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Abstract

Heterogeneous computing (HC) is the coordinated use
of different types of machines, networks, and interfaces to
maximize the combined performance and/or cost effective-
ness of the system. Heuristics for allocating resources in
an HC system have different optimization criteria. A com-
mon optimization criterion is to minimize the completion
time of the last to finish machine (makespan). In some envi-
ronments, it is useful to minimize the finishing times of the
other machines in the system, i.e., those machines that are
not the last to finish. Consider a production environment
where a set of known tasks are to be mapped to resources
off-line before execution begins. Minimizing the finishing
times of all the machines will provide the earliest available
ready time for these machines to execute tasks that were not
initially considered. In this study, we examine an iterative
approach that decreases machine finishing times by repeat-
edly running a resource allocation heuristic. The goal of
this study is to investigate whether this iterative procedure
can reduce the finishing time of some machines compared to
the mapping initially generated by the heuristic. We show
that the effectiveness of the iterative approach is heuristic
dependent and study the behavior of the iterative approach
for each of the chosen heuristics. This work which identifies
heuristics can and cannot attain improvements in the com-
pletion time of non-makespan machines using this iterative
approach.
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1 Introduction

The use of heuristics for resource allocation in a
heterogeneous computing (HC) environment is an impor-
tant area of research and has been widely studied (e.g.,
[2, 3, 15, 18]). One metric for evaluating the performance
of heuristics is the maximum completion time over all ma-
chines (makespan). The makespan machine is defined as
the machine with the largest completion time.

In some environments, it is useful to minimize the fin-
ishing times of the non-makespan machines, i.e., those ma-
chines that are not the last to complete. As an example,
consider a production environment where a set of known
tasks are mapped to resources off-line before execution be-
gins. Minimizing the finishing times of all the machines
will provide the earliest available ready time for these ma-
chines to execute tasks that were not initially considered. In
this study, we present one approach, for attempting the fin-
ishing time of each machine in a given resource allocation.
There are different ways to capture the concept of minimiz-
ing the finishing times of a set of heterogeneous machines,
e.g., minimize the average finishing time, or minimize the
largest finishing time among the machines. This iterative
approach decreases the finishing time by repeatedly run-
ning a mapping heuristic to minimize the makespan of the
considered machines and tasks. For each successive itera-
tion, the makespan machine of the previous iteration and the
tasks assigned to it are removed from the set of considered
machines and tasks. This work studies the performance of
resource allocation heuristics that use the iterative approach.

This paper has two main contributions. The first contri-
bution is the introduction of an iterative technique that may



be able to reduce the completion times of non-makespan
machines when used with certain heuristics. The second
contribution is a detailed mathematical study of the per-
formance of a variety of resource allocation heuristics for
which the iterative technique does not change the mapping.

The heuristics considered for this study were Minimum
Execution Time, Minimum Completion Time, Min-Min [8],
Genitor [17], Switching Algorithm [14], Sufferage [14, 4],
and K-Percent Best [14]. The remainder of the paper is or-
ganized as follows. Section 2 describes the problem state-
ment in detail. The heuristics are discussed in detail in Sec-
tion 3. The related work is reviewed in Section 4, and Sec-
tion 5 concludes the work.

2 Problem Statement

Let T be the set of tasks that must be executed on a set
of machines, M . The estimated time to compute (ETC)
each task on each machine is assumed to be known in
advance and contained in an ETC matrix [3]. The ETC
values can be based on user supplied information, experi-
mental data, or task profiling and analytical benchmarking
[1, 6, 7, 10, 13, 20]. Determination of ETC values is a sep-
arate research problem; the assumption of such ETC infor-
mation is a common practice in resource allocation research
(e.g., [7, 9, 10, 12, 16, 19]). The initial ready time for a ma-
chine is the time at which the machine will become avail-
able to begin processing its first task from the set of tasks
T . Tasks are assumed to be independent, i.e., no inter-task
communication is required. We make the common simpli-
fying assumption that each machine can only execute one
task at a time, i.e., multitasking is not allowed (e.g., [5, 11]).

