
Holzmann- Bošna ki 1

Abstract—We present the first experimental results on the

implementation of a multi-core model checking algorithm for

the SPIN model checker. These algorithms specifically target

shared-memory systems, and are initially restricted to dual-

core systems. The extensions we have made require only small

changes in the SPIN source code, and preserve virtually all

existing verification modes and optimization techniques

supported by SPIN, including the verification of both safety

and liveness properties and the verification of SPIN models

with embedded C code fragments.

Index Terms—logic model checking, distributed algorithms,

verification, multi-core, shared memory, safety, liveness, linear

temporal logic.

I. INTRODUCTION

odel checking can be used to verify the correctness of

distributed algorithms and asynchronous system

designs, both for hardware and software. Thanks to a series

of improvements over the last few decades and significantly

helped by the steadily increasing power of CPUs, the range

of problems that can be solved with model checking tools

continues to expand. Model checkers such as SPIN today

can analyze models with millions of reachable system states

in a matter of seconds – which is more than adequate to

support the verification of abstract design models of

asynchronous software systems. As a result, logic model

checking tools have become a standard part of safety critical

systems development. The SPIN verifier [14] is a public-

domain, open-source software tool, first introduced in 1989,

and designed for the verification of correctness properties of

asynchronous software systems. It is currently one of the

most widely used verification tools in this domain.

The effectiveness of any verification method, whether it

is applied manually or with computer support, is ultimately

limited by problem complexity. Yet, the larger the range of

problems we can analyze today, the stronger our desire to

tackle still larger problems tomorrow. Sadly, the effect of

Moore’s curve [21] to drive a continuing increase in the

Part of this research was carried out at the Jet Propulsion Laboratory,

California Institute of Technology, under a contract with the National

Aeronautics and Space Administration, as part of the ‘Reliable Software

Engineering’ project, ESAS Project 6G.

G. J. Holzmann is with the Laboratory for Reliable Software, Jet

Propulsion Laboratory, Pasadena, CA 91109 USA (phone: 818-393-5937;

e-mail: firstname.lastname@ jpl.nasa.gov).

D. Bošna ki., is with Eindhoven University, 5612 MB Eindhoven, The

Netherlands (e-mail: dragan@win. tue.nl).

performance of CPUs appears to be diminishing somewhat

sooner than anticipated. In mid 2002, for instance, the

fastest desktop PC ran at a clock-speed of 2.5 GHz. At the

time of writing, late 2006, the fastest PC available ran at 3.8

GHz, where a continuation of Moore’s curve would have

predicted a clock-speed of 6.6 GHz. Chipmakers are

currently focusing their attention on the further

development of multi-core CPU systems. Dual-core and

quad-core CPU systems are already widely available, with

larger number of processing cores on the horizon. This

means that to increase the problem solving capabilities of

logic model checking tools in the foreseeable future we

must develop strategies that can exploit the capabilities of

multi-core CPU systems.

Multi-core systems provide all CPUs with access to fast

shared memory, making inter-CPU data transfer much more

efficient than it can be on a cluster-computer (or multi-CPU

systems, as we shall call them here to distinguish them from

multi-core systems). Given a word size of 64 bits there is no

real limit to the amount of shared memory that could be

addressed, making this the ideal context for the use of

distributed model checking algorithms. The objective is of a

multi-core extension of logic model checking algorithms is

then to achieve reductions in the runtime requirements of a

verification run, not to seek an increase in the amount of

memory that can be addressed by all CPUs jointly. The

improvement will be greatest if we can achieve maximal

independence between the verification work that is done on

different CPU cores. This means that the load balancing

method is a critical factor in the design of a new algorithm.

We will discuss this issue in Section 2. In Section 3 we

discuss an extension of SPIN’s partial order reduction

algorithm for multi-core algorithms. Section 4 provides

metrics on the performance of the method we have

implemented and presents an analysis of model

characteristics that can enhance or degrade performance of

multi-core algorithms. Section 5 reviews earlier work in this

area and Section 6 concludes the paper.

