
Comparing the latency performance of the DTable and DRR schedulers

Raúl Martı́nez, Francisco J. Alfaro, José L. Sánchez

University of Castilla-La Mancha
Computing Systems Department

02071 - Albacete, Spain
{raulmm, falfaro, jsanchez}@dsi.uclm.es

Abstract

A key component for networks with Quality of Service
(QoS) support is the egress link scheduling algorithm. An
ideal scheduling algorithm implemented in a high perfor-
mance network with QoS support should satisfy two main
properties: good end-to-end delay and implementation sim-
plicity. The Deficit Round Robin (DRR) algorithm is known
to have a very little implementation complexity. However,
depending on the situation, its latency performance can be
very bad.

On the other hand, table-based schedulers try to offer a
simple implementation and good latency bounds. Some of
the latest proposals of network technologies, like Advanced
Switching and InfiniBand, include in their specifications
one of these schedulers. However, these table-based sched-
ulers do not work properly with variable packet sizes and
face the problem of bounding the bandwidth and latency as-
signments. We have proposed a new table-based scheduler,
which we have called Deficit Table (DTable) scheduler, that
works properly with variable packet sizes. Moreover, we
have proposed a methodology to configure this table-based
scheduler to decouple the bounding of bandwidth and la-
tency assignments.

In this paper, we review these proposals and present sim-
ulation results that show that the DTable scheduler is able to
provide a better latency performance than the DRR sched-
uler, with only a slightly higher implementaion and compu-
tational complexity.

This work was partly supported by the Spanish CICYT under CSD2006-46
and TIN2006-15516-C04-02 grants, by Junta de Comunidades de Castilla-
La Mancha under grant PBC-05-005, and by the Spanish State Secretariat
of Education and Universities under FPU grant

1-4244-0910-1/07/$20.00 c©2007 IEEE.

1 Introduction

Current packet networks are required to carry not only
traffic of applications such as e-mail or file transfer, which
does not require pre-specified service guarantees, but also
traffic of other applications that require different perfor-
mance guarantees, like real-time video or telephony [10].
The best-effort service model, though suitable for the first
type of applications, is not so for applications of the other
type [11]. Even in the same application, different kinds
of traffic (e.g. I/O requests, coherence control messages,
synchronization and communication messages, etc.) can be
considered, and it would be very interesting that they were
treated according to their priority [4]. Therefore, high per-
formance packet networks need to enable Quality of Service
(QoS) provisioning. The provision of QoS in computing
and communication environments is currently the focus of
much discussion and research in industry and academia. A
key component for networks with QoS support is the output
scheduling algorithm, which selects the next packet to be
sent and determines when it should be transmitted, on the
basis of some expected performance metrics.

An ideal scheduling algorithm implemented in a high
performance network with QoS support should satisfy two
main properties: good delay and implementation simplicity.
The design of a traffic scheduling algorithm involves an in-
evitable trade-off among these properties. Many scheduling
algorithms have been proposed. Among them, the “sorted-
priority” family of algorithms are known to offer very good
delay [13]. However, their computational complexity is
very high, making their implementation in high-speed net-
works rather difficult. In order to avoid the complexity
of the sorted-priority approach, the Deficit Round Robin
(DRR) algorithm [12] has been proposed.

The DRR algorithm associates each flow1 with a quan-

1In this paper we will use the term flow to refer both to a single flow or
to an aggregated of several flows with similar characteristics.

(a) Basic table (AS) (b) Weighted table (IBA) (c) Deficit table

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.8 1 1.2 1.4 1.6 1.8

2048 bytes
1024 bytes
512 bytes
256 bytes

Global Input Load

N
or

m
al

iz
ed

th
ro

ug
hp

ut
pe

r
V

C

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.8 1 1.2 1.4 1.6 1.8

2048 bytes
1024 bytes
512 bytes
256 bytes

Global Input Load

N
or

m
al

iz
ed

th
ro

ug
hp

ut
pe

r
V

C

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.8 1 1.2 1.4 1.6 1.8

2048 bytes
1024 bytes
512 bytes
256 bytes

Global Input Load

N
or

m
al

iz
ed

th
ro

ug
hp

ut
pe

r
V

C

Figure 1. Performance of several table-based schedulers for flows with different packet size.

