
Abstract 

In this paper, we study the problem of an optimal 
assignment of a tree-structured context reasoning 
procedure onto the computation resources in a host-
satellites configuration. The objective function to be 
minimized is the end-to-end processing delay, which is a 
crucial factor in a number of context- aware applications, 
e.g. mobile healthcare applications. The presented 
solution is a modification of an earlier method proposed 
by Bokhari, in which the optimal assignment problem to 
minimize the bottleneck processing time is transformed 
into a path-searching problem in a doubly weighted 
graph. Due to the incompatible requirements raised in 
our study, e.g. a-prior known location of the sensors, we 
propose a colouring scheme and a new search algorithm 
in this paper to obtain the optimal assignment in order to 
satisfy our objective.  

1. Introduction 

A context-aware application adapts according to the 
context changes such as user context and communication 
and computation environment context. To achieve the 
adaptive behavior, it relies on a process to convert a lower 
level context information (possibly obtained from 
multiple sensors) into a higher level context information 
in the form understandable by the context-aware 
application [1, 2]. We refer to this process as context 
reasoning procedure.

A criteria of interest to perform the context reasoning 
procedure could be to minimize the end-to-end context 
processing delay and thus to facilitate instantaneous 
application adaptation to the context changes. The 
following example from the healthcare domain will be 
helpful to understand this concept (Figure 1). In the 
context-aware epilepsy tele-monitoring application [3, 4], 
a patient’s mobile terminal (e.g. a PDA) is connected with 
a number of sensor boxes. Each sensor box can measure 
and process a different type of context information, e.g. 
patient’s ECG and patient’s activities (lower level 

context). The processed results are sent to the mobile 
terminal to further calculate the probability of an epileptic 
seizure (higher level context). If a serious seizure attack is 
detected or forecasted, the mobile terminal sends an alarm 
to a healthcare center automatically. Based on this alarm, 
the healthcare center could inform both the patient and the 
caregivers in the vicinity of the patient to take appropriate 
actions. Undoubtedly, the earlier the warning is received, 
the better the chances are to avoid catastrophic 
consequences. 

Figure 1: An epilepsy tele-monitoring 
application  

Considering the heterogeneity of the communication 
and computation resources involved in the context-aware 
applications, a challenge is to investigate on how to 
minimize the end-to-end processing delay in the context 
reasoning procedure by effectively utilizing the available 
resources. This is a problem of assigning distributed 
computation across the resources of a networked multi-

Optimal Assignment of a Tree-Structured Context Reasoning Procedure onto 

a Host-Satellites System 

Hailiang Mei, Pravin Pawar, Ing Widya 
University of Twente 

Dept. of Computer Science 
P.O. Box 217, 7500 AE, The Netherlands 

{H.Mei, P.Pawar, I.A.Widya@utwente.nl} 

1-4244-0910-1/07/$20.00 ©2007 IEEE



processor system [5]. The assignment of a context 
reasoning procedure onto the networked computation 
resources is found to be similar to an industrial case 
studied earlier by Bokhari [6] in the area of parallel 
computing. In order to find an optimal assignment of the 
tree-structured task graph onto a host-satellites system to 
minimize the bottleneck processing time, Bokhari 
presented an elegant solution to construct a doubly 
weighted assignment graph. In this assignment graph, any 
path connecting two distinguished nodes represents a 
possible assignment and S weight and B weight of this 
path can be calculated based on the two weights of each 
edge along the path. Therefore, the assignment problem 
becomes a path-searching problem which can be solved 
by the SB (to find a path with minimal of max(S weight, 
B weight)) algorithm presented in [6].  

However, the addressed context-aware applications, in 
particular the context reasoning procedures, have 
incompatible requirements than the conditions needed by 
the method proposed by Bokhari. In the pre-described 
tele-monitoring application, for example, the number of 
sensor boxes and the sensors connected to these boxes are 
a priori known. Therefore, sensors are not freely 
assignable to sensor boxes as would be required if the 
method of Bokhari will be used. Furthermore, our 
different objective function requires the study of a new 
measure of the path in the assignment graph. In this work, 
we modify Bokhari’s method to our needs, in particular 
we propose a colouring scheme to solve the sensor 
connections and replace the SB algorithm by the SSB
algorithm (to find a path with minimal of Sum (S weight, 
B weight)) that is used to obtain the optimal assignment 
with minimum end-to-end processing delay.  

