as a function of p for three different allo-

cations (2,2,2), (4,4,1) and (6,6,0). 4 We note that q(2,2,2) =
p2, q(4,4,1) = 1

3

(
2p4 + p

)
and q(6,6,0) = 1

3

(
2p6 + 1

)
.

For each allocation, q monotonically increases with p.
At p = 0, i.e., when nodes are completely reliable, q = 0
for all allocations except (6, 6, 0); in this case, there are no
replicas of one file, whose unavailability is therefore 1 ir-
respective of p. At p = 1, i.e., when nodes are completely
unreliable, q = 1 for all allocations. As p varies from 0 to 1,
the optimal allocation changes. For p ≤ 0.3660, (2, 2, 2) is
the optimal allocation. For 0.3660 ≤ p ≤ 0.7329, (4, 4, 1)
is the optimal allocation. Finally, for p ≥ 0.7329, (6, 6, 0)
is the optimal allocation. We observe that, as p becomes
larger, the optimal allocation becomes biased in favor of
smaller files, i.e., smaller files have more replicas at the ex-
pense of larger ones.

2.3 Algorithms

Since file sizes are integral, dynamic programming 5 can
be used to compute the optimal solution exactly. However,
this is computationally intractable for large system sizes,
and hence we develop a greedy approximation algorithm
instead. Suppose file i currently has xi replicas. The incre-
mental benefit, i.e., increase in availability, of creating one
more replica of file i is pxi − pxi+1 = pxi (1 − p), while
the cost of doing so, i.e., capacity used, is bi. The greedy
algorithm (Greedy) picks the file with the maximum incre-
mental benefit per unit cost, and creates another replica for
that file. The algorithm terminates when the file that was
picked cannot be replicated further due to insufficient ca-
pacity. Pseudocode for Greedy is shown below.

Algorithm 1: Greedy Algorithm
for i = 1 . . . k do

xi,G = 0
end
c′ = 0
while true do

j = arg max1≤i≤k

{
pxi (1−p)

bi

}
if (c′ + bj ≤ c) then

xj,G = xj,G + 1
c′ = c′ + bj

else
break

end
end

4Although other allocations are possible, we omit those that are clearly
sub-optimal.

5A solution to the replica allocation problem satisfies optimal sub-
structure. Let Qi(c) be the optimal solution using only the first i files
and a capacity c. Qi(c) consists of assigning some capacity c′ to the ith

file and c − c′ to the remaining i − 1 files (given by Qi−1(c − c′)); we
take the minimum over c′.

Let qG denote the average unavailability of Greedy, and
q∗ that of the optimal allocation.

Theorem 1 (Greedy) qG < 1
p q∗

Proof Greedy terminates when c′+bj > c, i.e., when an ad-
ditional replica for file j cannot be created without violating
the capacity constraint. Consider the allocation

xi =

{
xi,G if i �= j

xi,G + c−c′
bj

if i = j

}
(1)

This allocation is identical to the greedy allocation with the
exception of file j which is given an additional fractional
allocation of c−c′

bj
. Note that for all i, xi < xi,G + 1. The

allocation (x1, . . . , xk) is optimal when the integrality con-
straints on the solution are relaxed. This is similar to the
optimality of the greedy algorithm for the fractional knap-
sack problem [4]. 6 Now

q∗ ≥ 1
k

k∑
i=1

pxi >
1
k

k∑
i=1

pxi,G+1 =
p

k

k∑
i=1

pxi,G = p qG

Therefore qG < 1
p q∗.

The above theorem shows that for large p, Greedy is
close to optimal. When p is small, Greedy may be sub-
optimal by an arbitrary amount. 7 However, in practice, for
all file distributions we considered, Greedy may be consid-
ered as a close approximation of optimal.

3 Allocation Strategies

Let b =
∑k

i=1 bi be the sum of all file sizes. In the
Uniform allocation policy, each file is allocated equal shares
of the resource, i.e., each file is given an allocation of c

k . In

this case, the number of replicas of file i is xi,U =
⌊

c
k bi

⌋
.