II. LOAD BALANCING

A multi-core model checking task can be performed most

efficiently if work can be distributed approximately evenly

between the CPU cores. As little communication as possible

should be required between the CPUs. This ideal is trivially

realized if we can perform completely independent

verification runs for distinct properties, e.g., specified as a

Multi-Core Model Checking with SPIN

Gerard J. Holzmann and Dragan Bošna ki

M

1-4244-0910-1/07/$20.00 ©2007 IEEE

Holzmann- Bošna ki 2

set of mutually independent LTL formulae. This was the

method used for achieving even load balancing of hundreds

of verification runs on a 16-CPU compute cluster in the Bell

Labs FeaVer system [13]. For the verification of a single

correctness property, though, this much decoupling is

difficult to achieve.

One method is to define a state space partitioning

function that is evaluated on-the-fly by each CPU. This

partitioning function determines for each newly generated

state which CPU should explore it further. The partitioning

function should have the property that when a successor

state s is generated by CPU n, most of the successors of s

will also be explored by CPU n. If the CPUs use a shared

data structure to store all states, there is no danger that the

CPUs will start exploring the same parts of the state graph

redundantly. The price to pay for this sharing of data is the

enforcement of fine-grained mutual exclusion locks on

access to the (relevant part) of the state tables (e.g., SPIN’s

hashtable), to prevent race conditions.

To partition the state graph into disjoint subsets, each of

which is explored by a different CPU, we can make use of

the notion of an irreversible transition, which can be defined

as follows.

Definition: An irreversible state transition in the

global state graph is any transition with the property that

its source state is not reachable from its target state, that

is: no sequence of transitions leads from the target state

of an irreversible transition back to its source state.

Irreversible transitions divide the state graph into disjoint

sub-graphs. They can trivially be identified statically in a

SPIN model. Although any irreversible transition will

divide the set of global system states into disjoint sub-sets,

these sets are not always of similar size. The identification

of irreversible transitions therefore is by itself not sufficient

for defining a load balancing strategy. In SPIN there is one

case though where we can identify an irreversible transition

that divides the states space into two approximately equal

and disjoint subsets. This is the transition that separates the

first and the second search in the nested depth-first search

algorithm [12,14]. Since the nested depth-first search

enables the verification of liveness, this gives us a simple

method for a dual-core extension of the model checking

algorithm for liveness properties. To handoff a state from

one CPU to another, it is simply copied into a work-queue

in shared memory.

A. Liveness

The 1st CPU adds each accepting state, in post-order [7],

to the work queue of the 2nd CPU. The 2nd CPU retrieves

state from this queue, and performs the nested part of the

search to determine for each accepting state if is reachable

from itself. The 2nd CPU records all new states it generates

into a separate (non-shared) part of the state space, since

there can be no overlap between the states generated in the

1st and the 2nd depth-first search. In this case, therefore, no

locking is needed on access to the state tables. The basic

complexity of the search remains unchanged compared to

the single-core algorithm. Thus, for dual-core systems the

speedup for the verification of liveness properties can be

close to twofold (cf. Section 4).

B. Safety

For the verification of safety properties, we adopt a

similarly simple load balancing method that extends

naturally also to multi-core systems with more than two

cores. States are still transferred from one CPU to another

via shared work-queues. These queues are always bounded.

In liveness mode, there can only be state transfers in one

direction: from the 1st to the 2nd CPU. When the work-queue

of the 2nd CPU fills up, the 1st CPU will wait for a slot to

become available. (A timeout allows it to recover from a

possible crash of the 2nd CPU.) When checking safety

properties though, state transfers can happen in any

direction, and waiting on a full queue now runs the risk of

deadlock. In this case, the sending CPU will always defer

the handoff when a target queue is full and will explore the

state locally instead. Note that the objective of load

balancing is still achieved in this case, since the receiving

CPU already has its maximal work load.

The metric for state handoffs for safety properties is

based on the distance of a state from the root of the state

space graph. Let d be the depth in the state graph at which a

state is generated. Each CPU can handoff a newly generated

successor state to another CPU when d exceeds a preset

bound L within its local stack. When a state is transferred to

another CPU, the target CPU will explore that state starting

with an empty local stack and a search depth d of zero. This

means that at every d%L steps from the original root of the

global state graph, a state sequence can be transferred to

another CPU. For L steps in the search, the CPUs can

perform independent work (this time recording states in a

shared state table), which means that we can control the

degree of independence between CPUs by selecting an

appropriate value for the handoff threshold L. We will

report on the performance of this method in Section IV.