For each heuristic, the mapping it produces when all
tasks and machines are available is called the original
mapping. After each iteration (of the iterative approach),
the makespan machine and the tasks assigned to it are re-
moved from consideration, and the ready times for all other
machines are reset to their initial ready times. The tasks
that are available for mapping (mappable tasks) are mapped
again, using the same heuristic to minimize makespan
among the remaining machines; this mapping is called the
iterative mapping. This iterative process is repeated until
only one machine remains. The goal of this study is to in-
vestigate whether this iterative procedure can reduce the fin-
ishing time of some machines compared to using only the
original mapping. We show that the effectiveness of the iter-
ative approach is heuristic dependent and study the behavior
of the iterative approach for each of the chosen heuristics.

Whether the iterative approach will change a mapping
often depends on how ties are broken within a heuristic. A
tie in a resource allocation heuristic is when a heuristic must
choose from two equally good solutions, i.e., the heuristic
determines both mappings are the best possible mappings.

Two types of methods to break ties will be considered for
this study. The first method is to break ties deterministically,
e.g., the oldest task is chosen. The second method is to
break ties randomly, e.g., if two machines are tied each will
have a 0.5 probability of being chosen.

We define the function RT that receives as an argument a
machine (m) from the HC suite and returns the ready time
for this machine given the tasks that are currently assigned
to the machine. The function ETC receives as arguments
a task (t) and a machine (m) from the HC suite and re-
turns the estimated time to compute. We can then define
the completion time, CT, of a new task t on machine m
with Equation 1.

CT (t, m) = ETC(t, m) + RT (m) (1)

3 Heuristics

3.1 Genitor

Genitor [17] is a steady-state genetic algorithm that has
been shown to work well for several problem domains, in-
cluding resource allocation and job shop scheduling. Geni-
tor uses chromosomes to represent possible solutions, e.g.,
all tasks and the machines to which they are assigned. Gen-
itor has a population that consists of multiple chromosomes
and has two operators to search for better solutions. The
first operator is crossover, an operator that combines two
chromosomes to produce two new chromosomes. The sec-
ond operator is mutation, an operator that has a probability
of changing tasks assignments within a chromosome. Gen-
itor can be summarized by the procedure shown in Figure
1.

For each iteration (of the iterative approach), the map-
ping found by Genitor in the previous iteration, excluding
the makespan machine and the tasks assigned to it, is seeded
into the population of the current iteration. The ranking
in Genitor guarantees that the final mapping is either the
seeded mapping or a mapping with a smaller makespan,
among the machines considered in the current iteration.
Thus, for Genitor the iterative technique will result in ei-
ther an improvement or no change.

3.2 Min-Min

The Min-Min heuristic [8] is a two phase greedy heuris-
tic. The procedure for this heuristic is given in Figure 2.
The performance of the Min-Min heuristic will depend on
the method used to break ties. If the ties are broken deter-
ministically then the individual completion times for each
machine do not improve. If ties are broken randomly then
the makespan can increase.



1 An initial population of mappings is generated.

2 The mappings in the population are ordered based on
makespan.

3 while (the stopping criteria not met)

a Two chromosomes are randomly selected to act
as parents for crossover.

i A random cut-off point is generated.
ii the machine assignments of the tasks below

the cut-off point are exchanged.
iii The offspring is inserted into the sorted pop-

ulation based on its makespan. The worst
chromosomes are removed (population size
stays fixed).

b A chromosome is randomly selected for muta-
tion.

i For the chosen chromosome, a random task
is chosen and its machine assignment is ar-
bitrarily modified.

ii The offspring is inserted into the sorted pop-
ulation based on its makespan. The worst
chromosome is removed (population size
stays fixed).

4 The best solution is output.

Figure 1. Summary of one possible proce-
dure that can be used to implement Genitor

Theorem
If Min-Min is used as a mapping heuristic with the

iterative approach and ties are broken deterministically,
then the mappings produced by all the iterations are
identical.

Proof
The initial ready times, for this proof, can be considered

0 without loss of generality. Assume the makespan ma-
chine of the original mapping is machine µ. The iterative
approach does not change the assignment of tasks that were
assigned to machine µ in the original mapping; i.e., tasks
assigned to the makespan machine in the original mapping
are ignored in the first iterative mapping.

