

Abstract—Web services-based event notification is an

emerging technology that combines the asynchronous
communication feature of event notification mechanisms and the
interoperability feature of Web services technologies. Web
services-based event notification systems are important
components for service-oriented Grid computing. WS-Eventing
and WS-Notification are two major competing specifications for
these systems. This paper is a comparative study of these
specifications. The focuses of this research are on identifying the
similarities and differences between these two specifications and
identifying their evolutionary path from previous specifications.
We found that competing Web services specifications take ideas
and concepts from each other during the development progress,
which is good for the maturity of the Web services-based event
notification technology. We also identified several major changes
from previous event notification systems to Web services-based
event notification systems. In the end, we will present our WS-
Messenger project that supports both WS-Eventing and WS-
Notification specifications and provides mediation between them.

Index Terms— event notification, Grid computing, mediation,
publish/subscribe, Web service, WS-Eventing, WS-Notification

I. INTRODUCTION
Event notification systems enable asynchronous

communications among different entities in distributed
systems. Web services (WS) technologies address the
interoperability issues in heterogeneous distributed systems.
Web services-based (WS-based) event notification systems
combine features of both. They are essential components for
Grid computing as it evolves a service-oriented architecture
(SOA). Event notifications are disseminated for various
purposes in Grid computing applications, such as logging,
monitoring and auditing. Possible events include computation
results, status updates, errors, exceptions, and so on.

Multiple competing specifications have been proposed to

define the standard operations and message formats for WS-
based systems. Two major competing specifications are Web
Services Eventing (WS-Eventing) specification [1] and Web
Services Notification (WS-Notification) specifications [2-4].
They are incompatible with each other. Prior to their
emergence, several other specifications for event notification
systems were proposed by various organizations and
companies, including the CORBA notification service
specification [5], the Java Message Service (JMS)
specification [6] and the notification specification in Open
Grid Services Infrastructure (OGSI) [7]. They also define

interfaces for event notification systems to accommodate for
the interoperability.

Both WS-Eventing and WS-Notification specifications can

be used to build Open Grid Services Architecture (OGSA) [8]
as described in [9]. What are the differences between these
two WS-based event notification specifications? What
problems are not addressed by previous event notification
specifications? To answer these questions, we conducted a
comprehensive comparative study between WS-Eventing and
WS-Notification specifications based on our experiences with
the WS-Messenger project [10]. We also compared different
versions of these two specifications and compared them with
previous major event notification specifications to find the
evolutionary trends of event notification systems. In this
paper, we will present our research results.

II. RELATED WORKS
Much literature is available on event notification systems,

such as [11-13]. They discussed different projects and
architectures of event notification systems. We focus our
research on the evolution of major specifications because
specifications are supported by multiple parties and are
representatives of the evolution of event notification systems.

WS-Eventing and WS-Notification specifications received

much attention since they are crucial for asynchronous Web
services. Many news articles talked about both specifications.
However, they are not comprehensive and in-depth. [14, 15]
discuss each specification separately. A short paper [16]
compares WS-Eventing and the old version of WS-
Notification. However, in the comparison, it does not take into
full account of WS-Resource Framework (WSRF) required in
the old version of WS-Notification and reaches inappropriate
conclusions that WS-Notification cannot unsubscribe and
cannot send SubscriptionEnd notices. Our study differs from
previous efforts in following aspects:

(1) It is based on the latest versions of both specifications.

WS-Notification version 1.3 has had major updates. It no
longer depends on WSRF and has included functions that
previously only existed in WS-Eventing, such as the pull
delivery mechanism.

 (2) It is a comprehensive comparison between these two

specifications. Our study focuses on the key functions of these

A Comparative Study of Web Services-based
Event Notification Specifications

Yi Huang and Dennis Gannon
Department of Computer Science, Indiana University,

Bloomington, IN, 47405, USA
Email: {yihuan, gannon}@cs.indiana.edu

two specifications and provides side-by-side tables and graphs
in our comparisons.

(3) Our study places these two specifications within a

historical context and compares them with previous event
notification specifications. This helps us understand the
evolution of event notification systems. We also compared
different versions of these two WS-based event notification
specifications and found that these two specifications have
been learning from each other and exhibit a trend of
convergence.

(4) Our comparisons are based on our experiences in

implementing both specifications so that we can detect
detailed differences between these two, such as the difference
in the subscriptionID enclosing element. Our WS-Messenger
project implements both specifications and can mediate
between them.