tum and a deficit counter. The quantum assigned to a flow
is proportional to the bandwidth assigned to that flow. The
sum of all the quantums is called the frame length. The
deficit counter is set to 0 at the beginning. The scheduler
visits sequentially each flow. For each flow, the scheduler
transmits as many packets as the quantum allows. When a
packet is transmitted, the quantum is reduced by the packet
size. The unused quantum is saved in the deficit counter,
representing the amount of quantum that the scheduler owes
the flow. At the next round, the scheduler will add the pre-
viously saved quantum to the current quantum. When the
queue has no packets to transmit, the quantum is discarded,
since the flow has wasted its opportunity to transmit pack-
ets. The main advantage of the DRR scheduler is its compu-
tational simplicity. Recent research in the DiffServ area [3]
proposes the DRR as a feasible solution for implementing
the Expedited Forwarding Per-hop Behavior [5]. However,
the main problem of this algorithm is that its delay depends
on the frame length. Depending on the situation, the frame
can be very long, and thus, the latency would be very bad.

On the other hand, in the table-based schedulers instead
of serving packets of a flow in a single visit per frame, the
service is distributed throughout the entire frame. This ap-
proach is followed by two of the last high-performance net-
work interconnection proposals: Advanced Switching (AS)
[1] and InfiniBand (IBA) [6]. These table-based schedulers
can provide a good latency performance with a low compu-
tational complexity. However, these schedulers do not work
properly with variable packet sizes and face the problem of
bounding the bandwidth and latency assignments [9, 2]. In
[8] we reviewed these problems and proposed a new table-
based scheduler, that works properly with variable packet
sizes. Moreover, we proposed a decoupling methodology
to configure this table-based scheduler without the bound-
ing between bandwidth and latency. In this paper, we com-
pare the latency performance of the DTable scheduler with
the latency performance of the DRR scheduler.

The structure of the paper is as follows: In Section 2, we
review the DTable scheduler and our methodology to de-

couple the bandwidth and latency assignments. Details on
the experimental platform and the performance evaluation
are presented in Section 3. Finally, some conclusions are
given and future work is proposed.

2 The Deficit Table scheduler

In [8] we proposed a new table-based scheduling algo-
rithm that works properly with variable packet sizes. We
called this algorithm Deficit Table scheduler, or just DTable
scheduler, because it is a mix between the already proposed
table-based schedulers and the DRR algorithm. In this sec-
tion, we show how the DTable scheduling algorithm works
and how it can be configured to decouple the bandwidth and
latency assignments. Moreover, we make some complexity
considerations.

2.1 The DTable scheduling mechanism

The main problem of the AS and IBA table-based sched-
ulers is that they do not work in a proper way with variable
packet sizes, which is common in actual traffic. If the aver-
age packet size of the different flows is different, the band-
width that the flows obtain may not be proportional to the
number of table entries [8].

Figure 1 shows the performance of various table-based
schedulers when there are four Virtual Channels (VCs) in
the network. Note that we use VCs to aggregate flows
with similar characteristics and make the arbitration at a
VC level, as it is the case in AS and IBA technologies.
The four VCs have the same number of assigned table en-
tries (the same bandwidth reservation). Moreover, we inject
an increasing amount of traffic at the same rate in all the
VCs. However, the traffic injected in each VC has a differ-
ent packet size. Note that in the figures we refer each VC
according to the packet size that the flows using that VC
use. The simulated architecture is the same as that used for
the performance evaluation in Section 3.

2

Figure 1(a) shows the case of a basic table scheduler sim-
ilar to the AS table scheduler, which is cycled through and
when a table entry is selected, a packet from the VC indi-
cated in that entry is transmitted regardless of the packet
size. As can be observed, when using the basic table sched-
uler, the VCs obtain a very different bandwidth because the
traffic that traverses each VC has a different packet size.
Therefore, although the same number of packets from each
flow will be transmitted, the amount of information will not
be the same.

The IBA’s arbitration table works in a similar way than
the AS table. However, it adds a weight to each entry. This
weight indicates the amount of information to be transmit-
ted from the VC associated to the table entry each time that
the entry is selected. This weighted table solves the prob-
lem only partially because it allows a packet to be transmit-
ted that requires even more weight than the remainder of a
given table entry (exhausting them). Figure 1(b) shows the
performance of a weighted table that works in this way. We
have assigned all the entries the same weight: 2176 bytes
(34 units of 64 bytes). As can be seen, it presents a bet-
ter performance than the basic table scheduler, but not an
optimum performance.