Inductive hypothesis: Consider the nth task mapped by
Min-Min in the original mapping. Let P (n) be the state-

1 A task list is generated that includes all the tasks as
unmapped tasks.

2 For each task in the task list, the machine that gives the
task its minimum completion time (first Min) is deter-
mined (ignoring other unmapped tasks).

3 Among all task-machine pairs found in 2, the pair that
has the minimum completion time (second Min) is de-
termined.

4 The task selected in 3 is removed from the task list and
is mapped to the paired machine.

5 The ready time of the machine on which the task is
mapped is updated.

6 Steps 2-5 are repeated until all tasks have been
mapped.

Figure 2. Procedure for Min-Min

ment that the nth task will have the same completion time
and be mapped to the same machine in both the original
mapping and the first iterative mapping, if ties are broken
deterministically. For the basis and inductive steps, there
are two cases to consider: the case when the task is mapped
to machine µ and the case when the task is not mapped to
machine µ.

To prove P (n) is true for ∀n ≥ 1 we need to prove:
1) P (1) is true
2) (∀k) [P (r) is true for all r, 1 ≤ r ≤ k ⇒ P (k + 1) is
true ]

Basis Step: Prove that P (1) is true.
Case 1: The first task to be mapped in the original mapping
is assigned to machine µ. For the first case, P (1) is clearly
true because the tasks assigned to machine µ in the origi-
nal mapping remain assigned to machine µ in the iterative
mapping;
Case 2: The first task, denoted t1, to be mapped in the orig-
inal mapping is not assigned to machine µ. In the original
mapping, let t1 be assigned to machine β1 (β1 ∈ M and
β1 �= µ). Given the definition of the Min-Min mapping
procedure and that ready times are 0 for all machines, t1 is
assigned to its minimum execution time machine. For the it-
erative mapping, t1 is still the first task to be assigned, there-
fore, all of the machines are idle and t1 is assigned to its
minimum completion time machine. Because the ETC val-
ues in the iterative mapping are identical to those in the orig-
inal mapping, the minimum execution time machine (i.e.,
the minimum completion time machine) for task t1 remains



machines
task m1 m2 m3

t1 4 1 3
t2 5 6 7
t3 3 1 2
t4 5 5 4

Table 1. ETC matrix for Min-Min example

unchanged from the original mapping. Therefore, P (1) is
clearly true.

Inductive Step: For the inductive step assume that ∀r
P (1 ≤ r ≤ k) is true and prove P (k + 1) is true. The
assumption that P (1 ≤ r ≤ k) is true implies that ready
times, when the (k + 1)th task is mapped, are equal in the
original mapping and the first iterative mapping.
Case 1: The (k+1)th task to be mapped in the original map-
ping is assigned to machine µ; because the tasks assigned to
machine µ in the original mapping remain assigned to ma-
chine µ in the iterative mapping, then P (k + 1) for the first
case is clearly true.
Case 2: The (k + 1)th task, denoted tk+1, to be mapped
in the original mapping is not assigned to machine µ. As-
sume tk+1 is assigned to machine βk+1 (βk+1 ∈ M and
βk+1 �= µ) in the original mapping. Task tk+1 was as-
signed to its minimum completion time machine, this im-
plies tk+1 on machine βk+1 is the smallest task-machine
pair. The inductive step assumes the completion times of all
tasks are the same, therefore the ready times, when tk+1 is
mapped, of the original mapping and the iterative mapping
are identical. Thus, the completion time of tk+1 on ma-
chine βk+1 is still the smallest completion time; therefore,
tk+1 is assigned to machine βk+1 in the iterative mapping,
and P (k + 1) is clearly true.

Generalization: The above can be generalized for itera-
tions i and i+1 by considering i to be the original mapping
and i + 1 to be the first iterative mapping.

Example of Min-Min increasing makespan
by breaking ties randomly

For this example, we can consider the initial ready times
of machines to be 0. The ETC matrix used is shown in Table
1.