The rest of this paper is organized as follows: Section 
2 briefly summarizes the related work and highlights the 
difference between our problem and the problem 
considered by Bokhari. Section 3 formulates the problem 
of assigning a context reasoning procedure optimally 
across a host-satellites network. Section 4 proposes the 
algorithm to search an optimal SSB path in a Doubly 
Weighted Graph (DWG). Section 5 explains how to 
transform the targeted assignment problem into a SSB
path-searching problem in a coloured DWG and how the 
proposed SSB algorithm can be applied in this coloured 
graph. Section 6 concludes the work. 

2. Related work  

The research on the task assignment (also known as 
partitioning or mapping) was pioneered by Stone and 
Bokhari [7, 8] in the early 80’s. For most of the cases, it is 
a well-known NP-complete problem [9]. Therefore, 
researchers further focused on heuristic approaches to 
solve these problems [10-12]. In his inspiring work [6], 
Bokhari studied several mapping problems with special 

structures and proposed the exact algorithms with the 
polynomial time complexity, e.g. chain to chain mapping 
and tree to host-satellites mapping. Improved algorithms 
on chain to chain mapping have been reported in [13-17]. 
Improved algorithms on tree to host-satellites mapping
have been reported: In [14], a different implementation of 
Dijkstra’s algorithm is used to reduce the complexity of 
the SB algorithm from O(|V|2log|V|) to O(|V|(log|V|)2), 
where |V| denotes the number of tasks in the tree. In [18], 
a tree condense procedure is introduced to reduce the size 
of the task tree. The condensed task tree has a monotonic 
structure which permits a faster search (O(|V|log|V|)) of an 
optimal assignment without the help of doubly weighted 
assignment graph.. 

Our work (in tree to host-satellites mapping) differs 
from Bokhari’s original approach and those follow-up 
studies in two aspects.  

Firstly, the following two constraints [6, 18] which do 
not hold for our case are relaxed by a colouring scheme: 1) 
If two nodes are assigned to a satellite, their lowest 
common ancestor is also assigned to the same satellite. 2) 
There are as many satellites as there are leaf nodes in the 
tree and that it is possible not to use them if the optimal 
assignment so dictates, i.e. partitioning on the tree is done 
first and then the leaf nodes are located on the satellites 
based on the result.  

Secondly, Bokhari proposed the SB algorithm to find a 
partition that minimizes the bottleneck processing time 
while our goal is to find a partition that minimizes the 
end-to-end processing delay. We propose the SSB
algorithm to tackle this different objective. 

3. Problem formulation 

Based on the described tele-monitoring example and 
other observations (e.g. examples from the SNMP based 
network monitoring, industry cases presented by Bokhari), 
a context reasoning procedure could be modeled as a tree 
consisting of a number of CRUs (Context Reasoning 
Units) (Figure 2). A CRU is defined as a unit of context 
reasoning procedure which takes care of one of the 
functions involved in the reasoning of a higher level 
context from the lower level context. A directed link 
represents the precedence relation of CRUs, i.e. the flow 
of context information. The raw context information is 
captured by sensor nodes, i.e. a kind of  CRU at the leaf 
level which does not perform any context processing. The 
ultimate reasoning is performed by the CRU at the root 
node, the result of which is used by the context-aware 
application to achieve the desired behavior. In many cases, 
the computation resources needed to execute the context 
reasoning procedure can be modeled as a star network, i.e. 
a single host machine connecting to a number of satellites.
For example, in the tele-monitoring example (Figure 1), 



the sensor boxes are satellites while the mobile terminal is 
a host. 

We assume that the CRUs placed on the host cannot 
start processing unless they receive the processed context 
information from all the precedent CRUs located on the 
satellites. Therefore, we formulate our problem as follows: 
Given a context reasoning procedure modeled as a tree 
structure and the corresponding computation and 
communication resources modeled as a host-satellites 
network, find an optimal assignment of CRUs to the host 
and satellites such that it results in a minimum end-to-end 

processing and communication delay, i.e. to minimize the 
summation of maximum processing time spent at the 
satellite (including the time to transmit context from the 
satellite to the host) and the processing time required at 
host machine to obtain the higher level context.

