FixD : Fault Detection, Bug Reporting, and Recoverability for
Distributed Applications

Cristian Tapusg, David A. Noblet

California Institute of Technology
{crt,dnoblet }@Qcs.caltech.edu

Abstract

Model checking, logging, debugging, and checkpoint-
ing/recovery are great tools to identify bugs in small
sequential programs. The direct application of these
techniques to the domain of distributed applications,
however, has been less effective (mostly owing to the
high degree of concurrency in this context). This pa-
per presents the design of a hybrid tool, FixD , that
attempts to address the deficiencies of these tools with
respect to their application to distributed systems by
using a novel composition of several of these existing
techniques. The authors first identify and describe the
four abstract components that comprise the FixD tool,
then conclude with a proposal for how existing tools can
be used to implement these components.

1. Introduction

A number of techniques and tools exist to help in-
crease and ensure reliability of small sequential soft-
ware programs. In particular, the use of model check-
ing, logging, debugging, and dynamic update tech-
niques have historically proved to be successful in this
context. However, when used in isolation, these meth-
ods do not scale well to applications in distributed envi-
ronments. This is unfortunate since the extra complex-
ity added by the high degree of concurrency present in
distributed systems makes the use of such automated
tools highly desirable. One of the difficulties in extend-
ing these tools for use in a distributed environment is
that the processes participating in such a system only
have access to local information; when a fault is en-
countered in a system executing in a distributed en-
vironment it is usually necessary to have information
about the global state of the system in order to suc-
cessfully identify what went wrong.

1-4244-0910-1/07/$20.00 ©2007 |IEEE

We propose a new system, called FizD , that ad-
dresses the problems of fault-detection, bug reporting,
and recoverahility of distributed applications. The pri-
mary purpose of our tool is to develop a substitute
for the traditional printf logging and debugging mech-
anisms used extensively during the final stages of devel-
opment with a more comprehensive tool that is specif-
ically designed for distributed applications that also
helps facilitate application recovery using a dynamic
software update mechanism.

The main contributions of this work are:

e the specification of a generic framework for design-

ing and testing more reliable distributed programs;

e and the design of FizD , which amounts to design-

ing the glue components required to combine the
various logging, debugging, and verification tools

in an efficient manner;
e a model checker, called ModelD , that verifies

safety properties embeded in OCaml programs and
enables the injection of code in running programs

The rest of the paper is organized as follows: Sec-
tion 2 provides an overview of existing techniques for
fault-detection, bug reporting, and recovery; Section 3
gives a high-level description of the design of the FizD
tool, identifying the four abstract components that
comprise FizD ; Section 4 proposes an implementation
of FizD ; the authors conclude with some suggestions
for future work and a short discussion in Section 5.

2. Overview of Existing Techniques

This section provides an overview of popular tech-
niques for fault-detection, bug reporting, and recovery.

2.1. Model checking

Model checking is an automated verification tech-
nique whereby a user specifies a model of the imple-
mentation of a system targeted for verification along

with an abstract specification of the properties to which
the system is required to adhere. Then, this specifi-
cation is fed into a corresponding model checking tool
that exhaustively explores the state space of the model,
verifying that none of the legal execution paths of the
system violate any of the user-specified properties.

Although model checking can be used to exhaus-
tively explore the entire global state space of a dis-
tributed system (for this reason model checking is ac-
tually adept at discovering scheduling bugs and cor-
ner cases), the problem with this approach is that the
high degree of parallelism in most distributed systems
often makes this exploration infeasible. The memory
required by the model checker to explore all possible
schedules for the global state transitions in such a sys-
tem is simply too great when there are more than a
handful of processes (it is often prohibitively expensive,
memory-wise, to model a moderately complex system
of more than 5-10 processes).

Furthermore there are two issues that often plague
the use of model checker. First, the translation of the
verified abstract model to an implementation may in-
troduce bugs. Second, it can be difficult to keep the
model of a system and its actual implementation in
sync (often a bug will be discovered in one, and then
the fix must be implemented in both).

A partial solution to these issues is the use of model
checkers that verify actual implementations. One such
example is CMC [2], the C model checker, which is
able to verify safety properties of C programs. This
eliminates the need to create and update an abstract
model if the implementation changes.