We note Uniform is fair in terms of equitably allocating the
total capacity among the files.

In the Proportional allocation policy, each file is allo-
cated a share of the resource proportional to its size, i.e.,
file i is given an allocation of bi c

b . In this case, the num-
ber of replicas of file i is xi,P = xP =

⌊
c
b

⌋
. We note that

Proportional results in each file having the same number of
replicas. This means that Proportional also minimizes the
maximum unavailability as opposed to the average unavail-
ability that we are considering.

We consider Uniform and Proportional for a couple of
reasons. First, they are simple and intuitive from a resource

6We note that the replica allocation problem is somewhat similar to the
unbounded knapsack problem [4], with the important difference that each
additional replica of a file gives diminishing returns in terms of availability.

7In fact, there are pathological problem instances when qG ≥ q∗
2p

,
which implies that the above bound is tight within a factor of 2.

allocation perspective. Second, they are amenable to a dis-
tributed implementation in which each file can compute its
number of replicas with minimal global knowledge, and
without knowing the distribution of file sizes. Estimates of
c, the system capacity, and k, the number of files in the sys-
tem, are sufficient to implement Uniform. Implementing
Proportional requires an estimate of b, the total size of the
files. It is relatively straightforward to propagate this infor-
mation through the system, using gossip [7] for example.

3.1 Analytical Results

Theorem 2 shows that Uniform may be arbitrarily worse
than the optimal allocation for any value of p. Let qU denote
the average unavailability of the Uniform allocation.

Theorem 2 (Uniform) qU

q∗ → ∞ as c → ∞.

Proof Since q∗ ≤ qP ,

qU

q∗
≥ qU

qP
=

1
pxP

(
1
k

k∑
i=1

pxi,U

)
=

1
k

k∑
i=1

pxi,U−xP

Clearly,

c

(
1

k bi
− 1

b

)
− 1 < xi,U − xP < c

(
1

k bi
− 1

b

)
+ 1

Therefore

lim
c→∞xi,U − xP =




+∞ if bi < b
k

0 if bi = b
k

−∞ if bi > b
k




Since 0 < p < 1,

lim
c→∞ pxi,U−xP =




0 if bi < b
k

1 if bi = b
k

∞ if bi > b
k




As the capacity of the system increases, the availability of
an individual file depends on how small or large it is relative
to the average file size b

k . If a file is small, i.e., less than av-
erage, its availabilty can be arbitrarily larger under Uniform
than Proportional. Conversely, if a file is large, i.e., more
than average, its availability can be arbitrarily larger under
Proportional than Uniform. What happens to the average
availability? There is at least one file j such that bj < b

k . 8

Now

qU

q∗
≥ 1

k

k∑
i=1

pxi,U−xP >
1
k

pxj,U−xP

8This is true unless all files are of equal size, in which case both Uni-
form and Proportional are vacuously optimal.

The right-hand side goes to infinity with increasing capac-
ity, therefore so does the left-hand side, i.e., limc→∞ qU

qP
=

∞.
The above theorem implies that, as the amount of

resource available in the system increases, Uniform does
arbitrarily worse than optimal. This is true for any value
of p. Since Uniform is also fair, this implies that there is a
conflict between fairness and efficiency: the fair policy can
be arbitrarily inefficient. We now consider the Proportional
allocation policy. Theorem 3 bounds the deviation of
Proportional from the optimal allocation. Let qP denote the
average unavailability of the Proportional allocation.