Original Mapping
The original mapping is shown in Table 2 and a visual

representation is shown in Figure 3. The term “mi CT”
denotes the completion time of the task in the correspond-
ing row for machine mi. The following are the completion
times after the original mapping: m1: 5, m2: 2, and m3: 4.
The makespan machine is m1, therefore machine m1 and
task t2 will not be considered for future iterations.
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Figure 3. Original mapping for Min-Min exam-
ple

machines
first resource allocation m1 CT m2 CT m3 CT

t1 → m2 4 1 3
t2 5 6 7
t3 3 1 2
t4 5 5 4

second resource allocation m1 CT m2 CT m3 CT
t2 5 7 7

t3 → m2 3 2 2
t4 5 6 4

third resource allocation m1 CT m2 CT m3 CT
t2 5 8 7

t4 → m3 5 7 4
fourth resouce allocation m1 CT m2 CT m3 CT

t2 → m1 5 8 11

Table 2. Original mapping for Min-Min exam-
ple

First iterative mapping
The first iterative mapping shown in Table 3, consid-

ers the remaining tasks t1,t3, and t4 and machines m2 and
m3. A visual representation of the first iterative mapping is
shown in Figure 4. In this example, t3 may be assigned to
m3 because ties are broken randomly. In the original map-
ping we considered that this tie was broken by assigning t3
to m2. This change from the original mapping causes the
makespan to increase. The final completion times are as
follows: m1: 5 (same as original mapping), m2: 1, and m3:
6. The new makespan machine is m3.

This example proves that the makespan can increase if
the Min-Min heuristic is used.
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Figure 4. First iterative mapping for Min-Min
example

machines
first resource allocation m2 CT m3 CT

t1 → m2 1 3
t3 1 2
t4 5 4

second resource allocation m2 CT m3 CT
t3 → m3 2 2

t4 6 4
third resource allocation m2 CT m3 CT

t4 → m3 6 6

Table 3. First iterative mapping for Min-Min
example

3.3 Minimum Completion Time (MCT)

The procedure to implement the Minimum Completion
Time (MCT) heuristic [3] is shown in Figure 5. With the
iterative approach, the individual completion times for each
machine do not improve over iterative mappings.

Theorem
If MCT is used as a mapping heuristic with the itera-

tive approach and ties are broken deterministically, then the
mappings produced by all the iterations are identical.

Proof
The initial ready times, for this proof, can be considered

0 without loss of generality. Let the makespan machine of
the original mapping be machine µ. The iterative approach
does not change the assignment of tasks that were assigned
to machine µ in the original mapping; i.e., tasks assigned to
the makespan machine in the original mapping are ignored
in the first iterative mapping. The order of the task list is

1 A task list is generated that includes all unmapped
tasks in a given arbitrary order.

2 The first task in the list is mapped to its minimum com-
pletion time machine (machine ready time plus esti-
mated computation time of the task on that machine).

3 The task selected in step 2 is removed from the task
list.

4 The ready time of the machine on which the task is
mapped is updated.

5 Steps 2-4 are repeated until all the tasks have been
mapped.

Figure 5. Procedure for MCT

arbitrary but fixed between iterations.

Inductive hypothesis: Consider the nth task mapped by
MCT in the original mapping. Let P (n) be the statement
that the nth task will have the same completion time and be
mapped to the same machine in both the original mapping
and the first iterative mapping, if ties are broken determinis-
tically. For the basis and inductive steps, there are two cases
to consider: the case when the task is mapped to machine µ
and the case when the task is not mapped to machine µ.

To prove P (n) is true for n = 1 we need to prove:
1) P (1) is true
2) (∀k) [P (r) is true for all r, 1 ≤ r ≤ k ⇒ P (k + 1) is
true ]

Basis Step: Prove that P (1) is true.
Case 1: The first task is assigned to machine µ in the origi-
nal mapping; For the first case, P (1) is clearly true because
the tasks assigned to machine µ in the original mapping re-
main assigned to machine µ in the iterative mapping.
Case 2: The first task, denoted t1, to be mapped in the orig-
inal mapping is not assigned to machine µ. In the original
mapping, let t1 be assigned to machine β1 (β1 ∈ M and
β1 �= µ). The MCT heuristic uses a list to determine the
order tasks are mapped. The first task in the list will not
change from the original mapping to the iterative mapping.
This implies t1 is also the first task to be assigned in the
iterative mapping. The minimum execution time machine
(i.e., the minimum completion time machine) for task t1
remains unchanged from the original mapping because the
ETC values in the iterative mapping are identical to those in
the original mapping. Therefore, P (1) is clearly true.