4. Optimal SSB path in a doubly weighted 

graph 

In this section, we study a doubly weighted graph 
(DWG) and introduce a measure of paths in the DWG, the 
SSB weight. An algorithm is proposed to search for the 
optimal path that has minimum SSB weight.  

4.1. Doubly weighted graph (DWG) and SSB

weight 

Similar to [6], DWG G=(V,E) has two ordered non-
negative weights associated with each edge e of E, for 
example: a sum weight (e) and a bottleneck weight (e). 
We define further an S weight and a B weight of a path P
that connects two distinguished nodes in G as S(P) and 
B(P) respectively, which are defined as: 

S(P)= [ (ei)] and B(P)= max[ (ei)] where ei∈P

Now we introduce the measure of the SSB (Summation 
of S weight and B weight) weight of a path P as SSB(P)
where SSB(P)= ·S(P) + (1- )·B(P).  is the weighting 
coefficient between the S weight and B weight and its 
value is between 0 and 1. The optimal SSB path(s) in a 

Figure 2: A CRU tree where some sensors are 
physically linked to the same satellite 

Function SSB(G(V,E): a doubly weighted graph, lambda):path;                                 
var optimal_SSB_path := NULL; 
var optimal_SSB_weight := infinite;
var S_weight := 0;
var B_weight := 0;
All edges’ S weight are multipled by lambda;
All edges’ B weight are multipled by (1-lambda);
G':=G; 
Find p, the shortest S weight path in G'; 
B_weight := p.B_weight;  
WHILE (G' is connected & optimal_SSB_weight > S_weight)  
 update G' by removing all the edges whose bottleneck weight >= B_weight;             
 IF (p.SSB_weight < optimal_SSB_weight) 
  optimal_SSB_weight := p.SSB_weight; 
  optimal_SSB_path := p; 
 ENDIF 
 Find new p, the shortest S weight path in G'; 
 S_weight := p.S_weight; 
 B_weight := p.B_weight;
ENDWHILE
return optimal_SSB_path; 

Figure 3: SSB algorithm



doubly weighted graph is defined as the path with 
minimum SSB weight. This SSB weight is therefore a 
different measure compared to the SB weight studied by 
Bokhari [6], where the SB weight of a path P is defined as 
max(S(P),B(P)). 

4.2. Algorithm for finding the optimal SSB path 

Inspired by the earlier discussions on DWG [6, 19], we 
present the SSB algorithm for finding the optimal SSB
path. This algorithm works by recording the candidate 
optimal SSB paths and progressively eliminating edges 
from the graph when they cannot be a part of the optimal 
SSB path, until the graph becomes disconnected or further 
searching will definitely not yield any better path.  

Given a DWG G0, the goal of the SSB algorithm is to 
iteratively find an optimal SSB path Popt connecting two 
distinguished nodes, e.g. “S” and “T”. Prior to the start, 
two state variables are initiated: the candidate optimal 
SSB path Pcan is set as NULL and the candidate’s SSB

weight SSBcan is set as +∞.
In the ith iteration, the algorithm starts with the 

searching of path Pi in Gi-1 with the minimum S weight. A 
number of shortest path-searching algorithms can be 
applied for this purpose, e.g. Dijkstra algorithm. We 
compare SSB(Pi) to the SSBcan. If SSB(Pi) is smaller than
SSBcan, we store Pi into Pcan and store SSB(Pi) into SSBcan;
Otherwise, Pcan and SSBcan are kept the same. Then, the 
edges in Ei={ei|ei ∈ Gi-1, (ei) B(Pi)} are removed from  
Gi-1 to yield a reduced Gi which will be used in the next 
iteration. The reason that we can safely remove Ei is 
because all the edges in Ei except for those that belong to 
Pi are not part of the optimal SSB path. Therefore, at the 
end of this iteration, either Gi contains the optimal SSB
path of G0 or Pcan is the optimal SSB path. 

The iteration ends until either the new Gi becomes 
disconnected or the S weight of Pi is greater than the 
current SSBcan, i.e. all the remaining paths’ SSB weights 
are greater than SSBcan.

