
Network-Centric Buffer Cache Organization

Gang Peng Srikant Sharma Tzi-cker Chiueh
Computer Science Department, Stony Brook University

{gpeng, srikant, chiueh}@cs.sunysb.edu

Abstract

A pass-through server such as an NFS server backed
by an iSCSI[1] storage server only passes data between
the storage server and NFS clients. Ideally it should
require at most one data copying operation on send-
ing or receiving, as in normal IP routers. In practice,
pass-through servers actually incur multiple data copy-
ing operations because they are implemented using a
layered architecture where each layer has its own in-
ternal data representation. This paper describes the de-
sign, implementation and evaluation of a novel network-
centric buffer caching scheme called NCache that min-
imizes data copying overhead in pass-through servers
without requiring significant changes to their existing
implementation. By organizing the data being passed
or cached in a network friendly format, NCache is able
to eliminate all unnecessary data copying. The key in-
novation in NCache is that it exploits the fact that pass-
through servers do not interpret data, by replacing phys-
ical copying with logical copying in a way transparent
to existing software. This transparency enables NCache
to be easily portable to many operating systems. We
have successfully built a Linux-based NCache proto-
type that can be applied to in-kernel NFS and static
Web servers. Empirical performance measurements col-
lected from this prototype show that by reducing the
CPU load associated with data copying, NCache is able
to provide up to 92% improvement in throughput for
NFS server and up to 47% for Web server.

1 Introduction

Network storage architecture separates bit movement
from control processing. In this architecture, traditional
network file servers now mainly support the functions
of name translation, access control, and relaying the
bits between network storage servers and clients. Be-
cause most of the bits exchanged between clients and
network storage servers pass through the network file
servers without additional interpretation, in theory the
file servers should be able to relay them without incur-
ring additional data copying overheads, just like normal
IP routers. In practice, however, this is rarely the case.

Following on the legacy implementations, most modern
network file servers are implemented in a layered fash-
ion, with each layer having its own special internal data
format. For example, NFS daemons are typically built
on top of local file systems, which in turn may rest on
top of an iSCSI module, which in turn sits on top of
the TCP/IP stack, etc. Copying and transforming data
across layers is the simplest way to maintain the mod-
ularity of this layered architecture. Following on these
issues, the goal of this research is to develop techniques
that minimize data copying overhead for “pass-through”
servers such as NFS servers backed by network storage,
while preserving their modular software architecture.

Unlike IP routers, a network file server backed by
network storage not only relays bits between network
storage servers and clients but also satisfies network file
access requests using its local file cache, which is a
very common case in practice. The reliance of modern
network file servers on local file system cache makes
it difficult to reduce the number of data copying oper-
ations in the pass-through servers because the format
of file blocks in the file system cache is very different
from their counterparts in the network stack. For ex-
ample, in a Linux-based NFS server backed by iSCSI
storage server, data is stored in the format of 1500-
Byte sk buff in the network stack and as contiguous
4-KByte or 8-KByte buffer chunks in the page/buffer
cache. This requires them to be explicitly copied dur-
ing the movement between the file system cache and the
network protocol stack.

Recognizing that all data cached on a pass-through
network file server will eventually be sent out on the net-
work, we propose that the buffer/page cache in a pass-
through NFS server be organized in a network-ready for-
mat and passing data between file system cache and net-
work stack be through pointer manipulation [18]. Each
data item in the network-centric buffer cache (NCache)
is called a network-centric buffer, which consists of a
payload part that stores the file system data, and a meta-
data part that stores headers of various network protocol
layers such as NFS, RPC, TCP/UDP, IP, Ethernet, etc.
When a network packet containing normal file system
data (i.e., non-metadata), for example an iSCSI read re-
sponse or an NFS write request, arrives at the server, it is
read into the network stack and cached in the network-
centric cache without any modification. From this point

on, both the in-kernel NFS server and the network stack
access these cached data through pointers. When a
cached data item is to be sent out over the network, it is
moved directly from the network-centric buffer cache to
the network interface card. Network packets that contain
file system metadata are sent through the protocol stack
in the usual way, because the pass-through network file
server needs to interpret and maybe modify them. Since
these packets are typically small, the overhead of physi-
cally copying them is not significant.