Theorem 3 (Proportional) qP < k q∗

Proof There is at least one file j such that x∗
j ≤ xP . Other-

wise
∑k

i=1 bi xi > c
b

∑k
i=1 bi = c, which would violate the

capacity constraint. Now

q∗ =
1
k

k∑
i=1

px∗
i >

1
k

px∗
j ≥ 1

k
p

c
b =

qP

k

Therefore qP < k q∗.
The above theorem implies that for a given file distribu-

tion, i.e., constant k, Proportional is always within a con-
stant factor of optimal, regardless of p or the distribution of
file sizes. Thus, as the amount of resource increases, Pro-
portional is always within a factor of k of optimal, whereas
Uniform may be arbitrarily worse. In addition, Theorem 3
implies that Proportional is competitive, with a competitive
ratio of at most k. 9. Thus, irrespective of p, Proportional
is always within a factor of k of the optimal. Moreover,
when c is an exact multiple of b, Proportional is in fact the
only competitive allocation. To see this, observe that, as in
the proof of Theorem 3, there is at least one file j such that
xi < xP . Now

q

qP
>

1
k

pxj−xP >
1
kp

As p −→ 0, the competitive ratio of any allocation becomes
unbounded. This implies that in a system where p is not
known and may be small, Proportional is guaranteed to be
competitive. When c is not an exact multiple of b, there are
other allocations that may be better. This is because round-
ing wastes capacity, which we address later in this section.

3.2 Simulation Results

In this section, we simulate the Uniform and Propor-
tional allocation strategies and compare it with Greedy.

9The competitive ratio of an allocation is a bound on how much worse
an allocation can do with respect to the optimal allocation, for any value
of p. Note that the optimal allocation itself will depend on the value of
p. In the example of Section 2.2, the competitive ratio of (2, 2, 2) can be
computed to be 1.25 using simple calculus.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20000 40000 60000 80000 100000

q

c

Uniform Allocation
Proportional Allocation

Greedy

(a) Uniform file distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20000 40000 60000 80000 100000

q

c

Uniform Allocation
Proportional Allocation

Greedy

(b) Zipf file distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20000 40000 60000 80000 100000

q

c

Uniform Allocation
Proportional Allocation

Greedy

(c) Uniform file distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20000 40000 60000 80000 100000

q

c

Uniform Allocation
Proportional Allocation

Greedy

(d) Zipf file distribution

Figure 2. Unavailability of Uniform and Proportional and randomized variants

Greedy is used as an approximation of the optimal alloca-
tion, which is computationally intractable to calculate for
large system sizes. We use two input file distributions: uni-
form and zipf. In both cases, there are k = 100 files with
mean file size 100. In each experiment, we average over
100 iterations to eliminate the effect of a specific set of file
sizes.

Figure 2(a) shows q as a function of system capacity c
when file sizes are uniformly distributed. Figure 2(b) shows
the same when the file sizes are zipf. The value of p is 0.5 .
First, as expected, q decreases with increasing c; greater ca-
pacity implies more replication, which results in increased
availability. Second, Greedy results in better availability
than both Uniform and Proportional; the difference is more
pronounced in the case of zipf distributed file sizes. Fi-

nally, for uniform file distributions, Proportional exhibits a
staircase behavior. This is because Proportional uses round-
ing to compute the number of replicas. For k = 100 files
of mean size 100, the expected value of the total size b is
10000. For every additional 10000 of capacity, the number
of replicas of each file xP increases by 1; recall that Propor-
tional allots the same number of replicas for all files. Due
to rounding, the number of replicas (and hence q) increases
discontinuously with increasing system capacity. This ef-
fect can also be seen for Uniform, although to a lesser ex-
tent. This is because in the case of Uniform, the replica-
tion level does not increase uniformly for all files; as ca-
pacity increases, smaller files will increase their replication
level before larger files. However, the rounding effect is still
present; thus, the curve for Uniform appears piecewise lin-

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.2 0.4 0.6 0.8 1

q

p

Uniform File Distribution
Zipf File Distribution

Figure 3. Unavailability of Greedy allocation

ear. In the case of zipf distributed files, this effect is much
less pronounced; the larger variance of b (recall we average
over 100 iterations) mitigates this effect to some extent.