 The multi-core extension of SPIN can be achieved with

minimal intrusion on the existing code by carefully

selecting the points in the search where state handoffs can

occur. Fig. 1 illustrates the nested depth-first search

algorithm that is used in SPIN [14, p.180] and indicates two

points in the search where a state can be handed off. These

points are the natural recursion points in the depth-first

search. By performing the extension in this way, the change

to the existing system can be limited to a few hundred lines

of new code. (In Fig. 1, A.s0, A.T, A.F are,

respectively, the initial state, the transition set, and the set

of acceptance states of the automaton that is obtained by

combining the model and the property.)

Holzmann- Bošna ki 3

The point marked [L] in Fig. 1 corresponds the start of

the nested part of the search, which is the handoff point for

the verification of liveness properties. The point marked [S]

is the handoff point for the verification of safety properties,

based on the depth metric. The two points interfere only

minimally with the existing algorithm and preserve all other

SPIN options. Since we are targeting only dual-core

systems here, the two modes are never mixed. For liveness

verification only handoff point [L] is used, and for safety

verification only handoff point [S] is used.

A few supporting algorithms are used to complete the

implementation. Peterson’s algorithm for enforcing mutual

exclusion in a platform independent way [22] was

considered, but turns out to require CPU-specific

adaptations to work correctly on modern CPUs.1 The

simpler solution in this case was to adopt small platform

specific test-and-set instructions in assembly code instead.

A distributed termination detection algorithm is also

needed. The algorithm used for multi-core SPIN is based on

Dijkstra’s discussion of Safra’s solution [8], which was

verified with standard SPIN.

1 The adaptation is needed to defeat out-of-order execution with so-

called memory barrier functions.

III. PARTIAL ORDER REDUCTION

The standard implementation of SPIN can achieve a

considerable speedup from the use of a partial order

reduction method that was introduced in [11] and revised in

[12]. This algorithm reduces the number of successor states

that must be generated at each step during the search if it

can be guaranteed that any deferred transition will

eventually be explored from a later state. The partial order

method guarantees that when a transition is deferred for

later execution its continued executability is unaffected. A

key provision in the algorithm is the prevention of infinite

deferral of transitions along cyclic paths in the state graph.

This cyclic deferral is prevented in the standard SPIN

algorithm by making sure that none of the successor states

from a reduced set of transitions can appear on the depth-

first search stack, above the state being explored. If any

successor state appears on the stack, it can close an infinite

deferral cycle and lead to an incompleteness of the search

process. In general, for the verification of liveness

properties, if at least one successor state appears on the

depth-first search stack no reduction is performed from that

state [11]. This pre-condition on the application of partial

order reduction is known as the cycle proviso (or for depth-

first search also: the stack proviso).

Two other versions of the cycle proviso are used in SPIN

for the verification of safety properties with either a depth-

first or a breadth-first search.2 Clearly, in the case of a

breadth-first search there is no depth-first stack, and thus an

alternative method must be adopted to prevent the ignoring

problem. The variants of the proviso now require that:

• Depth-first: at least one successor state appears

outside the stack [10].

• Breadth-first: all successor states are previously

unvisited [3].

The condition for breadth-first searches is independent of

the stack contents, but generally achieves smaller reductions

of the state space size. (An improvement, described in [3],

and implemented in SPIN, is to require that at least one

successor state appears within the breadth-first search

queue.) In a multi-core search, similarly, the full depth-first

search stack starting from the original root of the state graph

is not always available. This means that we must use a

different method for solving the ignoring problem. To

achieve this, our implementation forces the exploration of

all successor states in two extra places in the search (i.e., in

addition to the case where a successor state is found on the

local stack of the executing CPU).

• The first additional expansion is made for so-called

“border states,” that is states whose successors fall

below the handoff depth of the current CPU, and

therefore might have appeared on the search stack.

2 No efficient algorithm is known for the verification of liveness

properties with a breadth-first search algorithm [13], so that combination is

currently not supported.