2.2. Logging and debugging

Logging mechanisms can be used to record and re-
construct a globally consistent run of the system. The
collective local logs for all the entities in the system can
be combined and analyzed to provide insight on the be-
havior of the system. Nevertheless, this reconstruction
and subsequent analysis is typically laborious and is
best suited to some automated tool. Furthermore, this
approach relies on the availability of all the relevant
logs in order to diagnose a fault.

Of course, one might not have the option to enable
logging on all the entities in the system (or retrieve the
logs in the event of certain failures); thus, the useful-
ness of this mechanism is mitigated by the control one
has over the global system with respect to obtaining
these logs.

An alternative to requiring the logs of all entities
in the system is to record the interaction between the
local component and a remote one and treat the remote

entity as a black box defined only by the interaction
with the local component.

The use of debugging tools in a distributed context
also share the same requirements for global information
as logging does, but additionally requires the ability to
replay and step through the global state transitions.
Some approaches to this use a distributed playback
mechanism, others employ a local playback scheme;
both generally make use of logging to impose a total
order on all the messages sent in the system.

2.3. Logging, Checkpointing and Playback
of Distributed Applications

The observation of the deficiencies of these tech-
niques as they apply to distributed systems is not new.
In fact, recently there has been much research done
with the aim to solve those problems mentioned above
(and others) in order to make these techniques more
applicable to use with distributed systems.

One such system, implemented as a user-level library
called liblog [1], uses logging and replay to identify bugs
in distributed applications and to present the user with
a trace of the distributed execution. The tool assumes
though that all processes involved in the distributed
computation use the logging mechanism that they pro-
vide.

Jockey [4] is another similar tool that uses binary-
rewriting to detect the use of system calls and other
“non-deterministic” applications and to record their in-
teraction with the application. It provides a determin-
istic playback capability that enables re-running the
application in the absence of the remote entities.

The Flashback tool [5] also provides a determinis-
tic replay mechanism, but through the use of special
system calls that are integrated into the Linux kernel.
In order to support this playback, it intercepts sys-
tem calls and logs all interactions between the target
application and its environment. To reduce the over-
head involved in checkpointing the state of a process,
Flashback creates lightweight “shadow” processes that
utilize a copy-on-write mechanism in order to avoid
needlessly making copies of the memory of the orig-
inal process unless the original process mutates that
data. Although the Flashback tool does currently pro-
vide some support for multi-threaded programs it does
not yet support distributed applications.

The techniques presented above are highly effective
at providing the user with a log and a replay capahility
that may lead to identifying the problem that caused
the failure of a distributed application.

&
S

rd The Scroll_)
N

-
: oo
5 53—
D =5
i
{
/‘\
L
O R—

Figure 1. The Scroll. Recording the actions of
the distributed components

3. FixD : A Hybrid Approach

Developing, testing and debugging distributed ap-
plications can be made considerably easier if one or
more of the following features are available to the pro-
grammer during application development:

e the replay of the scenario that led to an invariant
violation;

e the ability to roll back the program and the related
remote components to a consistent state that does
not violate any invariant and investigate all exe-
cution paths that lead to an invariant violation;

e the ability to dynamically update the program
when it is in a state that does not violate any in-
variants instead of restarting the application from
the initial state; and

e the ability to use a programming model that sep-
arates the recovery code from the actual compu-
tation to make it easier to reason about the cor-
rectness of the code.

In this section we present the high-level design of
our tool, FizD , that implements the functionality pre-
sented above. In the following text, we describe the
four components that comprise the FizD tool and ex-
plain their interaction.

3.1. The Scroll

The first function of FixD is logging. Having the
ability to provide the user with a clear trace of the
execution of the program is useful in understanding
the interaction between components of a distributed
application. For this purpose we need a common Scroll
where all or most of the components of our distributed

/
) The ScrolL)
k27N a—i_
S

The
Time
Machine

Figure 2. The Time Machine.

application can record their actions and that may be
used for playback or execution path investigation. It is
important to notice that only nondeterministic actions
(involving other components) and their outcome need
to be recorded by the Scroll . Figure 1 tries to capture
this idea by showing one application interacting with
the Scroll at various points in its execution path.

3.2. The Time Machine

When a problem occurs and the application encoun-
ters an invariant violation we need to be able to take
the entire system back to a point in time where the
invariant holds, employ a mechanism to identify the
conditions that led to the violation, and maybe repair
the code to avoid the erroneous execution.