The rest of this paper is organized as follows: section III

briefly introduces WS-based event notification systems and
related specifications. Section IV discusses major changes in
different versions of WS-Eventing specifications and WS-
Notification specifications. Section V compares the latest
version of these two specifications. In section VI, we will
analyze evolutionary trends of event notification systems by
comparing them with previous event notification
specifications. We then present our WS-Messenger project in
section VII and our conclusions in Section VIII.

III. WEB SERVICE-BASED EVENT NOTIFICATIONS
The Publish/Subscribe paradigm [11] is a practical pattern

for event dissemination in distributed systems. In this
paradigm, a subscriber subscribes to specific kinds of events
to be sent to one or more event consumers. An event producer
publishes events. Events are delivered to the event consumers
based on the subscriptions. Notification brokers can be added
to publish/subscribe systems to decouple event producers and
event consumers. It provides flexibility and scalability.

Web services can integrate heterogeneous applications on

the Internet. They are based on a set of open and widely
adopted Internet standards. Features of Web services
technologies include platform-independent, programming
language-independent and transport-independent. Web service
messages follow the XML standard [17] which defines a
flexible and easy-to-extend data format and is supported on
virtually every platform [18]. XML messages are encapsulated
in SOAP [19] envelopes. Web Service Description Language
(WSDL) [20] defines valid XML document structures for
message exchanges to enable the interoperability feature of
Web services. Web service messages can be transported using
various transport mechanisms. SOAP messages are
composable. Features like security, reliability and transaction
can be added to the messages using respective specifications,
such as WS-Security [21].

WS-based event notification systems utilize the Web

service technology to deliver event notifications and manage
subscriptions. A subscriber sends a SOAP-formatted
subscription request message to an event producer Web
service, requesting the delivery of certain kinds of notification
messages to one or more event consumer Web services. When
events are created in one service, other services can receive
notification messages in the SOAP message format. The
locations of the event consumer Web services are specified
using the WS-Addressing specification [22]. Notification
messages can be transported through intermediary and can use
various transportation mechanisms.

In order to achieve interoperability among different vendors

of WS-based notifications, vendors need to agree on a
specification that defines the message formats and Web
service interfaces for notification delivery and for
subscriptions creation and management. Ideally, we wish there
was only one specification agreed by all vendors. However,
three similar specifications have been proposed in this area:
WS-Events [23], WS-Eventing [1] and WS-Notification [2-4].
WS-Events was the earliest one. It was created by HP in mid-
2003. HP joined others and proposed WS-Notification, which
replaced WS-Events.

A. WS-Eventing
The Web Services Eventing (WS-Eventing) specification

[1] has two released versions, the 1/2004 version and the
8/2004 version. The first version was released in January 7,
2004, led by Microsoft. The second version was released in
August 2004. It received broader vendor supports. IBM, Sun
and CA joined the supporters for this specification.

B. WS-Notification
The Web Services Notification (WS-Notification)

specification was first released in January 20, 2004, led by
IBM and Globus Alliance. It was refactored into a family of
three individual specifications and a whitepaper in March
2004. These three specifications are: the Web Services Base
Notification (WS-BaseNotification) specification [2], the Web
Services Brokered Notification (WS-BrokeredNotification)
specification [3] and the Web Services Topics (WS-Topics)
specification [4]. WS-BaseNotification defines basic
interactions between notification producers and notification
consumers. WS-BrokeredNotification defines interfaces for
notification brokers. WS-Topic defines a hierarchical topic
space. The WS-Notification family was submitted to the
standard organization, OASIS [24], in April 2004. Globus
toolkit 4.0 [25] implements WS-BaseNotification.

WS-BaseNotification is very similar to WS-Eventing in

architectures and functions. It has 3 major versions so far, 1.0,
1.2 and 1.3. Version 1.0 was released in March, 2004 by
refactoring the first WS-Notification specification. Version 1.2
is the version submitted to OASIS, it is very similar to version
1.0. Version 1.3 has some major changes from previous

versions. It has completed second public review at the time of
this writing (2/2006).

The WS-Notification family was released together with the

WS-Resource framework (WSRF). They are both developed
by the Grid computing community. WSRF is a framework
designed to manage Grid computing resources through Web
services standards. It replaces the OGSI [7] specification.
Before version 1.3, WS-Notification and WSRF are dependent
on each other. In version 1.3 of the WS-Notification
specification, WSRF becomes optional.

IV. COMPARISON OF DIFFERENT VERSIONS OF WS-EVENTING
AND WS-NOTIFICATION SPECIFICATIONS

In this section, we will compare two existing versions of the
WS-Eventing specification and Version 1.0 and 1.3 of the
WS-BaseNotification specification. We do not include version
1.2 of WS-BaseNotification since it is very similar to version
1.0. An interesting observation we found in this comparison is
that although these two specifications are competing with each
other, they are converging with each other with each version
update.