Stack D = {}
Statespace V = {}
State seed = nil
Boolean toggle = false

Start()
{
 Add_Statespace(V, A.s0, false)
 Push_Stack(D, A.s0, false)
 Search()
}

Search()
{
 (s, toggle) = Top_Stack(D)
 for each (s,l,s') in A.T
 { if (toggle == true
 && (s' == seed || On_Stack(D,s',false)))
 { PrintStack(D) # accept cycle found
 PopStack(D)
 return # end nested search
 }

 if In_Statespace(V, s', toggle) == false
 { Add_Statespace(V, s', toggle)
 Push_Stack(D, s', toggle)
[S] Search() # dfs recursion
 } }

 if s in A.F && !toggle # in post order
 { seed = s # accept state
 Push_Stack(D, s, true)
[L] Search() # start nested search
 Pop_Stack(D)
 seed = nil
 }

 Pop_Stack(D)
}

Fig. 1 – Handoff points for the dual-core nested depth first search

algorithm.

Holzmann- Bošna ki 4

The most conservative approach is to treat them as

if they had appeared on the stack.

• The second case is for successor states that are

previously visited by another CPU. In a single-

core execution these states may have appeared on

the search stack, but this is no longer verifiable by

the executing CPU since it has no access to the full

search stack anymore. Again, the most

conservative approach is to treat these states as if

they appeared on the stack.

The second case above can be optimized further by

restricting it to cases where the previously visited state was

generated by a CPU with a higher process number (pid)

than the executing CPU, to ensure that the full expansion

only occurs in one CPU, and not in both, as was also noted

in [4].

Proof Sketch for the correctness of the partial order

reduction: For the states generated by the CPU with the

lowest pid, the correctness of the proviso follows from

the proof for the standard depth-first search [10, 3], given

that handoff states are treated as stack states, as well as

the states generated by all other CPUs. All states are

‘fully explored,’ which means that no action enabled at

any state can be deferred indefinitely. For the CPU with

the next higher pid number we can rely on this fact,

whenever it reaches a state generated by the first CPU.

The proof generalizes in a straightforward way to any

number of CPUs. Each CPU can trust that the successors

of all states generated by CPUs with lower pid, are

always fully explored.

Because of the full expansion of all border states, this

version of the reduction method will work poorly for short

handoff depths. As the data presented in the next section

confirms though, for a handoff depth of 10 steps or more,

this effect largely disappears.

IV. MEASUREMENTS

A. Basic Performance

Table 1 shows a comparison of the runtime requirements

of exhaustive verification runs with the dual-core extension

of SPIN, for four different verification models taken from

the SPIN distribution: a sliding window protocol for a

window size of 5 messages, the leader election algorithm

for a ring network of 7 processes, the dining philosophers

problem with 9 nodes, and Peterson’s generalized mutual

exclusion algorithm for 4 concurrent processes. In all these

measurements, the verification was performed for safety

properties only without use of partial order reduction, to

ensure that both the dual-core and single-core verification

runs explore precisely the same number of reachable states.

The runtime reductions, compared with the single core runs,

vary from a near optimal ratio of 51% for the leader election

example, to a less impressive ratio of just under 71% for

Peterson’s algorithm. We will study the reason for the

smaller improvement for some models in Section IV.B.

1) Liveness Verification

 The performance of liveness verification gives similar

results. For example, for the verification of the LTL

property that eventually one node will be elected as the

leader of the ring (in LTL: <>[]p), again for 7 nodes in the

ring, we measured a runtime of 69.765 seconds for the

standard single-core run, and 38.53 seconds for a dual-core

run, giving a reduction to 55% of the runtime requirements.

2) Influence of Compiler Optimization

Another interesting data point is obtained if we compare

the performance of optimized verification runs with un-

optimized runs. Table 2 shows the results, in this case for

the sliding window protocol example with a window size of

Table 1 -- Performance improvement for verification of safety properties

(all runs exhaustive, generating the same number of states, without partial order reduction).

Runtime for Verification of
Safety Properties

Single-core
(seconds)

Dual-core
(seconds)

Ratio
Dual/Singl

e
(%)

Sliding window protocol (W=5) 39.73 23.17 58.3

Leader election protocol (N=7) 172.85 88.19 51.0

Dining Philosophers (N=9) 26.22 18.26 69.6

Peterson’s Algorithm (N=4) 65.47 46.42 70.9

Table 2 – Comparison of optimized and un-optimized performance.