Two important performance benefits accrue from the
proposed NCache architecture. First and foremost, it
eliminates unnecessary data copying within the pass-
through servers. Second, as cached data is stored in
a network ready format, the amount of work required to
send out a cached data item is reduced substantially. For
example, the protocol headers do not need to be repeat-
edly allocated and deallocated, as they are pre-allocated
and stored in the cache. Also, the checksum of a cached
block can be either pre-computed or inherited from the
payload’s originator, and does not need to be calculated
repeatedly every time the block is sent out.

Although the main goal of NCache, i.e., avoiding
unnecessary data copying, is the same as many other
research projects, there is one important difference:
NCache is designed keeping in mind that the amount of
modification to the kernel and the network file server
daemon should be minimal. Our Linux prototyping ef-
forts show that except the standalone NCache module,
the amount of modification to the Linux kernel and NFS
daemon is fewer than 150 lines of C code. This advan-
tage not only makes the NCache approach more likely to
be accepted in existing information technology infras-
tructure, but also makes it more portable to other plat-
forms and applications.

2 Related Work

NCache shares some similarities with Payload
caching [19] in the sense that both target at intermedi-
aries in network whose main task is to forward or pass-
through data. Payload caching caches payload on net-
work interface cards (NICs) to save traffic through I/O
bus; NCache stores the pass-through data in a network
friendly format and eliminates unnecessary data copy-
ing within host system. As a result, Payload caching is
suitable for forwarding services which require minimal
state information, such as firewall, protocol translators,
etc., while NCache is more beneficial to applications that
usually cache data, e.g., cache proxies, and NFS server
with network storage.

Network-Attached Secure Disk (NASD) [14] is for
high performance data delivery in distributed file sys-
tem. There is no dedicated file server involved in the
data path of NASD architecture; data is transmitted di-
rectly between end clients and NASD drives. In con-
trast, NCache is designed to work with the traditional
NFS environment where NFS server is involved in data

transmission.
H.K. Jerry Chu [10] describes a transparent copy

avoidance approach to remove data copying and touch-
ing in TCP protocol stack by using virtual memory
remapping and copy-on-write (COW) techniques. Ge-
nie [8] extends the transparent copy avoidance to sup-
port not only network I/O, but also file I/O, with a tech-
nique called emulated copy. This technique addresses
the virtual memory page alignment problem and allows
transparent copy-free network access under certain con-
ditions. As in [10], it also leverages virtual memory
remapping. A more generic scheme supporting trans-
parent copy avoidance is Fbuf [12]. Fbuf provides a
copy-free facility to move data among multiple protec-
tion domains via IPC.

However, utilizing these transparent copy avoidance
schemes is usually difficult. They often incurs problems
with virtual memory remapping or have specific inter-
faces that are quite different from those legacy applica-
tions may use. NCache does not reply on virtual mem-
ory remapping and keeps the legacy read/write seman-
tics completely unchanged.

IO-Lite [17] gives up the transparency provided by
the previous schemes and proposes new copy-free I/O
interfaces used by various subsystems of operating sys-
tems based on a data structure called “buffer aggregate”.
Data is passed among different subsystems by mov-
ing references to buffer aggregates, rather than copying
data. It also integrates this data structure into file sys-
tem cache. As a result, the data in file system cache is
stored as lists of buffer aggregates, instead of conven-
tionally used pages. This integration obviously helps to
reduce redundant stored data, but is intrusive to file sys-
tem cache and is complicated to implement. The authors
acknowledge these drawbacks in [17]. Unlike IO-Lite,
NCache keeps the file system and file system cache ab-
stractions intact so that it can be readily ported to pop-
ular general purpose operating systems, such as Linux,
and FreeBSD.

A more aggressive approach to facilitate data trans-
fer within operating system subsystems is to revamp the
operating system design. Scout [16] introduces the use
of explicit paths as an important abstraction in operat-
ing system design to improve performance. Extensible
kernels [13] address various problems associated with
existing operating systems, including performance is-
sues, such as I/O bottleneck. Compared with these ap-
proaches, NCache is directly applicable and portable on
existing operating systems and beneficial to legacy ap-
plications, as it does not propose revamping of operating
systems.