The first convergence happened when WS-Notification was

refactored into three specifications. WS-BaseNotification is
separated as an individual specification that is very similar to
WS-Eventing.

The second convergence happened when WS-Eventing is

updated in August 2004. (1) From the architecture perspective,
it separates the “subscription manager” from the “event
source” and the “subscriber” from the “event sink” following
WS-Notification’s architecture. (2) It also adopted WS-
Notification’s approach to treat subscriptions as resources in
the subscription managers. Instead of using separate elements,
the subscriptionId values are returned as ReferenceParameters
in Web services addresses of subscription managers. (3) A
new “getStatus” operation is added to query the statuses of
subscriptions. This is similar to the getResourceProperties
operation in WSRF. (4) The new version also adds the
possibility to support a wrapped message delivery mode which
has been defined in WS-BaseNotification. However, it does
not specify message formats of the wrapped notification
messages. (5) The pull delivery mode is added in this new
version which is important for many scenarios, such as
delivering messages to consumers behind firewalls. The first
version of neither specification defined the pull delivery mode.

The third convergence is underway in the proposed version

1.3 of WS-BaseNotification. It adopts several functions
already defined in WS-Eventing, including the pull delivery
mode, the option to specify the subscription expiration using
duration instead of absolute time, and the XPath-based
subscription dialect [26]. One important change is that it
makes WSRF optional by introducing the “renew” and
“Unsubscribe” operations. Also the topic-based subscription is
no longer required.

The highlighted cells in the upper part of Table 1

summarize the aforementioned evolutions. Although having
competing specifications causes interoperability problems, the
good point we can see from the comparisons is that these two
specifications are taking ideas from each other to make up
their own deficiencies. Architectural entities and functions are
added, removed or modified with each update. This is a
benefit of having competing specifications. It is good for the
maturity of WS-based event notification technology in the
long run.

Table 1. Comparisons among different versions of WS-Eventing (WSE) and
WS-Notification (WSN) specifications.

We can also see from the highlighted cells in the lower part

of table 1 that these two specifications still have some gaps in
the architecture and the functions. We will study more in the
next section.

V. COMPARISONS BETWEEN WS-EVENTING AND WS-
NOTIFICATION

In this part, we will compare the latest versions of WS-
Eventing (2004/08 version) and WS-Notification (version 1.3,
Public Review Draft 2) from different perspectives, including
architecture, functions, message delivery, message formats
and broker supports.

In general, WS-Eventing is simpler than WS-Notification;

 WSE
01/04

WSN
1.0

WSE
08/04

WSN
1.3

Version date 1/2004 3/2004 8/2004 2/2006
Separate Subscription Manager

& Event Source No Yes Yes Yes

Separate subscriber & Event
Sink No Yes Yes Yes

Getstatus operation No Yes Yes Yes
Return subscriptionId in WSA

of Subscription Manager No Yes Yes Yes

Support Wrapped delivery mode No Yes Yes Yes
Support Pull delivery mode No No Yes Yes

Specify subscription expiration
using duration Yes No Yes Yes

Specify XPath dialect Yes No Yes Yes
Filter element in Subscription

message Yes No Yes Yes

Require WSRF No Yes No No
Require a topic in subscription No Yes No No

Require Pause/Resume
subscriptions No Yes No No

GetCurrentMessage operation No Yes No Yes
Define Wrapped message format No Yes No Yes

Separate EventProducer &
Publisher No Yes No Yes

Define PullPoint interface No No No Yes
Specify pull delivery mode in

subscription No No Yes No

Require Getstatus Yes Yes Yes No
Require SubscriptionEnd Yes Yes Yes No
WS-Addressing version 2003/03 2003/03 2004/08 2005/08

WS-Notification has more features than WS-Eventing and can
be used in full-fledged notification systems. Since Web
services specifications are composable, both WS-Eventing and
WS-Notification define only key publish/subscribe related
functions. Other functions, such as security, reliability and
transaction management, depend on other WS-*
specifications. For example, WS-Security [21] can be used to
achieve secure delivery of messages.