Now, the algorithm found the optimal SSB path in G0,
Popt=Pcan.

Each iteration in the algorithm applies a shortest path 
searching with the complexity of O(|V|2), where |x|
denotes the cardinality of x [20]. In the worst case, |E|
times of iteration are required, i.e. eliminating one edge 
per iteration. Thus, the total time complexity of this 
algorithm is O(|V|2|E|). The pseudo code of this algorithm 
is presented in Figure 3. 

An example of finding an optimal SSB path by 
applying the proposed algorithm is illustrated in Figure 4. 
Given this simple DWG, three iterations are executed to 
identify an optimal SSB path (<5,10>-<5,10>) with SSB
weight of 20. 

5. Optimal assignment of CRUs on a host-

satellites network 

In this section, we present the step by step solution of 
finding the optimal assignment of CRUs to the execution 
nodes in the following sections. 

5.1. Colouring the CRU tree 

Figure 4: An example of searching for the 
optimal SSB path, where the thick path 
indicates the newly found shortest path based 
on sum weight and the cross indicates the 
paths to be eliminated. 



First, we paint each satellite with a distinguishable 
colour, e.g. Red for satellite R, Yellow for satellite Y, 
Blue for satellite B and Green for satellite G. Then, each 
edge of a CRU tree is painted by “propagating” the colour 
of satellite towards the root node (Figure 5). The 
exceptions to this colouring are the edges of <CRU1,
CRU2> and <CRU1, CRU3> since the propagated colours 
conflict. This phenomenon implies that CRU1, CRU2 and
CRU3 have to be deployed on the host. It is because that 
they need to process the context information obtained 
from the multiple satellites. 

5.2. Building the coloured assignment graph 

Similar to Bokhari’s approach, all the sensor nodes are 
merged into a single dummy node “ ”. The nodes which 
will constitute to the assignment graph (squares in Figure 
6) are inserted in each face of the CRU tree and on the left 
and right-hand sides of the tree. An assignment graph of 
this modified tree is now drawn by adding an edge 
between every pair of nodes that belong to faces that have 
a common coloured tree edge. This assignment graph is 
actually kind of dual graph or dual network [21] of the 
“closed” CRU tree. The edge of this assignment graph 
inherits the colour of the tree edge it crosses. This 
procedure and the resulting coloured assignment graph 
are shown in Figure 6. 

5.3. Labelling the assignment graph 

In this section, we follow the same approach of 
Bokhari [6] to doubly weight each edge e of the 
assignment graph with two ordered non-negative weights, 

i.e. a sum weight (e) and a bottleneck weight (e), such 
that the corresponding computation and communication 
time required by the host and satellite are represented by 
these weights respectively.  

For every CRU, there are two possible locations to 
execute it: the host or its correspondent satellite. For 
example, in Figure 2, if the sensors connected to CRU5

and CRU13 are physically linked to satellite B; then B is 
called CRU5 and CRU13’s correspondent satellite. Thus, 
for CRUi to process one frame of context information, 
two processing time indicators are available: the required 
processing time on its correspondent satellite si and the 
required processing time on the host hi. These two values 
can be obtained by using the analytical benchmarking or 
task profiling techniques [22]. For every known context 
reasoning procedure, the data exchange between the two 
connected CRUs can be known a priori. Based on the 
amount of data exchanged and the approximate 
characteristics of the communication link between the 
host and satellite, it is also feasible to determine the time 
required to transfer the context information (i.e. 

Figure 5: Colouring the edges of the CRU tree

Figure 6: (a) illustrates the procedure of 
building the coloured assignment graph; (b) 
presents the assignment graph by eliminating 
the original tree. 



communication cost). We define ci,j as the time required 
to transfer one frame of context data from CRUi to CRUj.
In case the raw context information (from sensors) is 
transmitted over the communication link, cs,i is used to 
denote the time required to transfer one frame of raw 
context data to CRUi.