In addition to the software approaches described so
far, users have also resorted to special hardware sup-
port, especially for storage interconnects. TCP Offload
Engine (TOE) [9] or Remote Direct Memory Access
(RDMA) [4] are the typical techniques that are being
explored. These techniques may have the potential of
boosting data I/O performance of applications [15], but
they often need the applications to use new file access

to iSCSI Targets to NFS Clients

NFS Server

TCP / IP / Ethernet

Network−Centric Cache

Buffer/Page Cache

iSCSI Initiator

Metadata Regular Data

Figure 1. The software modules and data
path within an NFS server that is backed by
iSCSI storage and equipped with network-
centric cache. The solid lines represent
physical copying of metadata, whereas the
dashed lines denote logical copying of reg-
ular data.

semantics, such as Direct Access File System (DAFS)
semantics [11], to maximize the possible performance
gain. Furthermore, all the hosts involved must be fur-
nished with advanced NICs to eliminate every single
data copying operation within the application servers,
along the data path between storage servers and end
users. This is not always practical, especially for end
users, such as NFS and Web clients, which usually do
not install the advanced NICs for economic reasons.
Considering this, we design NCache to be capable of
running over common commodity NICs, rather than re-
lying on hardware with special support.

3 Network-Centric Buffer Design

Conceptually, a pass-through NFS server should be-
have just like an IP router, in that it should simply for-
ward packets between iSCSI targets and NFS clients.
So it should be relatively straightforward to emulate the
single data copying behavior of modern routers. How-
ever, there are certain complications. First, although an
iSCSI-based NFS server does not need to “touch” most
packets’ contents, it does need to interpret the packets
that correspond to NFS metadata, examples of which in-
clude inodes, directory files, and the superblocks of the
file system. Fortunately the majority of the bytes pass-
ing through an iSCSI-based NFS server do not require
any additional processing beyond forwarding. These
bytes only need to be copied into and out of the mem-
ory once. Second, an iSCSI-based NFS server, unlike
other pass-through devices, caches data. Moreover, the
organization of this cache is typically dictated by the
file system, which may require additional data copying.
The proposed network-centric buffer cache organization
(NCache) successfully addresses the above issues while
minimizing modifications required to the existing soft-
ware base.

3.1 Basic NCache Structure

Under the NCache architecture, when a data packet
arrives at an NFS server, it is read into the network
stack and cached in the network-centric cache without
any modification. When a cached data item is to be sent
out, it is retrieved from the network-centric cache and
transmitted on the network. No additional data copying
is needed as the network-centric cache and the network
stack represent data in the same way.

Figure 1 shows the structure of an NFS server us-
ing NCache. Data passing through the server is classi-
fied into two categories: metadata carrying information
such as directory files and superblocks of a file system,
and regular data corresponding to actual file blocks.
Metadata is moved around within the NFS server just
as in normal NFS servers, as shown by the solid lines
in Figure 1. NCache stores regular data packets in a
network-ready format and moves them around different
modules through a logical copying mechanism, which
copies the keys rather than the payload of regular data
packets. These keys can later be used to retrieve the
corresponding data packets. The dashed lines in Fig-
ure 1 denote the logical copying operations. Because
keys are much smaller, logical copying significantly de-
creases the memory copying overhead.

3.2 Data Movement

Figure 2 shows the usefulness of network-centric
cache by exhibiting the data movement within an NFS
server using NCache. The target file block of an NFS
read request is not in the server’s cache, and an access
request needs to be sent to the backend iSCSI storage
server to retrieve the target block. The figure depicts
the data flow of the response packets returned by the
iSCSI server. When the response packets reach the NFS
server, they are in the form of network buffer list. The
NCache module intercepts the packets and determines if
the packets carry regular data or metadata. If the packets
carry metadata, they are physically copied across differ-
ent modules as in standard NFS servers. However, if
the packets carry regular data, the NCache module puts
them into the network-centric buffer by hashing the log-
ical block numbers (LBNs) contained in the response
packets (step 2). Next, instead of physically copying
the packets’ payload, the NCache module only copies
the associated keys (step 3, 4 and 5) through the logical
copying interfaces. Since an LBN is much smaller than
a file block (normally 4 KBytes), logical copying incurs
significantly less overhead than physical copying.