1) Architecture comparison

WS-Eventing and WS-BaseNotification have almost

identical WS-based architectures. They both follow the
Publish/Subscribe paradigm. They both define the subscriber
and subscription manager entities. The event sink defined in
WS-Eventing is comparable to the notification consumer
defined in WS-BaseNotification. In both specifications,
subscribers are separated from notification consumers so that
notification consumers only need to handle received messages.
They do not need to know broker locations and create
subscriptions. WS-Eventing does not separate the publisher
from the event source. The Event source in WS-Eventing has
the functions of both the notification producer and the
publisher defined in WS-BaseNotification. Fig. 1 and Fig. 2
show the entities defined in WS-Eventing and WS-
BaseNotification and their interactions. The bold lines indicate
Web services interfaces.

Fig. 1 WS-Eventing Architecture and Operations

Fig. 2 WS-BaseNotification Architecture and Operations

2) Function Comparison

We can also find many similarities in functions of WS-

BaseNotification and WS-Eventing. WS-Eventing defines five
Web service operations: Subscribe, Renew, GetStatus,
Unsubscribe and SubscriptionEnd. The “Subscribe” message
is used to create a subscription for an event sink. The
“Renew”, “GetStatus” and “Unsubscribe” messages are sent
from subscribers to subscription managers to manage existing
subscriptions. The “SubscriptionEnd” message is generated
when an event source terminates a subscription unexpectedly.

It is sent to an address specified in the subscription request. If
this address is not presented in the subscription request, this
“SubscriptionEnd” message is not generated.

WS-BaseNotification has comparable operations for the

above five operations. Although it does not define GetStatus
and SubscriptionEnd operations, these operations can be
achieved with the optional WS-ResourceFramework (WSRF)
since WS-Notification can treat subscriptions as WS-
Resources in WSRF. Table 2 shows how WS-
BaseNotification achieves the 5 functions defined in WS-
Eventing. Besides these five operations, WS-Notification
defines three more operations than WS-Eventing. It defines
how to pause and resume a subscription and how to get the
current message (getCurrentMessage).

3) Message Delivery Comparison

In this section, we will compare in detail how to specify

message delivery in subscription requests of WS-Eventing and
WS-Notification.

Delivery mode: Both WS-Eventing and WS-Notification

can use “push”, “pull” and “wrapped” mode to deliver
notification messages. The “wrapped” mode can pack several
notification messages into one message for efficient delivery.
WS-Eventing defines the “push” mode as the default delivery
mode. It uses the “Delivery” extension point in a subscription
message to support other delivery modes. Notification
message formats are not defined in the specification. WS-
Notification defines a “PullPoint” interface, but it can not
specify using the “pull” delivery mode in a subscription
message. A ‘pullpoint” needs to be created before creating a
subscription and is treated as a regular “push” event consumer
from a publisher’s prospective.

Filter: WS-Notification defines three types of message

filters: TopicExpression, ProducerProperties and
MessageContent. A subscriber can use any or all of these
filters. WS-Eventing allows at most one filter in subscription
requests. The default filter is a content-based filter using
XPath expressions. Both specifications can use any
expressions (xsd:any) in a specified dialect that evaluates to a
Boolean value as a filtering criteria. WS-Eventing does not
specify a way to filter messages using the ProducerProperties
of publishers.

WS-Eventing WS-BaseNotification
Subscribe Subscribe

Renew Renew
Unsubscribe Unsubscribe

GetStatus Not defined, can use
getResourceProperties in WSRF

SubscriptionEnd Not defined, can use
TerminationNotification in WSRF

Not available Pause/resume Subscription
Not available GetCurrentMessage

Table 2: Function Comparison

Message encapsulation: WS-Notification defines two ways

to send notification messages. The first way is to wrap the
notification message content into a “Notify” message element
and add additional WS-Notification-defined information (such
as a Topic) to it. The second way is just to send the “raw”
notification message content in the body of a SOAP message.
WS-Eventing just uses the raw message approach.

4) Message Formats comparison

Web services specifications define SOAP message formats

to encapsulate request and response messages. Since WS-
Eventing and WS-Notifications are two different
specifications, their message formats are different. When
comparing the request and response SOAP messages in
corresponding operations, such as the subscribe operation,
many differences exists. The differences can be summarized in
the following categories:

 (1) Element names or attribute names difference: The

element names or attribute names for the same content are
different. For example, WS-Eventing encloses the
subscriptionID value in a subscription response message using
the ReferenceParameters element defined in WS-Addressing,
while WS-BaseNotification encloses it in the
ReferenceProperties element defined in WS-Addressing.

(2) Namespaces difference: The namespaces of these two
specifications and some namespaces used in the specifications
are different, such as the WS-Addressing namespace.