Inductive Step: For the inductive step we assume ∀r
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Figure 6. Original mapping for MCT example

P (1 ≤ r ≤ k) is true and prove that P (k + 1) is true. The
assumption that P(1 ≤ r ≤ k) is true implies that the ready
times, when the (k + 1)th task is mapped, are equal in the
original mapping and the iterative mapping.
Case 1: The (k + 1)th task is assigned to machine µ in the
original mapping. P (k + 1) for the first case is clearly true
because the tasks assigned to machine µ in the original map-
ping remain assigned to machine µ in the iterative mapping
.
Case 2: The (k + 1)th task, denoted tk+1, to be mapped
in the original mapping is not assigned to machine µ. As-
sume tk+1 is assigned to machine βk+1 (βk+1 ∈ M and
βk+1 �= µ) in the original mapping. This implies that tk+1

on machine βk+1, in the original mapping, has the min-
imum completion time. The inductive step assumes the
ready times, when tk+1 is mapped, of the original map-
ping and the iterative mapping are identical. Thus, the com-
pletion time of tk+1 on machine βk+1 is identical in the
original mapping and the iterative mapping; therefore, tk+1

is assigned to machine βk+1 in the iterative mapping, and
P (k + 1) is clearly true.

Generalization: The above can be generalized for itera-
tions i and i+1 by considering i to be the original mapping
and i + 1 to be the first iterative mapping.

Example of MCT increasing makespan
by breaking ties randomly

For this example, we can consider the initial ready times
to be 0. Consider the following mapping order for the MCT
heuristic: t1, t2, t3, and t4. The ETC matrix used for this
example is shown in Table 4.

Original Mapping
The example of MCT increasing the makespan is easier

to demonstrate than the Min-Min case. This example relies

machines
task m1 m2 m3

t1 3 2 2
t2 4 1 4
t3 5 4 3
t4 4 5 4

Table 4. ETC matrix for MCT example

machines
assignment m1 CT m2 CT m3 CT
t1 → m2 3 2 2
t2 → m2 4 3 4
t3 → m3 5 7 3
t4 → m1 4 8 7

Table 5. Original mapping for MCT example

on a tie in the mapping of task t1 between m2 and m3. In
the original mapping, t1 is mapped to m2. The resource
allocations are shown in Table 5 and a visual representation
is shown in Figure 6. The following are the completion
times: m1: 4, m2: 3, and m3: 3. The makespan machine is
m1.

First iterative mapping
For the first iterative mapping, we assign task t1 to m3.

This will cause the makespan machine to change. The re-
source allocations for the first iterative mapping are shown
in Table 6 and a visual representation is shown in Figure 7.
The following are the final completion times: m1: 4 (same
as original), m2: 1, and m3: 5. The new makespan machine
is m3.

3.4 Minimum Execution Time (MET)

The details of the Minimum Execution Time (MET)
heuristic [3] are shown in Figure 8. The MET heuristic will
not change its mapping from iteration to iteration. The fol-
lowing trivial proof shows that if ties are broken determin-
istically, e.g., using the machine with the lowest reference
number, then the mapping will not change from iteration to
iteration.

Proof MET mapping will not change
from iteration to iteration

The statement we want to prove is that for any task t ∈ T
the original mapping and the iterative mapping are the same
for non-makespan machines given that a tie between two
or more machines (i.e., different machines have the same
execution time) will always be broken in a deterministic
way. The makespan machine of the original mapping is
referred to as µ.
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Figure 7. First iterative mapping for MCT ex-
ample

machines
assignment m2 CT m3 CT
t1 → m3 2 1
t2 → m2 1 6
t3 → m3 5 5

Table 6. First iterative mapping for MCT ex-
ample

Case 1: Task t is assigned to the makespan machine (µ)
Original mapping:
Task t is assigned to machine µ
Iterative mapping:
Task t is not available for resource allocation, because it
was already assigned to machine µ in the original mapping.
Case 2: Task t is not assigned to machine µ
Original mapping:
Task t is assigned to its MET machine β (β �= µ)
Iterative mapping:
The MET machine is dependent on the ETC values of t for
all machines. This implies that t is assigned to its MET
machine β because the ETC values do not change.