To service an NFS read request, the NFS server
checks the file system buffer cache, and logically copies
the target block if it is in the cache (step 4). Although
the retrieved block contains only a key and some “junk”
data, nonetheless the NFS server can still compose a
valid NFS read reply from the block, because it does not
interpret the block’s data. Following this the NFS server

�������
�������
�������
������� ���������

���������
���������
���������������������������������

NFS Daemon

NCache

keys

packets to NFS Clientspackets from iSCSI server

(4)

(3) (5)

(6)(2)

(1) (7)

2 7

7

9

9

9

2 4

4

9

9

9

File System Cache

(1) Packets arrive on network from iSCSI storage server
(2) Packets are hashed using LBN keys

(4) File system buffers are logically copied to NFSd buffers as in (3)
(5) The data is sent down the protocol stack
(6) The real packets are identified based on keys
(7) Real data is transmitted over the network

(3) A logical copying of packets and a physical copying of keys is done to the file system buffers

Figure 2. Data movement during the ser-
vice of an NFS read request, assuming the
target file block is not in cache. Pack-
ets returned by the iSCSI storage server
come with logical block numbers, which
can serve as keys. Only keys are copied
around rather than physical data.

sends out the NFS read reply (step 5). When this reply is
about to be sent out, the NCache module uses the key in
the reply to retrieve the corresponding data block from
the network-centric cache, substitutes the block for the
reply (step 6), and sends the resulting reply back to the
requesting NFS client (step 7).

3.3 Distinguishing Metadata from Data

A key design issue in network-centric cache is how to
distinguish regular data packets from metadata packets,
as the NFS server handles them differently: regular data
packets are logically copied among modules whereas
metadata packets are physically copied among mod-
ules. To differentiate regular data packets from metadata
packets, the network-centric cache module has to rely on
the higher-level protocol headers, iSCSI or NFS in our
case. The Remote Procedure Call (RPC) field in NFS
messages specifies the operation type. Among incom-
ing NFS packets, only the payloads of NFS write request
packets are cached in the network-centric cache, and
among outgoing NFS packets only the payloads of NFS
read replies are replaced with entries in the network-
centric cache before they are sent out. The network-
centric cache lets all other NFS packets through without
any change.

For the iSCSI protocol, things are more complicated,
as from the iSCSI protocol header alone one cannot de-
cipher if the payload of a packet is carrying metadata or
regular data. The only hint lies in the type of file sys-
tem object on which an iSCSI command operates. If
an iSCSI read or write command accesses a directory or
a block device, it is accessing metadata; otherwise, the
iSCSI command is accessing regular files. It is not pos-

sible to identify metadata by examining only the headers
of iSCSI read responses. However, the page data struc-
ture associated with iSCSI requests contains the inode
type information, which actually specifies whether the
requests are for regular file data or metadata.

3.4 Cache Management

The network-centric cache in an NFS server is de-
composed into two parts: an LBN cache and an FHO
cache, because there are two sources of data and they
provide different ways of uniquely identifying data
items. The LBN cache stores data packets returned from
the iSCSI storage server as responses to iSCSI read re-
quests. These packets are indexed based on the logical
block numbers (LBNs) in the corresponding requests.
The FHO cache stores data packets that are NFS write
requests from NFS clients. These packets are indexed
based on a unique identifier for the associated file block:
a file handle and a file offset (FHO). When the file sys-
tem buffer cache is full, first clean buffers are reclaimed
and then dirty buffers are flushed and reclaimed. When
a dirty file system cache buffer is flushed, the NCache
module intercepts the corresponding iSCSI request, uses
the FHO key in the payload portion of the iSCSI re-
quest to identify the corresponding entry in the FHO
cache, moves this FHO cache entry to the LBN cache,
and changes the entry’s key from the original FHO to an
LBN specified in the iSCSI request header. If the LBN
cache already has an entry with the same LBN, the FHO
cache entry is overwritten on it because data in the FHO
cache is always more up-to-date. This procedure of con-
verting FHO cache entries to LBN cache entries is called
remapping. Figure 3 shows detailed life time snapshots
of a data block inside an NFS server using NCache, one
step of which is this remapping.

Dirty blocks in the LBN cache can also be flushed
to the iSCSI storage server when the NCache module
runs short of memory. However, because the file sys-
tem cache is configured to be much smaller than the
network-centric cache, dirty file system cache buffers
are more likely to be flushed than dirty blocks in the
network-centric cache. As a result, remapping of a dirty
FHO cache block to the LBN cache always takes place
before the corresponding LBN cache block is flushed
back to the iSCSI storage server.