We call the component that provides the rollback
the Time Machine because it provides the ability to
roll back the execution of the relevant components of
the distributed application to a consistent global state.

The Time Machine component (shown in Figure 2)
provides two major functions:

e the ability to restart the execution of a distributed
application from a consistent distributed state in
order to investigate all possible executions and de-
termine, through systematic analysis, execution
paths that lead to invariant violations; and

e the ability to resume execution from the saved
checkpoint on a different branch of execution that
could bypass the error; the same applies to all re-
lated components that have rolled back.

For this to occur, we need the processes in the dis-
tributed system to interact with a checkpointing fa-
cility, in an automated and transparent fashion, such
that regular checkpoints of the local state of each of

'a The Scroll }
XNQVWV‘W\W

The Investigator

& B 6

4 \ay 4
a‘ ".1 a‘

Figure 3. Exhaustively finding execution
paths that lead to invariant violations.

the processes is captured. Furthermore, communicat-
ing processes need also to agree on consistent snapshots
to which to roll back their computation.

While it is not trivial to generate these globally con-
sistent snapshots of the system based on local check-
points (especially in an efficient manner), there do exist
various techniques for doing this, one of which we de-
scribe in section 4.2.

3.3. The Investigator

If a problem is identified in an application and the
state of the system is rolled back to a consistent posi-
tion, one has to investigate which execution paths are
the ones that led the system to an invalid state. The
use of the Scroll can provide the user with one such
execution trace (for invariant violations local to a par-
ticular process), but a more systematic approach may
be needed to understand the conditions that lead to the
invariant violation (i.e. there might also be a global in-
variant violation earlier in the system execution).

The purpose of the Investigator , whose interaction
with other components of FixD is presented graphically
in Figure 3, is to provide the following two functions:

e the ability to explore execution paths starting

from a given state; and

e the ability to it returns a set of trails that lead to

invariant violations

In the event that one process (or potentially more
than one) detects a fault locally, the process that de-
tected the fault uses the Time Machine component to

Remote Compute Nodes Remote Compute Nodes
PC F’C
1
1
\ . i
I . oy - L
1] 4 |
| |

Local Environment |

Local Compute Node

Local Compute Node

Figure 4. Response of the FizD mechanism
during fault detection. The Investigator uses
models for some of the external components

roll back its state to a recently stored checkpoint and
notifies the other processes in the system that an error
has occurred. Upon receipt of this notification, each
process that receives this message responds with a re-
ply consisting of two components: a local checkpoint
of the state of that process, and a model of its be-
havior (this model does not have to be abstract; it
could simply be the implementation of the process it-
self); the checkpoint it provides needs to satisfy global
consistency properties. The process that detected the
fault initially collects these responses to piece together
a consistent global checkpoint of the system that is fed
to the Investigator component.

Figure 4 shows how, when process P, detects a fault,
the other processes send copies of their respective mod-
els to be executed locally by the Investigator in the P,.
It is also worth pointing out that certain parts of the
environment, in this case components of the local envi-
ronment itself, are not under the direct control of the
FizD environment and must be modeled internally.

In this way, the Investigator component of FizD
plays a similar role to the replay mechanism present
in liblog. However, by being less concerned with specif-
ically what went wrong and trying to reconstruct the
exact conditions under which the fault occurred, this
approach is better suited to determine how the system
failed by generating a set of possible faulty behaviors
that the system is capable of expressing.

3.4. The Healer

Once a problem has been identified in a program
and problematic execution traces (i.e. those that lead
to invariant violations) have been provided to the user,

_The Scroll

The Healer

_The Scroll

Figure 5. User intervention and dynamic up-
dates may fix the distributed application.

the programmer can use this information to narrow
down the problem in his/her code and try to provide a
fix. At this point, there are several options for recovery,
two of which we consider next.

One option is for the new version of the program
that contains the corrected code to be restarted from
the beginning. This is the simplest option and is the
one that is used classically after a system failure.

Another approach, however, is for the the program
to be restarted from a previously saved checkpoint
where all invariants are satisfied. The advantage of
this second approach is the potential to use computa-
tion that was correctly performed while executing the
faulty program. This requires the ability to modify an
executing process in place and provide certain guaran-
tees that dynamically updating the process does not
break type safety or invalidate any invariants. How-
ever, this might not always be possible and restarting
the program from scratch could be the only option.