In order to finalize the coloured DWG, the bottleneck 
weight ( ) is added first by considering the required 
processing time on satellites. Suppose an edge in the 
assignment graph cuts the CRU tree into two parts: The 
upper part contains among others the original root CRU 

and the lower part contains a set of CRU(s) named asτ.
Then, the  weight of this edge is the sum of all si for all 

CRUi∈τ and the communication cost resulting from this 
cut. As explained earlier in this section, si represents the 
time required for CRUi to execute on its correspondent 
satellite. For example, consider the assignment graph 
edge <D,E> that crosses CRU tree edge < CRU3, CRU6>
in Figure 6, the  weight on this edge is s6+s13+c6,3.
Another example is that the  weight on the edge A-B that 
crosses tree edge < , CRU10>, equals to cs,10.

Secondly, we add the sum weight ( ). First label the 
host execution time on all the edges in the original CRU 
tree as shown in Figure 8: Give all edges connecting 
parent CRUi to child CRUj an initial cost wij=0. Traverse 
the nodes of CRU tree from the root in pre-order. When 
visiting node CRUj which has parent CRUi and leftmost 
child CRUk give edge <CRUi, CRUk> the weight 
wjk=wij+hj. An exception is the left-most edge leaving root 
node and its weight is h1. Then each edge of the 
assignment graph is given a  weight equal to the weight 
of the CRU tree edge that it crosses. For example, the 
assignment graph edge S-B crossing CRU tree edge 
<CRU2, CRU4> is given a  weight of h1+h2 (c.f. Figure 
6(a)). 

5.4. Finding the optimal SSB path 

Now, we have built a coloured doubly weighted 
assignment graph (Figure 6 b). Each path connecting the 

nodes S  and T  in this graph corresponds to a partition of 

the CRU tree on the host and satellites. The end-to-end 
processing delay of this partition equals to the path’s SSB
weight, i.e. the summation of the coloured path’s S weight 
and B weight. The coloured path’s S weight is defined in 
the same way as the non-coloured DWG, i.e. S(P)=

[ (ei)]. The coloured path’s B weight is defined as the 
maximum among the summations of the bottleneck 
weights per colour:

,...])(,)(,)([max)(
∈

=
blue

i

yellow

i

red

i
Pe

eeePB
i

βββ

In order to identify the optimal assignment, it is 
required to search for the coloured path with minimal SSB
weight. The previously proposed SSB algorithm can be 
adapted in two aspects to serve this purpose (Figure 10). 

Firstly, a specific feature in this coloured DWG 
(Figure 6 b) is that the path with minimum S weight is 
always on the top of the assignment graph. This is 
because of the property that a partition on the top 
indicates that the minimum number of CRUs is deployed 
on the host; thus implies the least total processing time at 
the host. Therefore, it is possible to skip the step of 
shortest-path searching in the SSB algorithm.  

D

B

A

S

T

C E

F

B

A

S

T

C E

F

Expansion

b1

b2

Figure 9: Expanding part of the assignment 
graph

Secondly, an exception should be taken into account in 
the iterative steps of removing edges with a larger 
bottleneck weight: when the B weight of the shortest-path 
(determined using S weight) is contributed by the 

Figure 8: Assigning host weights to tree edges 



subsequent edges having the same colour, that part of the 
assignment graph should be expanded (refer to 
“expansion” step in Figure 10) before any edges are 
eliminated. This ensures that during the edge removal step, 
only the edges which do not contribute to the optimal SSB
path anymore are removed. For example, as shown in 
Figure 9, if the B weight of the shortest path (the topmost 
path) is a sum of the bottleneck weights of the two blue 
edges (labeled b1 and b2), the entire blue part of the graph 
should be expanded into a number of edges, each of 
which represents a possible path between node C and E.

Therefore, in this specific case, due to the skipping of 
shortest-path searching step and the graph expansion, the 
running time of the adapted SSB algorithm is in the order 
of O(|E’|), where |E’| is the number of edges in the 
expanded graph. 

6. Conclusion and future work 

This paper addresses the problem of minimizing the 
context processing delay in a context-aware application 
by optimally utilizing the heterogeneous computation 
resources. Bokhari has studied problems with similar 
structure in the area of parallel computing. Inspired by his 
pioneering approach, we also transform our assignment 
problem into a path-searching problem. Due to the 
physical dependency between the task and the resources 
which is not considered by the earlier work, we propose a 

colouring scheme. Furthermore, as our context processing 
criteria is different, we propose the SSB algorithm for the 
new objective function. This SSB algorithm can find the 
path corresponding to the optimal assignment which 
minimizes the end-to-end processing delay. The 
complexity of this SSB algorithm is of order O(|V|2|E|) in 
general. In our specific constructed coloured DWG, the 
adapted SSB algorithm is of the order O(|E’|), where |E’| is 
the number of edges in an expanded assignment graph. 