Because the network-centric cache consists of an
LBN cache and an FHO cache, the NCache module
needs to consult with the appropriate cache when substi-
tuting NFS read replies or iSCSI write requests. More-
over, some NFS read replies may contain both an FHO
key and an LBN key, because the corresponding data
block is accessed through an NFS read request followed
by an NFS write request. For these NFS read replies,
the NCache module needs to consult the FHO cache us-
ing the FHO key first, and then the LBN cache using
the LBN key. This way, it guarantees that NFS clients
always receive the most up-to-date data.

File System Cache File System Cache

iSCSI write request FHO to LBN remapping

File system
flush

Dirty data blocks in NCache Logical copy of dirty data blocks in file system cache
Clean data blocks in NCache Logical copy of clean data blocks in file system cache

Legends:

LBN: Logical Block Number hashed cache FHO: File Handle/Offset hashed cache

NCache
flush

Logical copy

NCache
Data Substitution

NFS writeresponse
NFS read

LBN FHO

Logical copy

iSCSI read reply NFS reply

File System Cache File System Cache File System Cache

Figure 3. Typical life time of a data
block inside an NFS server. The incom-
ing data from storage server is put in LBN
cache where data is indexed using disk
LBNs. A logical copy of this data is main-
tained in file system cache. NFS replies
are serviced using data from NCache. NFS
writes result in dirty data blocks which are
cached using file handle and offset index-
ing. A logical copy of these dirty data
blocks is maintained in file system cache.

Physically the network-centric cache consists of
fixed-sized data chunks, each of which consists of a
list of network buffers. In addition, all the data chunks
in the network-centric cache are chained into a linked
list. Whenever a data chunk is accessed, it is moved
to the end of the list. When all data chunks are used
up, NCache picks the chunks from the head of the list
as candidates for reclamation. If the candidate chunk is
clean, it is simply freed; if it is dirty, e.g., data carried
by an NFS write request, NCache writes back the dirty
data to the remote storage server, and then reclaims the
candidate chunk. The above design is an instance of the
classical LRU cache replacement algorithm.

As shown in Figure 1, the file system buffer cache
and the network-centric cache both cache data but are
separate. This may lead to a piece of data being cached
twice, which we refer to as double buffering, resulting
in memory wastage. NCache resolves this problem by
limiting the file system buffer cache size, which is pos-
sible in most modern operating systems, such as Linux,
FreeBSD and Windows NT. Even though a small file
system buffer cache may lead to excessive cache misses
and thus extra disk accesses, most of these disk accesses
are caught and serviced by a much larger network-
centric cache, which thus acts as a second-level cache
with respect to the file system buffer cache.

3.5 Generalizing NCache

The idea of NCache is applicable to all pass-through
servers whose major task is to channel data between ex-
ternal parties with little or no interpretation of the data

being relayed. An NFS server backed by iSCSI storage
is only one instance of pass-through server. Other exam-
ples of pass-through server include Video-On-Demand
server or static Web server using networked storage,
content router, and web caching proxies.

Two issues need to be addressed when applying
NCache to a given pass-through server. The first issue is
how to distinguish metadata from regular data that goes
through the server. This requires application-specific
and protocol-specific customization, more specifically,
checking fields of higher-level protocol headers. For ex-
ample, for NFS NCache checks the RPC field in NFS
messages, and for HTTP some specific string patterns in
HTTP response header, like “\r\n\r\n”, to determine
if a packet corresponds to regular data or metadata. The
second issue is how to handle mismatch between data
block sizes used by different protocols. NCache first
determines the data block size of various protocols to
detect possible mismatch, for example, from size field
in NFS replies or from response header for HTTP. Then
NCache needs to transform an input data block to one
or multiple output data blocks by splitting or merging so
that they are properly aligned.

4 NCache Implementation

We discuss the implementation of NCache on Linux
and how it is applied to NFS server as well as an in-
kernel static Web server. Porting NCache to FreeBSD is
also described.