(3) Versions difference of underlying specifications:
The WS-Addressing versions used in these two specifications
are different. WS-Notification version 1.3 uses the 2005/08
version, while WS-Eventing uses the 2004/08 version.

(4) Message contents difference: The specifications
define different required values for certain XML elements in
SOAP messages. For example, different values are required by
different specifications for the “action” elements in the WS-
Addressing part of SOAP headers.

(5) SOAP message structures difference: Different
specifications define different XML message structures SOAP
messages. For example, a wrapped WSN notification message
encloses the message payload in a NotificationMessage
element which is again enclosed in a Notify element. WSE
notification messages do not need such structures.

(6) Content locations difference: The same semantic
information may appear in different locations in SOAP
messages. For example, a wrapped WS-Notification
notification message requires a topic element in the SOAP
body, while a WSE notification message needs to place it in
the SOAP header if needed.

5) Broker Support Comparison

The WS-BrokeredNotification specification in the WS-

Notification family defines broker supports between
notification producers and notification consumers. It is the

extension of the WS-BaseNotification specification.
Notification brokers can handle publisher registrations and
support demand-based publishers. A demand-based publisher
only publishes messages when there are consumers who are
interested in these messages. A notification broker can keep
track of the number of consumers to each kind of messages
and can pause or resume subscriptions to publishers based on
the demand. WS-Eventing does not define how to use a broker
as the intermediary between eventSink and evnetSource.
However, it is possible to create a broker that implements both
the eventSink interface and the eventSource interface. Neither
publisher registrations nor demand-based publishers are
defined in WS-Eventing.

VI. PREVIOUS EVENT NOTIFICATION SPECIFICATIONS
Prior to WS-based event notification specifications, several

other specifications have attempted to define a standard way
of sending event notifications in distributed systems. WS-
Eventing and WS-Notification specifications have many
similarities to previous specifications. However, they address
some unique issues that are not covered by previous
specifications, such as XML format and XPath filter. In this
section, we will present a review of major event notification
specifications prior to the announcements of these two WS-
based event notification specifications and compare them with
these two new specifications. The comparisons are based on
the latest released versions of each specification.

A. CORBA Event service specification and Notification
service specification

The Common Object Request Broker Architecture

(CORBA) [27] specification was developed by the Object
Management Group (OMG), which is a consortium of over
700 member companies. CORBA is designed to be
programming language-, operating system-, and vendor-
independent. It defines common interfaces for different
programming languages and allows different programs to
communicate through Object Request Broker (ORB). CORBA
uses General Inter-ORB Protocol (GIOP) for intranet
communications and Internet Inter-ORB Protocol (IIOP) for
the Internet communications. IIOP maps requests and replies
of GIOP to the Internet's TCP layer in each computer. The
message payload is in a binary format known as Common
Data Representation (CDR).

CORBA defines Event services and Notification services to

support interactions among CORBA objects. The
specifications of these services define both the interfaces and
the underlying infrastructures for CORBA notification
systems. They are based on the publish/subscribe paradigm.
Event suppliers and event consumers communicate with each
other through event channels.

The CORBA Event Service specification [28] was first

introduced in March, 1995. It is intended to decouple clients

and servers so that the servers do not have to keep a list of
client callback registrations. According to this specification,
the event supplier publishes events to a CORBA event service
channel. The event consumers get events from the channel.
Both “Push” and “Pull” modes are supported. CORBA event
service achieves asynchronous communications between
suppliers and consumers. They are location transparent.
Although CORBA Event Service defines a simple mechanism
for event propagation, it has noticeable drawbacks. It does not
address event filtering and Quality of Service (QoS). A
consumer receives all events on a channel.

The CORBA Notification service specification [5] is an

enhancement to the CORBA event service specification. It
adds supports for event filtering and Quality of Service (QoS).
The CORBA notification service specification introduced
“Structured Events” which provides a well-defined data
structure to map a generic event to a well structured event.
The structured event is useful for efficient filtering. The event
filtering in the notification service is based on a filter object.
The filter language is an expression whose syntax follows the
extended Trader Constraint Language.

CORBA Notification specification defines 13 QoS

properties that must be understood by all implementations
even though they are not required to be implemented. Other
QoS properties can be extended.

Although CORBA has implementations on different

platforms and in different programming languages, the reality
is that any solution built on CORBA will depend on a single-
vendor’s implementation. Vendors like to deploy their
products on every nodes and using their own middleware to
integrate these nodes. They do not have the incentive to
achieve interoperability with others. Implementations from
different vendors cannot interoperate well, especially when it
comes to security, transaction management and performance
optimization [18]. CORBA can only achieve interoperability
on the intranet scale, where the distributed environment is well
managed and has predictable latencies.