Runtime for Verification of

Safety Properties

Single-core

(seconds)

Dual-core

(seconds)

Ratio

Dual/Single

(%)

Standard compilation 39.73 23.17 58.3

Optimized compilation (-O2) 23.18 15.14 65.3

Holzmann- Bošna ki 5

5 messages. For the un-optimized runs, the reduction in

runtime achieved is 58%, but for the optimized run it is only

65%. Clearly, the overhead of inter-CPU state transfers

becomes more noticeable for optimized code than it is for

un-optimized code. The state handoff code itself consists of

a simple memcpy call, which is hard to optimize further.

Code optimization reduces time spent on independent

computations. We will study this effect in more detail in

Section 4.2. As an aside, it is also noteworthy to observe

that merely enabling compiler optimization at level –O2

suffices to achieve performance similar to an un-optimized

dual-core verification run.

3) Influence of Handoff Depth

We measured the influence of handoff depth on the

performance of dual-core verification. A representative

result is shown in Fig. 2, in this case for a verification of

safety properties for the leader election protocol with 4

nodes. The maximum depth of the search tree is 2.7 million

steps. The state graph is acyclic, since all executions

necessarily terminate with the election of a leader of the

ring. The statevector is 48 bytes in this case, which is

relatively small for a verification model.

Fig. 2 shows a characteristic “bath-tub” curve for the

performance of the dual-core runs, with a conveniently long

flat bottom where any handoff depth selected in this interval

will give comparable performance. The left-hand sides of

the curves, corresponding to the smaller handoff depth

values, show relatively poor performance, since the load

balance ratios are small for these values. In these

measurements partial order reduction was disabled, to

ensure that the single and dual core verification runs always

explore the same numbers of states.

The right-hand sides of the curves also reveal growing

performance degradation. This time the degradation is

caused by approximating the maximum search depth of the

state space itself – hence handoffs near and beyond this

limit will not be able to achieve adequate load balancing

anymore. If too few states are transferred from one CPU to

the other, the first CPU will end up doing most of the work

and the performance degrades to that of a single-core run,

or worse (e.g., due to the overhead of the dual-core

infrastructure needed).

4) Influence of Partial Order Reduction

In most cases, the use of partial order reduction preserves

the benefits of dual-core verification, as expected. We show

in Fig. 3 what seems at first to be a strongly anomalous

result. In this case, for the verification of Peterson’s mutual

exclusion algorithm, there is not only no benefit from dual-

core verification, the performance can actually degrade,

despite perfect load balancing, especially for short handoff

intervals. We can hypothesize that this is caused by the

change that the partial order reduction makes in the state

graph structure, reducing the average number of successor

nodes of a state. This effect is not visible in most

applications, but clearly important. We therefore investigate

this phenomenon more fully in the next section.

B. Reference Model

To verify how dual-core verification depends on various

structural model characteristics, we construct a reference

model that allows us to vary specific structural parameters

over a range of values. This reference model is shown in

Fig. 4. The model has three parameters: the number of

successor states per reachable system state (the out-degree

or branch factor of each state in the state graph), the size of

a state, and the time it takes to generate a state, which is

Peterson's Algorithm N=4

MaxDepth SearchTree 2,770,018

SV 48

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

si
ng

le
-c

or
e 4 9

du
al

-c
or

e 19
15

01
40

01
65

01
90

01

50
00

0

70
00

00

28
00

00
0

Handoff depth 1..20 and 501..2,000,000

ru
n

ti
m

e

(s
e
c
o

n
d

s
)

unoptimized

optimized

ratio

Fig. 2 – Measurement of the influence of the handoff depth chosen in dual core runs for safety properties. The two leftmost

points indicate the performance of optimized (red, bottom) and unoptimized (blue, top) single core verification runs. The state

vector (SV) size is 48 bytes for this model. The bottom ratio curve shows a load balance ratio close to one.

Holzmann- Bošna ki 6

captured as the time to execute a state transition. We use

embedded C code to control this parameter by the number

of times the code executes a dummy computation.