We call the component that provides this function-
ality by combining human interaction with automatic
dynamic updates the Healer . Figure 5 shows its inter-
action with the rest of the components of our system.

4. Building FixD

One of the main contributions of this paper is iden-
tifying existing tools and suggesting methods of com-
bining them to provide the functionality required by
each of FizD ’s components.

In this section, we describe a set of tools that we
believe would be a good fit for the implementation of
each of the components of FizD .

4.1. Implementing the Scroll

We identify two systems that provide the function-
ality required by the Scroll component. Their ap-
proaches are different, making each well suited for a
different kind of application. The first is liblog [1], a
user-level library that logs actions performed by dis-
tributed applications that also provides a way to re-
play the logs offline if necessary. The second one is the
Flashback tool[5], which provides similar functionality
as an extension to the Linux kernel.

The liblog library intercepts all libc calls and stores
their return value in a file. Therefore, it is mainly
suited for C programs. The Flashback tool, on the
other hand, is more generic and it works for programs
written in other programming languages, like OCaml,
Java, or Fortran since it intercepts the system calls
performed by the program at kernel-level.

4.2. Implementing the Time Machine

The Time Machine component can be implemented
by employing a checkpointing/recovery system. In our
implementation of FizD , we propose to use distributed
speculations [6] as this mechanism. A speculation de-
fines a computation that is based on an assumption
whose verification may be performed in parallel with
the computation. If the assumption is validated then
the speculation is committed and the computation con-
tinues as described by the program. However, if the as-
sumption is invalidated then the speculation is aborted
and the process is rolled back to the state it had before
entering the speculation. At this point the computa-
tion may continue on a different path of execution. The
rollback is enabled by saving a lightweight checkpoint
at the time the speculation is initiated.

Communication induced lightweight check-
pointing using speculations. While a process exe-
cutes inside a speculation it is allowed to communicate
with other processes. Processes that receive specula-
tive data are absorbed in the speculation and will have
to roll back with the initiator of the speculation if the
assumption the speculation is based on is invalidated.

An example of how the communication induced
checkpoint mechanism used by speculations works is
presented in Figure 6. Each process saves a checkpoint
before receiving a new message. If process B fails as
shown and it rolls back to the last saved checkpoint,

Proc Proc
A B
]]
.- - Safe recovery
R line .
S A R ,
p Unsafe recovery
Ckpt a line
msg
Failure
Y

Figure 6. Safe distributed recovery lines us-
ing communication induced checkpointing.

all other processes that communicated with it need to
restore their state to form a globally consistent recov-
ery line. The system has to prevent certain processes
to roll back to checkpoints that are inconsistent with
the rest of the system. By using speculations this in-
formation is automatically determined by the system
and each process rolls back to the correct checkpoint,
after which the model checking component takes over,
as described before.

There are two main differences between speculations
and traditional checkpoint and rollback mechanisms, as
follows:

e Speculations use a copy-on-write mechanism to
build lightweight, incremental checkpoints of pro-
cesses.

e Speculations allow applications to use a different
execution path upon rollback, depending on how
the assumption was invalidated.

These differences have the advantage that (1) check-
points generated using speculations introduce less over-
head than certain types of traditional checkpointing,
and (2) the alternate execution path used in case of a
rollback may be used to repair the problem that led to
the failure of the application in the first place. This
makes the choice of using distributed speculations par-
ticularly attractive for the implementation of the Time
Machine component of FizD

4.3. Implementing the Investigator

The Investigator functions very much like a tradi-
tional model checker. The main difference is that we
want to be able to exhaustively analyze the behavior
of real programs rather than that of abstract models.

Implementing a model checker for real programs
would have to depend on the language that the appli-

modelD |}
source

modelD Front-end

N

Ocaml
source

modelD Back-end
modelD

ocamlc model

Figure 7. The components of the ModelD
model checker

cation was implemented in and would require access to
the source code in order to provide meaningful traces
to the programmer. Therefore, we suggest two such
systems that provide the desired functionality. One is
ModelD , a model checker of OC AML programs that is
part of the contributions of this work. The second one
is CMC [2], a model checker for C programs. Both are
discussed below.