The above discussion highlights some inefficiency in
both Uniform and Proportional. Because a fractional num-
ber of replicas must be rounded down to satisfy the capacity
constraint, both allocations do not fully utilize the available
capacity. Thus, the sub-optimality of these schemes could
be due to both the incomplete utilization of capacity as well
as some intrinsic inefficiency in the allocation. We can
eliminate the former through a simple randomized scheme
that makes the expected value of the number of replicas is
equal to its allocation. For example, if a file is to be allotted
6.6 replicas, the file is allotted 7 replicas with probability
0.6, and 6 with probability 1 - 0.6 = 0.4.

Figure 2(c) shows the behavior of the randomized ver-
sions of Proportional and Uniform for a uniform file distri-
bution. Figure 2(d) shows the same for a zipf file distribu-
tion. As can be seen, randomization enables more efficient
use of marginal increases in capacity; the curves are there-
fore smoother. Also for a given system capacity, the ran-
domized variants have lower q. In the case of the uniform
file distribution, both Uniform and Proportional are close to
Greedy. In the case of the zipf file distributions, they are
less so, especially for small capacities. In both cases, Uni-
form is better than Proportional for small system capacities;
for larger capacities, Proportional is better. This is because
Uniform results in smaller files being replicated indepen-
dant of larger files, which is important for smaller capaci-
ties when there is insufficient capacity for larger files to be
replicated. Since Uniform divides the capacity of the sys-
tem fairly among files, a large file does not affect the avail-
ability of a small one when there is insufficient capacity.

Figure 3 shows the behavior of Greedy for uniform and
zipf file distributions as a function of p. The value of c is
50000. As expected, q increases with increasing p. When p

is small, the file distribution does not affect the optimal so-
lution to a great extent. This is because the optimal alloca-
tion tends to be more uniform when the nodes are relatively
reliable. When p is large, i.e., nodes are more unreliable,
Greedy does better in the case of the zipf distribution due to
the preponderance of small files. One replica less of a large
file allows several smaller files to be replicated more. Since
a zipf distribution results in a large number of small files
and a smaller number of large files, replicating smaller files
more is more efficient. When file sizes are more uniform,
this is not possible.

Figure 4(a) shows how Uniform and Proportional per-
form with respect to Greedy as a function of p. In the case
of uniform file distributions, specifically, the y-axis shows
the ratio of Uniform (Proportional) to the Greedy alloca-
tion. Figure 4(b) shows the same for the zipf file distribu-
tion. First, we note that Proportional is a constant factor
away from Greedy for all values of p; the constant is about
1.2 in the case of uniform and 2.5 in the case of zipf. The-
orem 3 shows that Proportional is always within a factor of
k of optimal; the simulations indicate that the actual num-
ber is much smaller. Second, Uniform is significantly sub-
optimal for small values of p, but improves with increasing
p. For large values of p, it is actually better than Propor-
tional. This reflects the fact that when p is small, i.e., nodes
are relatively reliable, the marginal increase in availability
due to an additional replica is small. Therefore, favoring
smaller files at the expense of larger files is sub-optimal. As
p becomes larger, the converse is true: it is better to sacri-
fice large files to ensure that smaller ones are available. We
note that Theorem 2 implies that for any value of p, Uni-
form will eventually be worse than Proportional as system
capacity increases.

4 Discussion

We have examined a resource allocation problem that
arises in the context of replicated P2P storage systems. We
have considered some simple algorithms that allocate re-
source among files in a distributed storage system, and the
efficiency/fairness properties of the resulting allocations.
Our model is simplistic; further work is necessary to re-
fine it and study the problem in a more realistic setting. We
briefly discuss possible directions.