In [8] we proposed a new table-based scheduling algo-
rithm that works properly with variable packet sizes (as can
be seen in Figure 1(c)). In order to do so, the DTable sched-
uler defines an arbitration table in which each table entry
has associated a flow identifier and an entry weight. More-
over, each flow has assigned a deficit counter that is set to
0 at the beginning. When scheduling is needed, the table
is cycled through sequentially until an entry assigned to an
active flow is found. A flow is considered active when its
queue has at least one packet and the link-level flow con-
trol, if exists, allows that flow to transmit packets. When
a table entry is selected, the accumulated weight is com-
puted. The accumulated weight is equal to the sum of the
deficit counter for the selected flow and the current entry
weight. The scheduler transmits packets from the selected
flow until the accumulated weight is smaller than the size
of the packet at the head of the selected flow or the selected
flow becomes inactive. In the first case, the unused accu-
mulated weight is saved in the deficit counter, representing
the amount of weight that the scheduler owes the queue. In
the second case, the remaining accumulated weight is dis-
carded and the deficit counter is set to zero. Each time a
packet is transmitted, the accumulated weight is reduced by
the packet size. The weights are usually expressed in flow
control credits. Note that the scheduler works in a similar
way than the DRR algorithm but instead of serving packets
of a flow in a single visit per frame, the service is distributed
all along the entire frame.

In order to keep the computational complexity low, the
minimum value that a table entry can have associated is the

Maximum Transfer Unit (MTU) of the network. This is the
smallest value that ensures that there will never be neces-
sary to cycle through the entire table several times in or-
der to gather enough weight for the transmission of a single
packet. Note that this consideration is also made in the DRR
algorithm definition [12].

2.2 Configuring the DTable scheduler

In [2], we explained how to configure table-based sched-
ulers (in that case for IBA) to provide bandwidth and la-
tency guarantees. In order to provide a flow with a mini-
mum bandwidth, the number of table entries assigned to that
flow must accomplish with the proportion of desired egress
link bandwidth. In order to provide a flow with maximum
latency requirements, the maximum separation between two
consecutive table entries devoted to that flow must be fixed.

This way of assigning the entries of the table faces the
problem of bounding the bandwidth and latency assign-
ments. If a maximum separation between any consecutive
pair of table entries of a flow is set, a certain number of them
are being assigned, and hence a minimum bandwidth, to the
flow in question.

In [8] we proposed a methodology to configure the
DTable scheduler to decouple, at least partially, the bound-
ing between the bandwidth and latency assignments. With
this methodology we can assign the flows with a band-
width varying between a minimum and a maximum value
that depends not only on the number of table entries as-
signed, but also on two table configuration parameters. We
have called these parameters w and k. Supposing an ar-
bitration table with N entries in a network with a certain
MTU , the w parameter determines the maximum weight
M that can be assigned to a single table entry in function
of the MTU : M = MTU × w. The k parameter deter-
mines the total weight that can be distributed between all
the table entries. We call this value the bandwidth pool:
pool = N × MTU × k. The total number of weight units2

from the bandwidth pool that the table entries of a flow have
assigned fixes the bandwidth that the flow has actually as-
signed.

The w and k parameters fix the minimum bandwidth
minφi and the maximum bandwidth maxφi that can be as-
signed to the ith flow depending on the number of table
entries ni that it has assigned:

minφi =
ni × MTU

pool
=

ni × MTU

N × MTU × k
=

ni

N
× 1

k

maxφi =
ni × M

pool
=

ni × MTU × w

N × MTU × k
=

ni

N
× w

k

Summing up, the DTable scheduler is a table-based
scheduler that is able to deal properly with variable packet

2A weight unit is equivalent to a flow control credit

3

sizes and, using our configuration methodology, allows us
to provide a flow with latency and bandwidth requirements
in a partially independent way.

2.3 Implementation considerations

Note that, in the case of the DRR algorithm, provided
that each flow is allocated a quantum no smaller than the
MTU and a list of active flows is maintained, the algorithm
can cycle through the list knowing that it is always possible
to transmit at least one packet from each flow. Each time a
packet is transmitted, the algorithm must compute if more
packets from the same flow can be transmitted or it must
change to the next active flow. If a new active flow is se-
lected the scheduler must only save the remaining quantum
in the appropiate deficit counter and compute the new total
amount of information to be transmitted from the selected
flow. This computation can be performed with simple inte-
ger units.