4.1 Linux Implementation

To support logical copying, three kernel modifica-
tions are required. First, the read/write and sendfile in-
terfaces that an NFS server uses to access the file system
buffer cache is changed so that both reads and writes
move only keys in file blocks rather than payloads of
file blocks. Second, to eliminate the data copying op-
eration required when invoking the network stack, the
read/write interface of the network stack is also modi-
fied such that only the keys are copied rather than the
payloads. The NFS server and the iSCSI initiator can
benefit from this new interface. In addition, iSCSI ini-
tiator is modified to leverage this new interface. Third,
the NCache module is inserted into the layer between
the network stack and the Ethernet device driver to per-
form on-the-fly packet caching and replacement. As
these kernel modifications are minimal and the network-
centric caching functionality is implemented as a load-
able module, NCache is largely transparent to the Linux
kernel and thus can be easily ported to other operating
systems. Table 1 summarizes the required kernel modi-
fications in Linux. Not including the standalone NCache
module, the total number of lines of C code modified in
the kernel is fewer than 150. Overall, the NCache imple-
mentation under Linux is fairly self-contained, and as a
result does not need to touch any complicated system

Module Locations Modified
NFS/Web server daemon None

buffer cache None
iSCSI initiator two functions invoking

socket interface changed
network stack TCP/IP socket

interfaces extended

Table 1. Modifications to components of
the Linux kernel. The network stack and
iSCSI initiator are slightly modified; the
NFS/Web server daemon and the buffer
cache remain intact. In total, fewer than
150 lines of C code are added.

modules, such as the buffer cache and the application
server.

Because the system has a network-centric cache as
well as a file system buffer cache, it is essential to re-
duce the size of the file system buffer cache to mini-
mize resource wastage due to double buffering. Since
Linux does not provide a configuration option for con-
trolling the buffer cache size directly, we use an indirect
approach to reduce the buffer cache size. All the buffers
cached in the network-centric cache are in fact network
buffers allocated by the network device driver for packet
reception. As these buffers are allocated in the device
driver context, they are automatically pinned down in
the physical memory. As a side effect, the Linux ker-
nel and therefore the file system buffer cache can only
use the part of physical memory that has not been allo-
cated to NCache. Therefore, by carefully controlling the
amount of memory allocated to NCache, one can con-
trol the amount of memory left to the file system buffer
cache.

4.2 Porting to FreeBSD

Porting the Linux-based NCache implementation to
FreeBSD is relatively straightforward, as both operat-
ing systems share a very similar structure. The net-
work buffer structure used in FreeBSD is mbuf, while
in Linux kernel it is sk buff. However, both structures
and their relevant routines in the operating systems sup-
port variable-size buffer operations very well, which is
desirable for handling communication protocol packets.
Hence, using mbuf, rather than sk buff, does not lead
to any structural change to NCache. In FreeBSD, to
exploit logical copying, the read/write interface of the
network stack exposed to the upper layer needs to be
modified slightly, just as in Linux. FreeBSD simpli-
fies the problem of limiting buffer cache size by allow-
ing users to specify the buffer cache size limit directly.
The mechanism for distinguishing metadata from regu-
lar data used in Linux can be readily used in FreeBSD
as well. Finally, just like the Linux kernel, entries in

the network-centric cache can be allocated in the device
driver context. This means that these packets are auto-
matically pinned down unless NCache explicitly frees
them.

4.3 Applying NCache to Web Server

Besides the NFS server, we have also applied NCache
to another pass-through server, kHTTPd [3], an in-
kernel static Web server on Linux. kHTTPd handles
only static web-pages, and passes all requests for non-
static information to a regular user-space web server,
e.g., Apache. To optimize performance, kHTTPd uses
the sendfile interface to copy data directly from the file
system buffer cache to the network stack when serving
HTTP requests.

To support kHTTPd, we extended the NCache mod-
ule to track HTTP streams sent out from kHTTPd. For
packets carrying HTTP reply headers, NCache lets them
go through without any action; for packets associated
with web page contents, NCache retrieves the real con-
tent from its own cache and substitutes them for the in-
tercepted packets, similar to the handling of NFS read
replies. No further changes are needed for other kernel
components and kHTTPd.

5 Performance Evaluation

5.1 Baseline Pass-through Servers

NCache aims to eliminate redundant data copying op-
erations that occur within pass-through servers, but it
may introduce its own overhead, e.g., overhead of man-
aging network-centric buffer cache. To determine the
maximal performance gain that is possible when all un-
necessary data copying operations are eliminated, we re-
moved all the data copying operations in the original
Linux NFS server and kHTTPd, and used their perfor-
mance as the base case for comparison.