B. JMS Specification

Java Message service (JMS) [6] is a specification created by

Sun Microsystems. It describes the APIs for Java programs to
create, send, receive and read an enterprise messaging
system’s message. JMS is widely used in J2EE enterprise
applications.

JMS defines two messaging styles: the point-to-point

message queue style and the publish/subscribe style. It also
defines five message types: textMessage, byteMessage,
mapMessage, streamMessage and objectMessage.

JMS messages have well defined structure in the header

field for efficient filtering. Subscribers can express their

interests in JMS messages using queue names, topic names or
message selectors. A message selector defines selecting
criteria based on the header fields using an expression whose
syntax is a subset of the SQL92 conditional expression. QoS
criteria defined in JMS are priority, persistence, durability,
transaction and message order.

The limitation of the JMS specification is that it only works

on Java platforms.

C. Notification in the OGSI Specification

The Open Grid Services Infrastructure (OGSI) specification

[7] is created by the Global Grid Forum. It is targeted for Grid
computing which tries to coordinate computing resources
across the Internet. OGSI defines mechanisms for creating,
managing, and exchanging information among Grid services.
By using OGSI, various Grid resources (e.g. CPUs, storage
devices, databases) provide uniform interfaces to the upper
level services defined in OGSA (Open Grid Services
Architecture). Grid services use an extension of WSDL [20] to
define services interfaces.

Notification is an important part of OGSI. The OGSI

Notification specification is very simple. It is also based on the
publish/subscribe paradigm. A “NotificationSink” sends
subscription to a “NotificationSource” indicating the service
data name (a string) it is interested in. The
“notificationSource” pushes notification messages to the
“notificationSink” when the specified service data is changed.
The notification framework allows both direct service-to-
service notification message delivery and integration of
intermediary delivery services [6].

OGSI notification is an intermediary step towards WS-

based event notification. It uses XML documents as the
message payload and uses HTTP as the transport protocol.
However, since Grid services are extensions of Web services,
it is hard to use widely-available Web services tools to
develop Grid services. With the introduction of the Web
services resource framework (WSRF) and WS-Notification in
January 2004, Grid community and Web services community
are converged to Web services standards. WSRF replaces
OGSI as the foundation of OGSA. OGSI Notification is
replaced by WS-Notification.

D. Comparison with Web services-based event notification
specifications

Table 3 compares the four specifications we discussed in

this section with major WS-based event notification
specifications. From this comparison, we can see how the
event notification specifications have been evolving over time.
Several interesting observations are found in this comparison:

(1) The event delivery scope is extended to the Internet
scale. The message delivery mechanism is moving towards

transport-independent.
(2) XML-based SOAP messages are used as message

payloads.
(3) The message filtering mechanism is moving from the

simple subject-based topic filtering to the content-based XPath
filtering.

(4) The criteria of Quality of Service (QoS), such as
reliability, transaction, are no longer defined in the
specifications. Instead, they depend on the composition with
other WS-* specifications, such as WS-Reliability, WS-
Transaction.

 (5) The soft-state management (timeout) of subscription
terminations is used. The connections to event consumers do
not always keep alive.

(6) Interoperability concerns are shifted from the fine-
grained API level to the more coarse-grained service

interfaces and SOAP messages level. Event producers, event
consumers and brokers can interoperate with each other using
SOAP messages with standard formats. They do not need to
use implementations from the same vendor.

VII. THE WS-MESSENGER PROJECT
The WS-Messenger project is an on-going project at

Indiana University. It aims to create a scalable, reliable and
efficient WS-based message broker that sends WS-based event
notification messages among heterogeneous applications and
platforms. It implements both WS-Eventing and WS-
Notification specifications and can support both specifications
at the same time through a mediation approach. To our best
knowledge, WS-Messenger is the first open source project that
support two competing Web services specifications and
provides mediation between them.