The requirements to implement the DTable scheduler is
quite similar, however, in the case of this scheduler, a list
of active flows would not be as simple to maintain as in the
DRR case, because flows must be visited not in a sequential
way but in the order indicated by the table scheduler. There-
fore, in this case the table must be looked over searching for
the next active entry and skipping those entries that refer
to a flow without packets or credits to transmit. Although
the checking of each entry can be made with very simple
computational units, in the worst case all the table must be
looked over in order to find the next active entry. This kind
of mechanism probably requires very little silicon area to be
implemented, but this procedure may last too much time. In
order to make the process faster several entries of the table
can be read simultaneously at the expense of increasing the
silicon area requirements.

However, even with this consideration, the DTable
scheduler has not the problem of the increasing tag value
and does not require the very complex hardware, includ-
ing floating-point units, to manage the time tags, which is
needed to implement the schedulers of the “sorted-priority”
family of algorithms [8].

3 Performance evaluation

In this section, we compare the performance of the
DTable scheduler with the performance of the DRR sched-
uler. For this purpose, we have developed a detailed simula-
tor that allows us to model the network at the register trans-
fer level, following the AS specification [1]. Note, however,
that our proposals can be applied to any interconnection net-
work technology.

3.1 Simulated architecture

We have used a perfect-shuffle Bidirectional Multi-stage
Interconnection Network (BMIN) with 64 end-points con-
nected using 48 8-port switches (3 stages of 16 switches).
The switch model uses a combined input-output buffer ar-
chitecture with a crossbar to connect the buffers. In our
tests, the link bandwidth is 2.5 Gb/s but, with the AS 8b/10b
encoding scheme, the maximum effective bandwidth for
data traffic is only 2 Gb/s. We are assuming some inter-
nal speed-up (x1.5) for the crossbar, as is usually the case in
most commercial switches. The time that a packet header
takes to cross the switch without any load is 145 ns, which
is based on the unloaded cut-through latency of the AS Star-
Gen’s Merlin switch.

A credit-based flow control protocol ensures that pack-
ets are only transmitted when there is enough buffer space at
the other end to store them, making sure that no packets are
dropped when congestion appears. AS uses Virtual Chan-
nels (VCs) to aggregate flows with similar characteristics
and the flow control and the arbitration is made at VC level.
The MTU of an AS packet is 2176 bytes, but we are going
to use 2048 bytes (a power of two) for simplicity, but with-
out loosing generality. The credit-based flow control unit is
64 bytes, and thus, the MTU corresponds to 32 credits.

The buffer capacity is 32768 bytes (16×MTU) per VC at
the network interfaces and 16384 bytes (8×MTU) per VC
both at the input and at the output ports of the switches. If an
application tries to inject a packet into the network interface
but the appropriate buffer is full, the packet is stored in a
queue of pending packets at the application layer.

3.2 Simulated scenario and scheduler con-
figuration

We have defined 7 VCs with different distances between
consecutive entries in the arbitration table. In a real case
we would assign the traffic flows to these VCs depending
on their latency requirements. Note that we are going to
consider the requirements of a VC as the requirements of
the traffic that is going to be transmitted using that VC. We
have called these VCs D2, D4, D8, D16, D32, D64, and
D64’, indicating the distance between any pair of consec-
utive table entries. Therefore, D2 has more strict latency
requirements than D4, D4 than D8, and so on. A table of 64
entries has been used in the simulations.

In order to allow the decoupling between the latency re-
quirements of the VCs and the bandwidth assigned to them,
we have used our methodology, assigning to the k param-
eter a value of 2 (the bandwidth pool is 2 times the MTU
multiplied by the number of entries), and the w parameter
a value of 4 (each table entry can be assigned a maximum
weight of 4 times the MTU). Table 1 shows the number of

4

Table 1. Configuration of the DTable and DRR schedulers.
DTable DRR

VC φi #entries %entries minφi maxφi Entry weight Total weight Quantum

D2 25 32 50 25 100 32 1024 256
D4 25 16 25 12.5 50 64 1024 256
D8 25 8 12.5 6.25 25 128 1024 256
D16 12.5 4 6.25 3.125 12.5 128 512 128
D32 6.25 2 3.125 1.5625 6.25 128 256 64
D64 3.125 1 1.5625 0.78125 3.125 128 128 32
D64’ 3.125 1 1.5625 0.78125 3.125 128 128 32
Total 100 64 100 50 200 4096 1024

entries assigned to each VC, the percentage of entries that
this entails, and the minimum and maximum bandwidth that
can be assigned to each VC using the decouplig methodol-
ogy.