Example of MET increasing makespan
by breaking ties randomly

For this example, we can consider the initial ready times
to be 0. Consider the ETC matrix shown in Table 4 and the
following mapping order: t1, t2, t3, and t4.

1 A task list is generated that includes all unmapped
tasks in a given arbitrary order.

2 The first task in the list is mapped to its minimum exe-
cution time machine.

3 The task selected in step 2 is removed from the task list

4 Steps 2-3 are repeated until all tasks have been
mapped.

Figure 8. Procedure for MET
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Figure 9. Original mapping for MET example

Original Mapping

The resource allocations of the original mapping are
shown in Table 7 and a visual representation is shown in
Figure 9. There are two MET machines for t1. In the origi-
nal mapping, task t1 will be assigned to m2. The following
are the completion times after the MET heuristic finishes
mapping: m1: 4, m2: 3, and m3: 3. The makespan ma-
chine is m1.

First iterative mapping

The makespan machine from the original mapping (m1)
and the task assigned to it (t4) are not considered for the
iterative mapping. In the iterative mapping, t1 is mapped
to m3. This change causes the makespan to increase. The
resource allocations are shown in Table 8 and a visual rep-
resentation is shown in Figure 10. The completion times
for the first iterative mapping are: m1: 4 (same as original
mapping), m2: 1, and m3: 5. The new makespan machine
is m3.



machines
assignment m1 ETC m2 ETC m3 ETC
t1 → m2 3 2 2
t2 → m2 4 1 4
t3 → m3 5 4 3
t4 → m1 4 5 4

Table 7. Original mapping for MET example
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Figure 10. First iterative mapping for MET ex-
ample

3.5 Switching Algorithm (SWA)

The Switching Algorithm (SWA) is adapted from [14].
It was designed for use in dynamic environments. The pro-
cedure for SWA is shown in Figure 13. The switching al-
gorithm is a hybrid of the MET and MCT heuristics. An
example of SWA increasing its makespan using the itera-
tive approach can be found even for the case when ties are
broken deterministically.

Example of SWA increasing makespan
Consider the ETC matrix shown in Table 9 and the

following mapping order: t1, t2, t3, t4, and t5. The intial
ready times for all the machines is 0. SWA will switch
from MCT to MET when the balance index (BI) is more
than the high threshold of 0.49 and will switch from MET
to MCT when the BI goes below the low threshold of 0.48.

Original Mapping
The original mapping is shown in Table 10 and a visual

representation is shown in Figure 11. The completion times
for the original mapping are: m1: 6, m2: 5, and m3: 5. The
makespan machine is m1.

machines
assignment m2 ETC m3 ETC
t1 → m3 2 2
t2 → m2 1 4
t3 → m3 4 3

Table 8. First iterative mapping for MET ex-
ample

machines
task m1 m2 m3

t1 6 10 12
t2 1 2 4
t3 5 2.5 4
t4 6 3 2.5
t5 4 2 1

Table 9. ETC matrix for SWA example

First Iterative Mapping
The first iterative mapping is shown in Table 11 and a

visual representation is shown in Figure 12. The makespan
machine (m1) and the task assigned to it (t1) are not con-
sidered for resource allocation in the first iterative mapping.
Tasks t2 and t3 are assigned to the same machines in the
original mapping and the first iterative mapping, however,
t4 is assigned to m3 because the resource allocation of t4
has a different BI. The completion times for the first itera-
tive mapping are: m1: 6, m2: 4, and m3: 6.5. The new
makespan machine is m3.

3.6 K-percent Best Algorithm

The K-percent Best Algorithm is adapted from [14]. The
K-percent Best Algorithm, similar to the SWA, is a hy-
brid of MET and MCT. The procedure to implement the
K-percent Best is shown in Figure 14. If the percentage
is (100/number of machines)% then the K-percent Best is
identical to the MET heuristic, however, if the percentage
is 100% then it is identical to the MCT heuristic. Proof of
the K-percent Best Algorithm increasing its makespan can
be found even for the case when ties are broken determinis-
tically.