We are aware of the existence of applications that do 
not fall into the model we considered. Therefore, we plan 
to address a more general model, i.e. DAG-tasks-to-DAG-
resources assignment problem. Since, very likely, no 
algorithms with polynomial time complexity will be 
found to solve the general problem, our future work will 
be focused on heuristic approaches, e.g. Branch-and-
Bound [23] and Genetic Algorithms [24].

Acknowledgement 

This work is part of the Freeband AWARENESS 
Project. Freeband is sponsored by the Dutch government 
under contract BSIK 03025. (http://awareness.freeband.nl) 

Function coloured_SSB(G(V,E): a coloured doubly weighted graph, lambda):path;                                 
var optimal_SSB_path := NULL; 
var optimal_SSB_weight := infinite;
var S_weight := 0;
var B_weight := 0;
All edges’ S weight are multipled by lambda;
All edges’ B weight are multipled by (1-lambda); 
G':=G; 
Find p, the shortest S weight path in G'; 
B_weight := p.B_weight;  
WHILE (G' is connected & optimal_SSB_weight > S_weight) 
              IF (p.B_weight is a summation of several edges in the same colour) 
                            update G' by expanding that part of graph;                                                       //graph expansion  
              ENDIF 
 update G' by removing all the edges whose bottleneck weight >= B_weight;               
 IF (p.SSB_weight < optimal_SSB_weight) 
  optimal_SSB_weight := p.SSB_weight; 
  optimal_SSB_path := p; 
 ENDIF 
 Find new p, the shortest S weight path in G'; 
 S_weight := p.S_weight;
 B_weight := p.B_weight;
ENDWHILE
return optimal_SSB_path; 

Figure 10: Adapted SSB algorithm for coloured DWG



References 

1. Henricksen, K., et al. Middleware for Distributed 

Context-Aware Systems. in International Symposium 
on Distributed Objects and Applications (DOA). 2005. 

2. Dey, A.K., G.D. Abowd, and D. Salber, A conceptual 
framework and a toolkit for supporting the rapid 
prototyping of context-aware applications. Human-
Computer Interaction, 2001. 16: p. 97-166. 

3. Halteren, A.v., et al., Mobile Patient Monitoring: The 
MobiHealth System. The Journal of Information 
Technology in Healthcare, 2004. 2(5). 

4. Tönis, T., H. Hermens, and M. Vollenbroek-Hutten, 
AWARENESS D4.18, Context aware algorithm for 
discriminating stress and physical activity versus 
epilepsy. 2006. 

5. Norman, M.G. and P. Thanisch, Models of machines 
and computation for mapping in multicomputers.
ACM Computing Surveys, 1993. 25(3): p. 263-302. 

6. Bokhari, S.H., Partitioning problems in parallel, 
pipelined, and distributed computing. IEEE 
Transactions on Computers, 1988. 37(1): p. 48-57. 

7. Stone, H.S., Multiprocessor scheduling with the aid of 
network flow algorithms. IEEE Transactions on 
Software Engineering, 1977. 3: p. 85-93. 

8. Bokhari, S.H., On the Mapping Problem. Computers, 
IEEE Transactions on, 1981. C-30(3): p. 207. 

9. Garey, M.R. and D.S. Johnson, Computers and 
Intractability: A Guide to the Theory of NP-
Completeness. 1979: Miller Freeman, San Francisco. 

10. Eshaghian, M.M. and Y.C. Wu. Mapping 
heterogeneous task graphs onto heterogeneous system 
graphs. in Heterogeneous Computing Workshop, 
1997. (HCW '97) Proceedings., Sixth. 1997. 

11. Lo, V.M., Heuristic algorithms for task assignment in 
distributed systems. Computers, IEEE Transactions 
on, 1988. 37(11): p. 1384. 