Table 1 also shows the actual bandwidth configuration
of the DTable and DRR schedulers. This table shows the
amount of bandwidth φi that we have assigned to each VC.
Regarding the DTable scheduler, it shows the total weight
(T. w.) that we have distributed among the table entries of
each VC and the weight assigned to each table entry (E. w.)
of each VC. For example, in order to assign 25% of band-
width to the D2 VC, 1024 of the 4096 credits of the band-
width pool must be assigned to it. Therefore, 32 credits
have been assigned to each one of its 32 table entries. Re-
garding the DRR scheduler, it shows the quantum assigned
to each VC. The D64 and D64’ VCs, which are the VCs
with the minimum bandwidth requirement, are assigned a
quantum that corresponds to 32 credits (the MTU), which
ensures that at least one packet is going to be transmitted
when a VC is selected. The rest of VCs have assigned a
proportional quantum.

Note that the DRR frame length for this scenario is 1024
flow control credits. In the DTable scheduler that length is
4096 flow control credits. However, in the DTable case, the
quantum assigned to each VC is distributed all along the
frame length.

We have injected an increasing amount of traffic of all
the VCs and study the performance of both schedulers at
different network load levels. The traffic load is composed
of self-similar point-to-point flows of 1 Mb/s. The destina-
tion pattern is uniform in order to fully load the network.
The packets’ size is governed by a Pareto distribution, as
recommended in [7]. In this way, many small-sized pack-
ets are generated, with an occasional packet of large size.
The minimum payload size is 56 bytes, the maximum 2040
bytes, and the average 176 bytes, which represents enough
packet size variability. The AS packet header size is 8 bytes.
The periods between packets are modelled with a Poisson
distribution.

3.3 Simulation results

Figures 2 and 3 show the average values and the con-
fidence intervals at 90% confidence level of ten different
simulations performed at a given input load. For each sim-
ulation we obtain the normalized average throughput, the
average message injection latency, and the maximum mes-
sage injection latency of the flows using each VC. Figure
4 shows a zoom on the latency performance shown in the
previous figures, which allows to perceive in a better way
the diferences among both schedulers. Finally, Figure 5
shows the percentage of improvement on the average and
maximum latency provided by the DTable scheduler over
the performance provided by the DRR algorithm for each
VC.

Regarding the throughput performance, Figures 2 and
3 show the normalized throughput results per VC of both
schedulers. Note that both schedulers provide a similar
throughput performance. As we can see, when the load is
low, all the VCs obtain the bandwidth they inject. However,
when the load is high (around 90%) the VCs do not yield a
corresponding result, obtaining a bandwidth proportional to
their assigned bandwidth.

Regarding the latency performance, the figures show that
when the load is very low, all the VCs present a similar low
latency. This is because at this load level there are few pack-
ets being transmitted through the network, and thus, there
are few conflicts between them. However, when the load
increases, the latency also increases because some packets
must wait in the buffers until others have been transmitted.
It is at this point when the scheduling algorithm assumes
an important role and the VCs obtain a different latency de-
pending on the scheduling algorithm. However, when the
load of a VC begins to outstrip its throughput, the latency
starts to grow very fast. This is because the buffers used for
that VC begin to be full. Finally, the buffers become com-
pletely full and the latency stabilizes at a given value which
depends on the buffers’ size and the bandwidth assigned to
that VC, but not on the scheduling algorithm. This is the

5

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

D2
D4
D8
D16
D32
D64
D64’

Global Input Load

T
hr

ou
gh

pu
tp

er
V

C

 0.01

 0.1

 1

 10

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

D2
D4
D8
D16
D32
D64
D64’

A
ve

ra
ge

la
te

nc
y

(m
s)

Global Input Load

 0.1

 1

 10

 100

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

D2
D4
D8
D16
D32
D64
D64’

M
ax

im
um

la
te

nc
y

(m
s)

Global Input Load

Figure 2. Normalized throughput per VC provided by the DTable scheduler.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

D2
D4
D8
D16
D32
D64
D64’

Global Input Load

T
hr

ou
gh

pu
tp

er
V

C

 0.01

 0.1

 1

 10

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

D2
D4
D8
D16
D32
D64
D64’

A
ve

ra
ge

la
te

nc
y

(m
s)

Global Input Load

 0.1

 1

 10

 100

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

D2
D4
D8
D16
D32
D64
D64’

M
ax

im
um

la
te

nc
y

(m
s)

Global Input Load

Figure 3. Normalized throughput per VC provided by the DRR scheduler.