Example of K-percent Best increasing makespan

For this example, we can consider the initial ready times
of machines to be 0. Consider the ETC matrix shown in Ta-
ble 12 and the following mapping order: t1, t2, t3, t4, and
t5. The percent, for this example, is set to 70%. This im-
plies that for the original mapping the best two machines are
used for mapping, and for the first iterative mapping only
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Figure 11. Original mapping for SWA example

BI assignment CT (m1,m2,m3) heuristic
x t1 → m1 6, 0, 0 MCT
0 t2 → m2 6, 2, 0 MCT
0 t3 → m3 6, 2, 4 MCT

1/3 t4 → m2 6, 5, 4 MCT
2/3 t5 → m3 6, 5, 5 MET

Table 10. Original mapping for SWA example

one machine is considered. This is the critical difference
between the first iterative mapping and the original map-
ping. The option of only having one machine forces the K-
percent Best Algorithm to perform like the MET heuristic
in the first iterative mapping.

Original Mapping
The results of the original mapping are shown in Table 13
and a visual representation is shown in Figure 15. The
K-percent Best machines are also shown. The completion
times for the original mapping are: m1: 6, m2: 5, and m3:
5.5. The makespan machine is m1.

First Iterative Mapping
The makespan machine (m1) and the task assigned to it (t1)
are not considered for resource allocation in the first itera-
tive mapping. The results of the first iterative mapping are
shown in Table 14 and a visual representation is shown in
Figure 16. The completion times for the first iterative map-
ping are: m1: 6, m2: 7, and m3: 3. The makespan machine
after the first iteration becomes m2. This example proves
that for K-percent Best the makespan can increase if ties
are broken deterministically.
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Figure 12. First iterative mapping for SWA ex-
ample

BI assignment CT (m2,m3) heuristic
x t2 → m2 2, 0 MCT
0 t3 → m3 2, 4 MCT

1/2 t4 → m3 2, 6.5 MET
4/13 t5 → m2 4, 6.5 MCT

Table 11. First iterative Mapping for SWA ex-
ample

3.7 Sufferage Algorithm

The Sufferage Algorithm (shown in Figure 17) is
adapted from [4, 14]. The sufferage algorithm is a greedy
algorithm that does a limited local search. The proof of the
sufferage algorithm increasing makespan with the iterative
approach can be found even for the case when ties are bro-
ken deterministically.

The example, however, is considerably more complex
than the examples provided for K-percent Best and SWA.

Example of sufferage increasing makespan

For this example, we can consider the initial ready times
of machines to be 0. Consider the ETC matrix shown in
Table 15.

Original Mapping
The original mapping is shown in Table 16 and a visual

representation is shown in Figure 18. The completion times
of the original mapping using the Sufferage Algorithm are
as follows: m1: 10, m2: 9.5, and m3: 9.5. The makespan
machine is m1.



1 A task list is generated that includes all unmapped
tasks in a given arbitrary order.

2 The first task in the list is mapped using the MCT
heuristic.

3 The load balance index is calculated for the system
(min. ready time / max. ready time).

4 The heuristic used to map the task is determined as
follows:

i If the load balance index > high threshold, the
MET heuristic is selected to map future tasks.

ii If the load balance index < low threshold, the
MCT heuristic is selected to map future tasks.

iii Otherwise, the current heuristic remains selected.

5 Steps 3-4 are repeated until all tasks have been
mapped.

Figure 13. Description of SWA

machines
task m1 m2 m3

t1 6 10 12
t2 1 2 4
t3 2 4 3
t4 5 3 4
t5 6 2 2.5

Table 12. ETC matrix for the K-percent Best
example

First Iterative Mapping
The first iterative mapping is shown in Table 17 and a vi-

sual representation is shown in Figure 19. The completion
times of the first iterative mapping using the Sufferage Al-
gorithm are as follows: m1: 10, m2: 10.5, and m3: 8.5. The
new makespan machine is m2. This example shows that the
makespan can increase when using the iterative approach.