12. Cooper, K., et al. New grid scheduling and 
rescheduling methods in the GrADS project. in 
Parallel and Distributed Processing Symposium, 
2004. Proceedings. 18th International. 2004. 

13. Anily, S. and A. Federgruen, Structured partitioning 
problems. Operations Research, 1991. 13(1): p. 130-
149. 

14. Hansen, P. and K.-W. Lih, Improved Algorithms for 
Partitioning Paroblems in Parallel, Pipelined, and 

Distributed Computing (Correspondence). IEEE 
Transactions on Computers, 1992. 41(6): p. 769-771. 

15. Woeginger, G.J. Assigning chain-like tasks to a chain-
like network. in Proceedings of the twelfth annual 
ACM-SIAM symposium on Discrete algorithms. 2001. 

16. Olstad, B. and F. Manne, Efficient Partitioning of 
Sequences. IEEE Transactions on Computers, 1995. 
44(11): p. 1322-1326. 

17. Khanna, S., S. Muthukrishnan, and S. Skiena, Efficient 
Array Partitioning. Automata, Languages and 
Programming, 1997: p. 616-626. 

18. Ashraf Iqbal, M. and S.H. Bokhari, Efficient 
algorithms for a class of partitioning problems.

Parallel and Distributed Systems, IEEE Transactions 
on, 1995. 6(2): p. 170. 

19. Christofides, N., Graph theory: An algorithmic 
approach. 1975: Academic Press. 

20. Edmonds, J. and R.M. Karp, Theoretical 
improvements in algorithmic efficiency for network 
flow problems. Journal of ACM, 1990. 19(2). 

21. Ahuja, R.K., T.L. Magnanti, and J.B. Orlin, Network 

Flows: Theory, Algorithms, and Applications. 1993: 
Prentice Hall; United States Ed edition. 

22. Maheswaran, M. and H.J. Siegel. A Dynamic 
Matching and Scheduling Algorithm for 
Heterogeneous Computing Systems. in In Seventh 
Heterogeneous Computing Workshop. IEEE Computer 
Society Press. 1998. 

23. Satyanarayanan, M., The many faces of adaptation.

IEEE Pervasive Computing, 2004. 

24. Wang, L., et al., Task Matching and Scheduling in 
Heterogeneous Computing Environments Using a 
Genetic-Algorithm-Based Approach. Journal of 
Parallel and Distributed Computing, 1997. 47: p. 8-22. 

Biography 

Hailiang Mei received his BSc degree in 2001 from 
Beijing University of Technology, China and his MSc 
degree from the Delft University of Technology, 
Netherlands in July, 2003. Both are in Electrical 
Engineering. Since July 2005, he works towards his PhD 
degree in the Architecture and Services of Network 
Applications group (ASNA) of the Computer Science 
Department of the University of Twente, Netherlands. His 
PhD topic is on Smart Distribution of Bio-Signal Process 
in Mobile Healthcare. His current research interests 
include task assignment, dynamic reconfiguration and 



component based software engineering. He is a student 
member of IEEE. 

Pravin Pawar received his M. Tech. degree in Computer 
Science and Engineering from Indian Institute of 
Technology, Bombay, India in January 2002. After 
serving for a few years in IT industry and academics, 
since June 2005 he works as a PhD candidate in the 
Architecture and Services of Network Applications group 
of the Computer Science Department of the University of 
Twente, Netherlands. His PhD work consists of providing 
context-aware computing support for the nomadic mobile 
services hosted on resource constrained devices. His other 
research interests include mobile computing, artificial 
intelligence and mobile e-commerce. He is a student 
member of IEEE and IEEE Communication Society.  

Ing Widya is Assistant Professor of the Faculty of 
Electrical Engineering, Mathematics & Computer Science 
at the University of Twente, the Netherlands. He is a 
member of the Architecture and Services of Network 
Applications group (ASNA) and his research is embedded 
in the projects of the Centre for Telematics and 
Information Technology (CTIT). He received his PhD in 
Signal Processing and his current research interests cover 
enterprise modelling of communication supports for 
networked applications, design and analysis of 
application-context aware services and protocols 
operating over large-scale infrastructures like the Internet, 
including QoS and standardised multimedia format 
encodings. 