We simply changed the data movement inter-
faces among three modules, buffer/page cache, NFS
server/kHTTPd, and network stack, so that regular data
copying operations are eliminated while metadata are
copied through as usual. We distinguished between
metadata and regular data by adding several pointer
checks for each disk request, which do not incur much
overhead. After this modification, the server daemon,
NFS server or kHTTPd, neither retrieves regular data
from buffer cache nor puts them through network stack.
So the packets that are actually sent back to clients con-
tain only random bits as payload. Use of random packets
does not affect the performance measurement result re-
ported here as the NFS clients in our experiments do not
interpret the payloads.

From this point onwards, we refer to the original NFS
server as NFS-original, the one with NCache kernel as
NFS-NCache and the “baseline” case described above as

Read Path Write Path
Hit Miss Overwritten Flushed

NFS server 2 3 1 2
kHTTPd 1 2 N/A N/A

Table 2. Number of data copying op-
erations per request in NFS server or
kHTTPd for reading data or writing data.
kHTTPd copies data directly from file sys-
tem buffer cache to network stack when
serving requests and thus for each request
incurs one less copying operation than
NFS server does in the read path.

NFS-baseline. Similar naming is applied to kHTTPd as
well.

5.2 Testbed Setup

The testbed used to evaluate the performance impact
of NCache consisted of a storage server, an application
server running NFS or kHTTPd, and two clients. The
operating system on all nodes was RedHat Linux with
kernel version 2.4.19. The storage server was a Pen-
tium III 1-GHz node with 512 MB RAM, 64-bit 66-
MHz PCI bus and two Promise 66-MHz dual-channel
IDE controllers. The storage was provided by 4 IDE
disks (IBM DTLA-307075) configured as RAID-0. The
application server was a Pentium III 1-GHz node with
896 MB RAM. The clients had a similar configuration
with 384 MB RAM. All nodes were equipped with In-
tel Pro/1000 MT Server Gigabit Ethernet cards. The
checksum offloading support on the Intel card was en-
abled by default, and the default Ethernet MTU size of
1500-Byte was used. The iSCSI reference implemen-
tation used is described in [2]. All the machines were
connected through a NetGear Gigabit switch.

5.3 Workload Description

We compared the three versions of NFS server us-
ing micro-benchmarks and macro-benchmarks. There
were two types of micro-benchmark workloads. One
is to sequentially read a big file (2 GB) from the NFS
server, which resembles all-miss workload. The other is
to repetitively access a small file (5 MB) from the NFS
server, which represents all-hit workload. The number
of data copying operations each NFS read/write request
may incur under these two micro-benchmarks is shown
in Table 2. The workload was generated by means of
synthetic traces and an Active Trace Player [20].

The macro-benchmark used in this study is SPECsfs
V3 benchmarks [6]. The total NFS file system size was
configured to be 2 GB, and the size of file set to be ac-
cessed was chosen to be 10% of the total file system size.

We also used the default size distribution for regular data
requests, in which small sized requests (< 16 KB) dom-
inate. The ratio of NFS read and write requests was
maintained at the default value, 5:1 . We measured the
NFS server’s throughput in terms of operations per sec-
ond while varying the ratio between NFS reads and NFS
writes.

We evaluated the three versions of kHTTPd using
micro-benchmarks and macro-benchmarks. The micro-
benchmark workload is to access a small working set
(5 MB) repetitively from web server, which we refer to
as an all-hit workload.

The macro-benchmark used was the SPECweb99
benchmark [5]. Only static web page requests were used
as kHTTPd does not support non-static page requests.
The distribution of web page access frequency was in
compliance with Zipf’s law [7]. The average web page
size accessed was about 75 KB. Table 2 shows the num-
ber of data copying operations each web page access
may incur in case of cache hit or miss.

5.4 Throughput of NFS Server

We ran the two micro-benchmarks against all three
NFS server configurations. The workload comprised of
read requests of size from 4 KB to 32 KB. The file sys-
tem read ahead window was tuned appropriately so that
the average disk request size matches with the NFS re-
quest size. The number of NFS server daemons was also
adjusted to reach the best performance.