4 Related Work

Makespan is often the performance feature to be opti-
mized in the study of resource allocation in a heterogeneous
computing system. Many studies explore different methods
of reducing the makespan of the given set of tasks. The
literature was examined to select a set of heuristics appro-
priate for the HC environment considered in this study. The

1 A task list is generated that includes all unmapped
tasks in a given arbitrary order.

2 A subset is formed by picking the M · ( k
100 ) best ma-

chines based on the execution times for the task.

3 The task is assigned to a machine that provides the ear-
liest completion time in the subset.

4 The task is removed from the unmapped task list.

5 The ready time of the machine on which the task is
mapped is updated.

6 Steps 2-5 are repeated until all tasks have been
mapped.

Figure 14. Procedure for K-percent Best

t1

t2

t3

t4

t5

0 5 10

m1

m2

m3
m

ac
h

in
es

time

Figure 15. Original mapping for K-percent
Best example

MET, MCT and Min-Min heuristics implemented here are
adapted from [8]. The K-percent Best and Switching Al-
gorithm were adapted from [14] and the Sufferage Algo-
rithm was adapted from [14]. The variation of Genitor im-
plemented here is an adaptation of the Genitor heuristic in-
troduced in [17].

In the static environment studied in [3], heuristics were
used to minimize makespan. The goal of [3] was to reduce
the makespan in a static environment. The goal of this study
is to investigate whether the iterative procedure can reduce
the finishing time of some machines compared to using only
the original mapping. Our goal is clearly different from the
goal of [3] because the reduction of makespan does not im-
ply a reduction in the completion time of all machines. The
work in [14] reduces the makespan of a set of tasks in a
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Figure 16. First iterative mapping for K-
percent Best example

dynamic mapping environment, i.e., the arrival times of the
tasks are not known a priori. The study in [8] attempts to
minimize the makespan of a set of tasks on a heterogeneous
multiprocessor system.

5 Conclusions

An iterative approach for minimizing the finishing times
of machines in a heterogeneous computing environment
was proposed. The performance of several heuristics was
analyzed for such an approach. The greedy heuristics stud-
ied (Min-Min, MCT, MET, SWA, K-percent Best, and Suf-
ferage) did not guarantee an improvement in the comple-
tion time among remaining machines. The mappings gen-
erated by MET, MCT, and Min-Min heuristics were proven
to not change over successive iterations, if ties are broken
deterministically. If ties are broken randomly, the makespan
of MET, MCT and Min-Min can actually increase. When
the iterative approach is used, the Switching Algorithm,
K-percent Best and Sufferage heuristics all produced map-
pings that could increase their makespan when ties are bro-
ken deterministically. The Genitor-based approach will
keep the same mapping or produce a better mapping be-

assignment CT (m1,m2,m3) K-% machines
t1 → m1 6, 0, 0 m1,m2

t2 → m2 6, 2, 0 m2,m3

t3 → m3 6, 2, 3 m1,m3

t4 → m2 6, 5, 3 m2,m3

t5 → m3 6, 5, 5.5 m2,m3

Table 13. Original mapping for K-percent Best
example

1 A task list (L) is generated that includes all unmapped
tasks in a given arbitrary order.

2 While there are still unmapped tasks:

i Mark all machines as unassigned.

ii For each task tk ∈ L.

a The machine mj that gives the earliest com-
pletion time is found.

b The Sufferage value is calculated. (Suffer-
age value = second earliest completion time
minus earliest completion time).

c If machine mj is unassigned then assign tk
to machine mj , delete tk from L, and mark
mj as assigned. Otherwise, if the suffer-
age value of the task (ti) already assigned
to mj is less than the sufferage value of task
tk then unassign ti, add ti back to L, assign
tk to machine mj , and remove tk from L.

iii The ready times for all machines are updated.

Figure 17. Procedure for Sufferage

cause the best solution is preserved from one iteration (of
the iterative approach) to the next iteration. Implementing
a form of “seeding” similar to Genitor’s seeding to other
heuristics would guarantee that a heuristic can never in-
crease makespan from one iteration to the next. This would
cause the best solutions to be preserved across iterations,
thus changing the mapping only if better mapping is found.

Acknowledgments: The authors thank Jay Smith and David
Janovy for their valuable comments.
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