When nodes are heterogeneous, a more sophisticated
resource model is necesary to quantify the capacity con-
tributed by each node. Rather than using raw capacity, a bet-
ter approach is to define some notion of available capacity,
which incorporates the availability of a node as well. Our
initial intuition suggests that the product of the raw capac-
ity and the negative log of a node’s unavailability may be a
good candidate for this. Secondly, a more sophisticated user
model will allow many users, each of which have multiple

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 0 0.2 0.4 0.6 0.8 1

p

Uniform Allocation
Proportional Allocation

(a) Uniform file distribution

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 0 0.2 0.4 0.6 0.8 1

p

Uniform Allocation
Proportional Allocation

(b) Zipf file distribution

Figure 4. Unavailability of Uniform and Proportional allocations compared to Greedy. The Y-axis is
the ratio of the unavailability of the Uniform and Proportional allocation schemes and that of the
Greedy allocation.

files to store. In this case, computing average availability on
a per-user basis, and then taking an average over all users,
may be a reasonable metric to optimize on a system-wide
basis.

With more complex resource and usage models, the
questions are: 1. How does the system balance efficiency
with fairness, and 2. How does the system achieve desired
allocations? In the latter case, the seminal work on replica
placement in FARSITE [6] suggests that a disributed hill-
climbing approach may be viable. Finally, when nodes in
the system are controlled by users, as is likely in a P2P sce-
nario, there is the question of how the system deals with
strategic behavior on the part of users. Thus, an open ques-
tion is whether it is possible to design mechanisms that in-
centivize achieving the desired allocation.

5 Conclusion

In this paper, we have formulated and studied a replica
allocation problem that deals with optimizing the availabil-
ity of files in a distributed storage system subject to a re-
source constraint. Our work is related to recent work in
building highly available storage systems based on the peer-
to-peer paradigm. CFS [5] and PAST [9] use conventional
replication while Oceanstore [8] and TRFS [2] use erasure
coding. To the best of our knowledge, these systems do not
consider optimizing the number of file replicas based on a
resource constraint.

Our conclusions may be summarized as follows. When

peers in the system are relatively reliable, the optimal allo-
cation does not favor smaller files over larger files. When
peers are unreliable, the converse is true, i.e., smaller files
tend to have more replicas. Th Uniform allocation policy
(where each file is allocated equal shares of the resource),
though fair in terms of dividing the available resource, is
sub-optimal, and in fact, may be arbitrarily worse than op-
timal allocation. On the other hand, the Proportional al-
location policy (where each file is allocated a share of the
resource proportional to its size), though unfair in terms of
resource allocation, is always within a constant factor of the
optimal allocation, which in practice tends to be quite small.

References

[1] A. Adya, W. Bolosky, M. Castro, G. Cermak, R. Chaiken,
J. Douceur, J. Howell, J. Lorch, M. Theimer, and R. Watten-
hofer. Farsite: Federated, available, and reliable storage for an
incompletely trusted environment. In Proceedings of USENIX
OSDI, 2002.

[2] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. Voelker.
Total recall: System support for automated availability man-
agement. In Proceedings of USENIX NSDI, 2004.

[3] C. Blake and R. Rodrigues. High availability, scalable stor-
age, dynamic peer networks: Pick two. In Proceedings of
HotOS IX, 2003.

[4] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Al-
gorithms. MIT Press, 1990.

[5] F. Dabek, F. Kaashoek, D. Karger, R. Morris, and I. Stoica.
Wide-area cooperative storage with cfs. In Proceedings of
ACM SOSP, 2001.

[6] J. Douceur and R. Wattenhofer. Competitive hill-climbing
strategies for replica placement in a distributed file system.
Proceedings of DISC 2001.

[7] M. Jelasity, A. Montresor, and O. Babaoglu. Gossip-based
aggregation in large dynamic networks. ACM Trans. Comput.
Syst., 23(3):219–252, 2005.

[8] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinsk, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao. Oceanstore: An archi-
tecture for global-scale persistent storage. In Proceedings of
ACM ASPLOS, 2000.

[9] A. Rowstron and P. Druschel. Storage management and
caching in past, a large-scale, persistent peer-to-peer storage
utility. In Proceedings of ACM SOSP, 2001.