 CORBA
Event Service

CORBA
Notification Service JMS OGSI-Notification WS-Notification WS-Eventing

First Release 3/1995 6/1997 1998 6/27/2003 1/20/2004 1/7/2004
Latest

Release 10/2/2004 10/11/2004 4/12/2002 6/27/2003 2/2006 8/30/2004

Creator(s) OMG OMG Sun
Microsystems Global Grid Forum

IBM, Sonic, TIBCO,
Akamai, SAP, CA, HP

Fujitsu, Globus,

IBM, BEA, CA, Sun,
Microsoft, TIBCO

Message
transport RPC RPC RPC HTTP RPC Transport independent Transport independent

Intermediary EventChannel
object EventChannel object Message Queue,

Pub/Sub broker
directly or through

intermediary directly or through broker directly or through broker

Delivery
Mode

Push, pull &
both Push, pull & both Pull, Push Push Push, Pull Push by default, Can use

Pull or other modes

Message
Structure

Generic
(Anys), Typed

Generic (Anys),
Typed, Structured,

sequences of
structured

TextMessage,
ByteMessage,
MapMessage,

StreamMessage,
ObjectMessage

SOAP with Xml
based Service data

Elements

SOAP (with Raw XML
data or wrapped

messages)

SOAP (with Raw XML
data only). Can use

wrapped mode.

Filter No
Channel, Filter

Object.

Queue/topic
name, message

selector on
header fields

ServiceDataName.
Can add other filter

services.

Hierarchy Topic tree;
Content Selector.

Producer properties.

A “Filter” element for
any filter. At most 1

filter.

Filter
language No Extended Trader

Constraint Language

a subset of the
SQL92

conditional
expression

syntax

ServicedDataName
String or other
expressions.

Any expression (xsd:any)
that evaluates to a

Boolean. e.g. XPath

Default XPath. Can use
any expression (xsd:any)

that evaluates to a
Boolean.

QoS criteria Not defined
Defined 13 QoS

properties, can be
extended to others

Priority;
persistence;

durable;
transaction;

message order

Not defined
Depends on composition

with other WS*
specification

Depends on composition
with other WS*

specification

Subscription
Timeout No No No Absolute Time Absolute Time or

duration Absolute time or duration

Demand-
based No Defined No No Defined No

Management
operations

connect_*,
obtain

_(typed)_push
/pull_supplier/

consumer

connect_*,
obtain_notification_p
ull/push_supplier/con

sumer,
suspend/resume_con

nection.,
get/set/validate_qos,

add/remove/get/getAl
l/removeAll_filter,

obtain_subscription/o
ffered_types

createSubscriber,
createDurableSu

bscriber,
unsubscribe

Subscribe,
requestTermination

After,
requestTermination

Before,
destroy

Subscribe,Renew,
unsubscribe,
Pause/resume
subscription,

get/getMultiple/set/query
ResourceProperties,

TerminationNotification,
Destroy,

SetTerminationTime

Subscribe, Renew,
GetStatus, Unsubscribe,

SubscriptionEnd

Table 3: Comparison among specifications on event notifications

The mediation techniques used in WS-Messenger reconcile

the differences between WS-Eventing and WS-Notification
specifications. WS-Messenger automatically detects which
specification the incoming SOAP messages use and processes
them accordingly. Response messages follow the same
specifications as request messages. When delivering
notification messages, WS-Messenger makes sure that
notification messages follow the expected specifications of the
target event consumers. The specification type of a target
event consumer is determined by the subscription request
message type for that notification consumer. In such way, an
event producer can publish event notifications using either the
WS-Eventing specification or the WS-Notification
specification. It makes no difference to the event consumers
since WS-Messenger performs mediations automatically.

Besides using the default message filtering, WS-Messenger

provides a generic interface that can use existing
publish/subscribe systems as the underlying message systems.
In this way, WS-Messenger provides Web service interfaces to
existing messaging systems. The architecture of WS-
Messenger and its application in Grid computing projects are
presented in [10].

VIII. CONCLUSIONS
WS-based event notification systems are key components in

service-oriented Grid-computing. WS-Eventing and WS-
Notification are two competing specifications for such
systems. In this paper, we compared these two specifications
side-by-side based on our experiences with the WS-Messenger
project. By comparing them with previous specifications for
event notification systems, we studied the evolution of event
notification specifications and identified some key shifts from
previous specifications to the WS-based event notification
specifications.

WS-Eventing and WS-Notification specifications are not

yet finalized and we expect both specifications to have future
updated versions. By comparing different versions of these
two specifications, we found that they are adopting ideas and
concepts from each other and getting more mature with each
update. We see a trend of convergence of both specifications.
Recently, a white paper [29] from IBM, Microsoft, HP and
Intel proposes creating a new standard, WS-EventNotification,
that will integrate functions from WS-Notification with WS-
Eventing. However, both WS-Eventing and WS-Notification
will still be supported.

WS-Messenger is an on-going project that supports both

WS-Eventing and WS-Notification specifications and provides
mediation between them. It also has the capability to wrap
other publish/subscribe messaging systems as WS-based event
notification systems.