(a) DTable (b) DRR

 0

 20

 40

 60

 80

 100

 120

 0.4 0.6 0.8 1 1.2 1.4 1.6

D2
D4
D8

D16
D32
D64
D64’

A
ve

ra
ge

la
te

nc
y

(µ
s)

Global Input Load

 0

 20

 40

 60

 80

 100

 120

 0.4 0.6 0.8 1 1.2 1.4 1.6

D2
D4
D8

D16
D32
D64
D64’

A
ve

ra
ge

la
te

nc
y

(µ
s)

Global Input Load

 0

 100

 200

 300

 400

 500

 600

 700

 0.4 0.6 0.8 1 1.2 1.4 1.6

D2
D4
D8

D16
D32
D64
D64’

M
ax

im
um

la
te

nc
y

(µ
s)

Global Input Load

 0

 100

 200

 300

 400

 500

 600

 700

 0.4 0.6 0.8 1 1.2 1.4 1.6

D2
D4
D8

D16
D32
D64
D64’

M
ax

im
um

la
te

nc
y

(µ
s)

Global Input Load

Figure 4. Latency performance comparison.

6

−80

−60

−40

−20

 0

 20

 40

 60

 80

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Avg. lat.
Max. lat.

Global Input Load

Im
pr

ov
em

en
tD

2
%

−80

−60

−40

−20

 0

 20

 40

 60

 80

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Avg. lat.
Max. lat.

Global Input Load

Im
pr

ov
em

en
tD

4
%

−80

−60

−40

−20

 0

 20

 40

 60

 80

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Avg. lat.
Max. lat.

Global Input Load

Im
pr

ov
em

en
tD

8
%

−80

−60

−40

−20

 0

 20

 40

 60

 80

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Avg. lat.
Max. lat.

Global Input Load

Im
pr

ov
em

en
tD

16
%

−80

−60

−40

−20

 0

 20

 40

 60

 80

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Avg. lat.
Max. lat.

Global Input Load

Im
pr

ov
em

en
tD

32
%

−80

−60

−40

−20

 0

 20

 40

 60

 80

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Avg. lat.
Max. lat.

Global Input Load

Im
pr

ov
em

en
tD

64
%

−80

−60

−40

−20

 0

 20

 40

 60

 80

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Avg. lat.
Max. lat.

Global Input Load

Im
pr

ov
em

en
tD

64
’

%

Figure 5. Latency improvement of the DTable scheduler over the DRR scheduler.

reason why Figure 5 shows that the percentage of improve-
ment for those points becomes zero or does not stabilize in
a clear value.

Note that when using the DRR algorithm, all the VCs
obtain a similar latency performance until a VC reaches the
point when its load begins to outstrip its throughput. In that
point, the latency of that VC grows very fast and obtains a
different latency performance. This happens for all the VCs
as load grows. However, when using the DTable scheduler,
all the VCs, including those with the same bandwidth as-
signment, obtain a different latency performance depending
on the separation between any consecutive pair of their table
entries. The smaller the distance, the better latency perfor-
mance they obtain.

Note that the relevant load level interval in order to com-
pare both schedulers is from the point where the load starts
to be high until the point where the VC saturates. Analyzing
this load interval, Figure 5 shows that the DTable scheduler
provides a quite better average and maximum latency for
the D2, D4, and D8 VCs than the DRR scheduler. It pro-
vides a slightly better latency for the D16 VC and a worse

latency peformance for the D32, D64, and D64’ VCs.

These different latency performance behaviors are ex-
plained by the fact that the maximum time that a packet
at the head of a VC queue is going to wait until being trans-
mitted is different depending on the scheduler algorithm. In
the case of the DTable scheduler, we can control this time by
controlling the maximum separation between any consecu-
tive pair of entries assigned to the same VC. In the case of
the DRR algorithm, the latency performance depends more
on the frame length than on the quantum that each VC has
been assigned. This is because when the quantum for a VC
has been expended sending packets, all the frame must be
cycled through before sending more packets of the same
VC.