The model always generates 500,000 reachable system

states, independent of the parameters settings – to allow us

to compare the relative runtimes across runs. The generated

state space graph is a tree whose nodes have a predefined

number of successors.

We first measure how the performance of dual-core

verification depends on transition delay. Fig. 5 shows, in the

top left graph, the ratio of dual-core runtime versus single-

core run time, for transition delays that range from 21 to 218

time units. Three curves are plotted, the top curve (blue) is

for a branch factor of one (every state reached always has a

single successor), the middle curve (green) corresponds to a

branch factor of two, and the bottom curve (black)

corresponds to a branch factor of eight.

For models with small transition delays and/or small

branch factors, a dual-core run can take up to 2½ times as

long as a single-core run. For models with an average out-

degree of eight though, the dual-core runs are never slower

than single-core runs. The same effect is observed for larger

transition delays and branch factors above one. Since partial

order reduction reduces the branch factor, the slowdown of

dual-core verification runs when partial order reduction is

used is now explained.

The graph on the upper right in Fig. 5 repeats the

measurements for a larger state size. We see the same

Peterson's Algorithm (N=4)

with Partial Order Reduction Enabled

0

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 15 17 19 50
1

15
01

25
01

35
01

45
01

55
01

65
01

75
01

85
01

95
01

20
00

0

50
00

0

20
00

00

Handoff Depth

R
u

n
ti

m
e
 (

s
e
c
o

n
d

s
)

single-core dual-core + po ratio

Fig. 3 – Anomalous performance of dual-core runs for Peterson’s algorithm, when partial order reduction is enabled.

#define BranchSize 8 /* nr of successors per state */
#define StateSize 500 /* nr of bytes in statevector */
#define TransTime 9 /* time to perform transition */
#define NStates 500000 /* nr of reachable states */

int count;
byte filler[StateSize];

active [BranchSize] proctype test()
{
end: do
 :: d_step { /* define one single transition step */
 count < NStates ->
 c_code {
 int xi;
 for (xi = 0; xi < (1<<TransTime); xi++)
 { now.filler[xi%StateSize] += xi%256;

 /* make sure filler is not eliminated */
 }
 /* make sure no extra states are created */
 memset(now.filler, 0, StateSize*sizeof(char));

 };
 count++
 }
 od
}

Fig. 4—Reference model for measuring the influence of structural model parameters on the performance of multi-core model

checking algorithms.

Holzmann- Bošna ki 7

effect, but for branch-factors above one (which correspond

to deterministic models) the performance degradation

disappears and optimal performance can be realized. The

graph on the lower left side in Fig. 5 shows how

performance varies with state size for a fixed transition

delay of 23 time units, and the graph on the lower right

repeats this experiment for a larger transition delay of 213

time units. Note that in the latter case performance becomes

independent of state size, because it is now dominated by

transition delay.

A few observations can be made about these results.

First, the performance of dual-core algorithms should be

expected to be smaller when partial order reduction is used

then when it is not used, although the effect can be

mitigated by a number of other factors. In cases where

partial order reduction is not an option, for instance in the

verification on non-stutter-invariant liveness properties,

multi-core algorithms can prove especially valuable. Note

that for deterministic models, no multi-core state

partitioning method is likely to be effective. In these cases

one processor will inevitably always be waiting for other

processors to complete its work, as shown in Fig. 5.

Another observation is that the multi-core algorithms can

be expected to perform especially well for models with

large state sizes and/or large transition delays. This nicely

fits an important application domain of verification models

with embedded software and model-driven verification

techniques where the model checker must control and track

potentially large amounts of implementation level code.

The importance of this type of extension should therefore

be expected to increase over time as we start tackling larger

problem sizes. Alas, it also means that multi-core systems

cannot really show their full potential on small class-room

size examples, so some tutorial value of this important new

class of algorithms is lost.

V. EARLIER WORK

Most work in distributed model checking to date has

been focused on algorithms for the verification of safety

properties on physically distributed computers. An early

objective was also to increase the amount of memory that

could be dedicated to verification. As noted, many of these

early assumptions are no longer valid with the switch to

multi-core systems with a 64-bit address space.