REFERENCES
[1] D. Box, L. F. Cabrera, et al., "Web Services Eventing", Available:

http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf
[2] S. Graham and B. Murray, "Web Services Base Notification(v1.2)",

Available: http://docs.oasis-open.org/wsn/2004/06/wsn-WS-
BaseNotification-1.2-draft-03.pdf

[3] D. Chappell and L. Liu, "Web Services Brokered Notification (v1.2)",
Available: http://docs.oasis-open.org/wsn/2004/06/wsn-WS-
BrokeredNotification-1.2-draft-01.pdf

[4] W. Vambenepe, "Web Services Topics (v1.2)", Available:
http://docs.oasis-open.org/wsn/2004/06/wsn-WS-Topics-1.2-draft-01.pdf

[5] OMG, "CORBA Notification Service Specification", Available:
http://www.omg.org/technology/documents/formal/notification_service.
htm

[6] M. Hapner, R. Burridge, et al., "Java Message Service (Version 1.1)",
Available: http://java.sun.com/products/jms/

[7] S. Tuecke, I. Foster, et al., "Open Grid Services Infrastructure ",
Available: http://www-unix.globus.org/toolkit/draft-ggf-ogsi-
gridservice-33_2003-06-27.pdf

[8] I. Foster, C. Kesselman, et al., "Grid Services for Distributed System
Integration," Computer, vol. 35, 2002.

[9] M. Humphrey, G. Wasson, et al., "Alternative Software Stacks for
OGSA-based Grids," Proceedings of Supercomputing 2005, 2005.

[10] Y. Huang, A. Slominski, et al., "WS-Messenger: A Web Services based
Messaging System for Service-Oriented Grid Computing," 6th IEEE
International Symposium on Cluster Computing and the Grid
(CCGrid06).

[11] P. T. Eugster, P. Felber, et al., "The Many Faces of Publish/Subscribe,"
ACM Computing Surveys, vol. 35, 2003.

[12] C. Wang, A. Carzaniga, et al., "Security Issues and Requirements for
Internet-Scale Publish-Subscribe Systems," Hawaii International
Conference on System Sciences, 2002.

[13] A. Carzaniga, D. S. Rosenblum, et al., "Achieving scalability and
expressiveness in an internet-scale event notification service,"
Proceeding of Nineteenth ACM Symposium on Principles of Distributed
Computing (PODC 2000), 2000.

[14] S. Vinoski, "Web Services Notifications," IEEE Internet Computing,
vol. 8, 2004.

[15] S. Vinoski, "More Web Services Notifications," IEEE Internet
Computing (May/June, 2004), vol. 8, pp. 90-93.

[16] S. Pallickara and G. Fox, "An Analysis of Notification Related
Specifications for Web/Grid applications," International Conference on
Information Technology: Coding and Computing (ITCC'05), 2005.

[17] W3C, "Extensible Markup Language (XML) 1.0 (Second Edition)",
Available: http://www.w3.org/TR/2000/REC-xml-20001006

[18] D. Gisolfi, "Is Web services the reincarnation of CORBA?" Available:
http://www-106.ibm.com/developerworks/webservices/library/ws-
arc3/#resources

[19] W3C, "SOAP Version 1.2", Available: http://www.w3.org/TR/soap12-
part1/

[20] W3C, "Web Services Description Language (WSDL) 1.1", Available:
http://www.w3.org/TR/wsdl

[21] A. Nadalin and et.al, "WS-Security 1.0", Available: http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

[22] D. Box, F. Curbera, et al., "Web Services Addressing (WS-
Addressing)", Available: http://www.w3.org/Submission/ws-addressing/

[23] N. Catania and et.al, "Web Services Events (WS-Events) Version 2.0",
Available: http://devresource.hp.com/drc/specifications/wsmf/WS-
Events.pdf

[24] "OASIS organization", Available: http://www.oasis-open.org/
[25] B. Sundaram, "WS-Notification and the Globus Toolkit 4 WS-Java

Core", Available: http://www-
128.ibm.com/developerworks/grid/library/gr-wsngt4/

[26] J. Clark and S. DeRose, "XML Path Language (XPath) Version 1.0",
Available: http://www.w3.org/TR/xpath

[27] OMG, "Common Object Request Broker Architecture: Core
Specification", Available: http://www.omg.org/docs/formal/04-03-
01.pdf

[28] OMG, "CORBA Event Service Specification", Available:
http://www.omg.org/technology/documents/formal/event_service.htm

[29] K. Cline, J. Cohen, et al., "Toward Converging Web Service Standards
for Resources, Events, and Management," 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