Summing up, the DTable and the DRR scheduling algo-
rithms provide the same throughput performance, but a dif-
ferent latency performance. The DTable scheduler, which
has a computational complexity just slightly higher than the
DRR algorithm, provides the most preferential VCs (those
which have been assigned a shorter distance between any
consecutive pair of entries) with a better latency perfor-

7

mance than the DRR algorithm. However, it provides the
least preferential VCs with a worse latency than the DRR
algorithm. These are good news because the DTable sched-
uler is providing each traffic class with a different treatment
according to its requirements.

4 Conclusions and future work

The main problem of the DRR, which is known to have a
very simple computational complexity, is that its delay de-
pends on the frame length. Therefore, if the frame is very
long the latency would be very bad. Moreover, we cannot
differentiate the flows taking into account their latency re-
quirements because all the flows obtain a similar latency
performance.

We have proposed a new scheduling algorithm, the
DTable scheduler, that solves in a high degree these DRR
problems with only a slightly higher computational com-
plexity than the DRR algorithm. With the DTable scheduler
we can define several categories of traffic, with not only
different bandwidth requirements but also different latency
requirements. In this paper we have compared by simila-
tion the performance of both schedulers. Simulation results
show that the DTable scheduler provides the most preferen-
tial flows with a better latency performance than the DRR
algorithm and the least preferential VCs with a worse la-
tency than the DRR algorithm. Therefore, with the DTable
scheduler, we can provide a different level of latency per-
formance to the VCs, priorizing those VCs with higher la-
tency requirements, which is not possible with the DRR al-
gorithm.

In this paper we have studied the computational and im-
plementation complexity of the DRR and DTable sched-
ulers in a rather general way. As future work we are fo-
cusing our attention on performing a deeper hardware study
in order to offer estimates about the silicon area required to
implement the schedulers, and the arbitration time that they
would require.

References

[1] Advanced Switching Interconnect Special Interest Group.
Advanced Switching core architecture specification. Revi-
sion 1.0, Dec. 2003.

[2] F. J. Alfaro, J. L. Sánchez, and J. Duato. QoS in Infini-
Band subnetworks. IEEE Transactions on Parallel and Dis-
tributed Systems, 15(9):810–823, Sept. 2004.

[3] S. Blake, D. Back, M. Carlson, E. Davies, Z. Wang, and
W. Weiss. An Architecture for Differentiated Services. In-
ternet Request for Comment RFC 2475, Internet Engineer-
ing Task Force, Dec. 1998.

[4] L. Cheng, N. Muralimanohar, K. Ramani, R. Balasubramo-
nian, and J. B. Carter. Interconnect-aware coherence pro-

tocols for chip multiprocessors. In ISCA, pages 339–351.
IEEE Computer Society, 2006.

[5] A. C. et al. Supplemental information for the new defini-
tion of EF PHB (Expedited Forwarding Per-Hop-Behavior).
RFC 3247, Mar. 2002.

[6] InfiniBand Trade Association. InfiniBand architecture spec-
ification volume 1. Release 1.0, Oct. 2000.

[7] R. Jain. The art of computer system performance analysis:
Techniques for experimental design, measurement, simula-
tion and modeling. John Wiley and Sons, Inc., 1991.

[8] R. Martı́nez, F. Alfaro, and J. Sánchez. Decoupling the
bandwidth and latency bounding for table-based schedulers.
International Conference on Parallel Procesing (ICPP),
Aug. 2006.

[9] R. Martı́nez, F. Alfaro, and J. Sánchez. Providing Quality of
Service over Advanced Switching. International Conference
on Parallel and Distributed Systems (ICPADS), July 2006.

[10] P. L. Montessoro and D. Pierattoni. Advanced research is-
sues for tomorrow’s multimedia networks. In International
Symposium on Information Technology (ITCC), 2001.

[11] K. I. Park. QoS in Packet Networks. Springer, 2005.
[12] M. Shreedhar and G. Varghese. Efficient fair queueing using

deficit round robin. In SIGCOMM, pages 231–242, 1995.
[13] D. Stiliadis and A. Varma. Latency-rate servers: a gen-

eral model for analysis of traffic scheduling algorithms.
IEEE/ACM Transactions on Networking, 1998.

8