ModelD: modeling OCAML programs. The im-
plementation of the ModelD model checker consists of
two primary components (see Figure 7): a back-end
model checking engine used to perform model checking
on real Ocaml code, and a front-end syntax extension
to the Ocaml grammar (written using Camlp4) that is
used to provide a convenient interface for the user to in-
teract with the back-end engine (so that the resulting
language is more like a conventional model checking
language).The back-end component is responsible for
performing the actual state transitions, keeping track
of the visited execution paths (calculating the reach-
ability graph), and verifying that no user-specified in-
variants are violated. The model checking engine is
based on a guarded command model, where the be-
havior of the system is described by a set of guarded
commands that can be chosen for execution any time.

Although our proposal of the design of FizD does
not rely on the facilities of any particular model
checker, the features of ModelD (and especially the
back-end component) present a good fit for this appli-
cation. The back-end component of ModelD is highly
flexible and supports the ability to dynamically change
the set of actions available to the model checking en-
gine as well as the ability to customize the search order
for the state graph. Though these mechanisms were

originally introduced in the ModelD engine as a way
to support heuristic search, they can be applied in a
less conventional context in order to allow the ModelD
engine to run the actual implementation of a process
involved in a distributed application.

As an example, consider the implementation of an
event-based protocol where the events in the system
are mapped to actions in ModelD (where the guards for
the ModelD actions are predicates that indicate when
an event would be triggered). Furthermore, suppose
all communication is handled by other generic actions
(perhaps provided via some library of such actions in-
cluded as part of FizD). In this way, each event is a
state transition within the model checker, and, given
that we have the ability to control the search order of
the states within the model checking engine, we can en-
sure that we only pursue a single execution path (the
path the “conventional” implementation would take).
In the event that the process detects a fault, we can
simply restore one of our previous states, swap out the
real communication actions, replace those with mod-
els of the communication actions, and add the actions
that correspond to the behavior of the other processes
in the system (we would get these from the other pro-
cesses themselves, as described in the section above).

CMC: The C Model Checker. CMC [2] is a model
checker that generates the state space of a given appli-
cation by executing the C or C++ source code. Dur-
ing the state space exploration, CMC automatically
checks for certain generic properties such as memory
leaks and invalid memory accesses. Also, CMC reports
any deadlock states, in which the system can make no
progress. To check for specific properties, the user has
to provide additional invariants (written in C). CMC
evaluates these invariants in every state it generates.

Implementation Abstractions. Whenever model
checking is employed, there is always a concern that
there could be a mismatch between the behavior of the
model being used and the actual system the model is
supposed to represent. Although this is always a prob-
lem to some degree with any model checking solution,
there are approaches to model checking that are de-
signed to minimize the effect of this. In particular,
we envision the use of a model checking tool that is
designed to work directly on an implementation lan-
guage without having to modify the implementation
of the system. This way, there is less of a chance of
the model differing from the actual system itself. Of
course, there will always be components of the system
that will be outside the control of the FizD environ-
ment (such as the network itself, in the case of com-

municating processes); in the case of such components
it may be necessary to have abstract models of their
behavior, but perhaps many of these could be formally
verified and included as part of the FizD tool itself.

4.4. Implementing the Healer

The Healer is a complex component that also in-
volves a significant amount of involvement from the
programmer. Once a bug is identified in the code and
the Investigator provides execution traces of possible
invariant violations, the programmer repairs the source
code of the program and, as mentioned before, either
restarts the program or resumes execution from a sta-
ble checkpoint by dynamically updating the executable
with the corrected code. We discuss two such tools that
use the second approach of dynamically updating the
application. They are aimed at two different source
languages. One is the ModelD, which was also used to
implement the functionality of the Investigator . The
other one is called Ginseng[3], a dynamic software up-
date tool for C programs.

ModelD. The back-end component of ModelD al-
lows one to inject actions that divert the execution of a
program using an updated version of the actions. This
is performed in a manner similar to that described in
Section 4.3. Internally, this operation simply reduces
to dynamically changing the set of enabled actions.
However, additional steps need to be taken in order
to ensure that a state in the original implementation
is equivalent to some resulting state in the updated
implementation. Therefore, the programmer has to ei-
ther force rollback to a point were this condition can be
automatically verified or has to write the update such
that state equivalence is guaranteed.