The Stern-Dill algorithm [23] uses a hash function to

assign states to nodes in a compute cluster. With a good

hash-function, this method should achieve near-optimal

load balancing, but it suffers from the overhead of frequent

state transfers. A different cluster algorithm for SPIN

appears in [20], but also restricted to safety properties. This

algorithm performed load balancing with a partitioning

method that is based on the structure of a SPIN model. The

issue of load balancing was also addressed in [2] and [18].

An algorithm for distributed model checking of liveness

Reference Model

(Transition Delay and BranchFactor Affect Speedup)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

t=1 t=3 t=6 t=9 t=11 t=13 t=15 t=18

Transition Delay

(Statesize 200 bytes)

R
a

ti
o

 R
u

n
ti

m
e

s
 D

u
a

l:
S

in
g

le

b=1

b=2

b=8

Reference Model

(For Small Transition Delays, Statesizes affect

Achievable Speedup)

0.00

0.50

1.00

1.50

2.00

2.50

10 100 200 400 800

Statesize

(Transition Delay t=3)

b=1

b=2

b=8

Reference Model

(For Larger Transition Delays, Statesizes do not

affect Achievable Speedup)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

10 100 200 400 800

Statesize

(Transition Delay t=13)

b=1

b=2

b=8

Reference Model

(Transition Delay and BranchFactor Affect Speedup)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

t=1 t=3 t=6 t=9 t=11 t=13 t=15 t=18

Transition Delay

(Statesize 10 bytes)

R
a

ti
o

 R
u

n
ti

m
e

s
 D

u
a

l:
S

in
g

le

b=1

b=2

b=8

Fig. 5 – Measurements on the reference model, to study the effect of structural model properties on the performance of multi-core

algorithms. Varied are the out-degree of states (the branch factor), the state size, and the transition delay.

Holzmann- Bošna ki 8

properties is given in [1]. The algorithm maintains a global

structure on one CPU to ensure that accepting states are

expanded in the correct order. The memory requirements

for this structure can be prohibitive though. Another

algorithm [19] was designed to partition the state space in

such a way that accepting cycles always appear within the

same CPU. Load balancing is difficult to generalize with

this method. In [5] and [6] algorithms are described that

require multiple passes over the state space, increasing the

computational complexity of the search process, and

potentially defeating the benefit of a parallelized

verification process.

An algorithm for safety properties is given in [17], and

for liveness properties in [9], both using disk memory. The

liveness algorithm stores a copy of an accepting state inside

the state vector and stops with a counter-example if that

copy can be matched. The seed state of the nested search

then is duplicated into every new state encountered during

the second search, which can significantly increase the

memory requirements for that part of the search.

A model checking algorithm for CTL*, using shared

memory is given in [16]. To achieve load balancing, idle

CPUs can “steal” states from the work-queues of other

CPUs. Performance results are given, but only for runs that

stop at the generation of a first counter-example, which

makes it difficult to compare results between single- and

multi-core runs, or for different versions of the algorithms.

VI. CONCLUSION

This paper describes how the SPIN model checker can be

extended for multi-core systems with shared memory. The

extension supports the verification of both safety and

liveness properties, with a relatively small change. We have

shown that the effect of compiler optimization and search

optimization techniques, such as partial order reduction,

diminish the benefit of multi-core processing. For applica-

tions of interest though, applications with embedded code

[13,15], the benefits can be significant.

Our extension preserves most of the existing verification

modes of SPIN, including the capability to verify liveness

properties, the use of search optimization techniques such as

partial order reduction, and also bitstate storage [14]. The

capability to generate counter-examples with the multi-core

version of the model checking algorithm is also preserved

through the use of backward pointers in the state graph.

The method we have described for the verification of

safety properties scales without change to the use of larger

numbers of CPU cores. The extension for liveness for more

than two CPUs remains an open research problem and is

expected to be non-trivial.

ACKNOWLEDGMENT

The authors are grateful to Rajeev Joshi for discussions

and to Matt Dwyer, Michael Jones, and Eric G. Mercer for

an in-depth overview of the earlier work in this area.