Ginseng: Dynamic Software Updating for C.
Ginseng has three components: a compiler, a patch
generator and a runtime system for building update-
able software. The main functionality is provided by a
static analysis tool that also makes it one of the most
safe systems of its kind. The main properties of the
system, which make it practical are: (1) it does not
require extensive changes to the application; (2) it re-
stricts the form of the dynamic updates as little as
possible; and (3) it makes significant headway toward
making updates easy to write and easy to establish as
correct.

preventive | diagnostic | treatment | comprehensive | opportunistic

@ | Model Checking (MC) v/ — — v —
5 [Logging (L) - v - - 7
k= Checkpoint & Rollback (CR) — — — — v
¢ | Dynamic Updates (DU) — — v — —
& [Speculations (S) — _ v — 7

liblog (L & CR) — Vv — — v
2 [CMC (MC) - - - — v
S [FizD (M&L&S & DU) 7 7 7 7 N

Figure 8. The characteristics of the techniques and tools discussed in this paper. The abbreviations
of the first five mechanisms are used to define what the tools use to provide their functionality.

4.5. Future Work

In order to facilitate the development of the pro-
posed FizD tool, it would be useful to leverage the
availability of existing work in the field. Thus, it would
be advantageous to first improve on previous projects
we have developed (namely ModelD and the kernel
level distributed speculations) and then integrate some
of the work that others have done.

One such improvement is to develop a set of general-
purpose models designed to integrate with ModelD in
order to imitate the behavior of common and well-
known components of the environment of a process.
For example, it would be useful to have models of var-
ious components such as network communication or
disk access and perhaps many of the available system
calls. This way, it would not be necessary for each
process to model these elements of the environment di-
rectly.

We also plan to investigate the use of speculations in
conjunction with dynamic libraries to enable runtime
code instrumentation for automatic error recovery and
for automatic runtime code updates. Such work could
allow for FizD to provide some mechanism for dynamic
fault recovery instead of simply allowing for detection
and reporting.

Moreover, there are other tools that would be ap-
propriate components for the development of FizD . In
particular, it would be interesting to explore the ben-
efits of using another implementation-language model
checker like CMC.

5. Discussion

In this paper we present the design of a novel tool
for fault detection, bug reporting, and recoverability
that is targeted at distributed applications. We discuss
several other technologies that attempt to address the
same general problem. Figure 8 presents an overview

of the characteristics of the techniques and tools dis-
cussed in this paper, both from the point of view of
the type of service they provide (preventive, diagnos-
tic, or treatment) to find and cure bugs, and of the
generality of the service (comprehensive or just oppor-
tunistic). Our FizD system, while still in its initial
stages of development, is a promising tool that com-
bines a wide spectrum of techniques in order to create
a more complete debugging/recovery utility.

References

[1] D. Geels, G. Altekar, S. Shenker, and I. Stoica. Replay
debugging for distributed applications. In USENIX An-
nual Technical Conference 2006, 2006. 2.3, 4.1

M. Musuvathi, D. Park, A. Chou, D. R. Engler, and
D. L. Dill. CMC: A Pragmatic Approach to Model
Checking Real Code. In Proceedings of the Fifth Sym-
posium on Operating Systems Design and Implementa-
tion, Dec. 2002. 2.1, 4.3, 4.3

I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol. Practical
dynamic software updating for C. In Proceedings of
the ACM Conference on Programming Language Design
and Implementation (PLDI), June 2006. 4.4

Y. Saito. Jockey: a user-space library for record-replay
debugging. In AADEBUG’05: Proceedings of the sixzth
international symposium on Automated analysis-driven
debugging, pages 69-76, New York, NY, USA, 2005.
ACM Press. 2.3

S. Srinivasan, S. Kandula, C. Andrews, and Y. Zhou.
Flashback: A lightweight extension for rollback and de-
terministic replay for software debugging. In USENIX
Annual Technical Conference, 2004., pages 29-44, 2004.
2.3, 4.1

C. Tapus. Distributed Speculations: Providing Fault-
tolerance and Improving Performance. PhD thesis, Cal-
ifornia Institute of Technology, Pasadena, CA, June
2006. 4.2

2]

3]

[5]

(6]