REFERENCES

[1] J. Barnat, L. Brim, J. Strıbrná. Distributed LTL model-checking in

SPIN. Proc. 8th SPIN Workshop on Model Checking of Software,

LNCS 2057, May 2001.

[2] G. Behrmann, T. Hune, F. Vaandrager, Distributing timed model

checking—How the search order matters, Proc. CAV 2000, LNCS

1855, pp. 216-231.

[3] D. Bosnacki, G.J. Holzmann, Improving SPIN's Partial-Order

Reduction for Breadth-First Search, Proc. 12th SPIN Workshop,

LNCS 3639, pp.91-105, 2005.

[4] L.Brim, I.Cerna, P. Moravec, J. Simsa, Distributed partial order

reduction of state spaces, Electronic Notes in Theoretical Computer

Science, 128 (2005), pp. 63-74.

[5] L. Brim, I. Cerna, P. Moravec, J. Simsa, How to order vertices for

distributed LTL model-checking. Electronic Notes in Theoretical

Computer Science, Vol. 135, pp. 3-18, 2006.

[6] I. Cerna, R. Pelanek. Distributed explicit fair cycle detection. Proc.

SPIN workshop, LNCS 2648, pp. 49–73, 2003.

[7] C. Courcoubetis, M.Y. Vardi, P. Wolper, M. Yannakakis. Memory

Efficient Algorithms for the Verification of Temporal Properties.

Proc. CAV, 1990, pp. 233-242.

[8] E. W. Dijkstra. Shmuel Safra's version of termination detection,

EWD998.

[9] S. Edelkamp and S. Jabar, Large-Scale Directed Model Checking

LTL, 13th SPIN Workshop on Model Checking of Software, pp. 1-18,

LNCS 3925, 2006.

[10] G.J. Holzmann, P. Godefroid, and D. Pirottin, Coverage preserving

reduction strategies for reachability analysis. Proc. 12th Conf on

Protocol Specification Testing and Verification, Orlando, FL., 1992.

[11] G.J. Holzmann and D. Peled, An Improvement in Formal Veri-

fication, Proc. Conf. on Formal Description Techniques, 1994.

[12] G.J. Holzmann, D. Peled, M. Yannakakis, On Nested Depth-First

Search, The SPIN Verification System, AMS, 1996, pp. 23-32.

[13] G.J. Holzmann, M.H. Smith, Automating software feature veri-

fication, Bell Labs Techn. Journal, Vol. 5, No. 2, pp. 72-87, 2000.

[14] G.J. Holzmann, The SPIN Model Checker, Addison-Wesley, 2004.

[15] G.J. Holzmann, R. Joshi, Model-driven software verification, Proc.

11th SPIN Workshop, Barcelona, 2004, LNCS 2989, pp. 77-92.

[16] C.P. Inggs, H. Barringer, CTL* Model Checking on a Shared-

Memory Architecture, Electronic Notes in Theoretical Computer

Science, Vol. 128, 2005, pp. 107-123.

[17] S. Jabbar, S. Edelkamp, Parallel External Directed Model Checker

with Linear I/O, Proc. Conf. on Verification, Model Checking and

Abstract Interpretation., LNCS 3855, 2006, pp. 237-251.

[18] R. Kumar, E.G. Mercer, Load Balancing Parallel Explicit State Model

Checking, Proc. 3rd Workshop on Parallel and Distributed Model

Checking (PDMC), August 2004.

[19] A.L. Lafuente. Simplified distributed LTL model checking by

localizing cycles. Tech. Rep. 00176, Univ. Freiburg, Germany, 2002.

[20] F. Lerda, R. Sisto, Distributed-memory model checking in SPIN,

Proc. SPIN Workshop, LNCS 1680, 1999.

[21] G.E. Moore, Cramming more components onto integrated circuits,

Electronics, Vol. 38, pp. 114-117, 1965.

[22] G.L. Peterson, Myths about the Mutual Exclusion Problem, Inf.

Processing Letters, Vol. 12, No. 3, pp. 115-116, June 1981.

[23] U. Stern, D. Dill. Parallelizing the Mur verifier. Proc. 9th Conf. on

Computer Aided Verification (CAV’97), Haifa, Israel, June 1997,

Springer–Verlag, LNCS 1254, pp 256–278.