Figure 4 shows the throughput and CPU utilization
for all three NFS server configurations when all NFS re-
quests miss in the server’s buffer cache. When the re-
quest size is 16 KB or larger, the throughput improve-
ment of NFS-NCache over NFS-original ranges between
29% to 36%, similar with NFS-baseline’s improvement.
This improvement mainly comes from the elimination
of unnecessary data copying operations, as shown by
the difference in NFS server CPU utilization ratio. Be-
tween NFS-original and NFS-baseline, this difference
is around 30% and attributed to reduction in the num-
ber of data copying operations. Between NFS-NCache
and NFS-baseline, the difference is around 20% and due
to the management overhead of network-centric buffer
cache. Because of additional data copying, the server
CPU for NFS-original is always saturated. However,
for NFS-NCache, the server CPU utilization decreases
as the request size increases, as in NFS-baseline. De-
spite this, the throughput improvement of NFS-NCache
and NFS-baseline over NFS-original remains constant
after the request size reaches 16 KB, because the storage
server’s CPU remains saturated from this point onwards.

When the request size is smaller than 16 KB, the
per-packet overhead dominates the per-byte overhead
(which includes data copying overhead). Therefore,
the performance gain from eliminating unnecessary data
copying is not as apparent. As the request size increases,
the per-byte overhead plays an increasingly more impor-
tant role, and the throughput difference between NFS-

0 5 10 15 20 25 30 35
NFS Read Request Size (KB)

20

25

30

35

40

45

N
FS

 S
er

ve
r T

hr
ou

gh
pu

t (
M

B
/s

ec
)

NFS-original
NFS-NCache
NFS-baseline

0 5 10 15 20 25 30 35
NFS Read Request Size (KB)

40

50

60

70

80

90

100

N
FS

 S
er

ve
r C

PU
 U

til
iz

at
io

n
(%

)

NFS-original
NFS-NCache
NFS-baseline

(a) (b)

Figure 4. Throughput (a) and NFS server CPU utilization (b) for all three NFS server configura-
tions under the all-miss workload.

0 5 10 15 20 25 30 35
NFS Read Request Size (KB)

0

10

20

30

40

50

60

70

80

90

100

N
FS

 S
er

ve
r C

PU
 U

til
iz

at
io

n
(%

)

NFS-original
NFS-NCache
NFS-baseline

0 5 10 15 20 25 30 35
NFS Read Request Size (KB)

0

25

50

75

100

125

150

175

200

225

N
FS

 S
er

ve
r T

hr
ou

gh
pu

t (
M

B
/s

ec
) NFS-original

NFS-NCache
NFS-baseline

(a) (b)

Figure 5. Throughput and NFS server CPU utilization for the three NFS server configurations
under the all-hit workload. (a) shows the NFS server’s CPU utilization when only one NIC is
installed. In this case, the network link is the bottleneck for all configurations. (b) shows the
throughput of the three NFS server configurations when two NICs are installed. In this case,
the CPU is more likely to be the bottleneck.

NCache/NFS-baseline and NFS-original becomes more
significant. When the request size is 8 KB, the NFS-
NCache case shows a small peak in the NFS server’s
CPU utilization ratio, because the optimal number of
NFS server daemons that achieves the best throughput
varies for different request size.

We also ran the all-hit workload against the three
NFS server configurations. The results are shown in
Figure 5. Under this workload, no access to the stor-
age server is required. So the NFS server’s throughput
is limited by either the CPU or the network link. By
installing one NIC in the NFS server, we can compare
the three NFS server configurations when the network
link is the bottleneck. By installing an additional NIC
in the NFS server, we can compare the three NFS server
configurations when the CPU is the bottleneck.

Figure 5(a) shows the NFS server CPU utilization
for the three NFS server configurations when the bot-
tleneck is the network link. As in the all-miss case, the
NFS server’s CPU utilization saturates throughout for
NFS-original, but decreases with request size for NFS-
NCache and NFS-baseline. When the request size is
smaller than 32 KB, the saving in CPU utilization of
NFS-NCache over NFS-original is up to 42%, compara-
ble with 49% of NFS-baseline over NFS-original. How-
ever, because the network link is already saturated, re-

duction in NFS server CPU utilization does not lead to
additional throughput gain.

Figure 5(b) shows the throughput of the three NFS
server configurations when the bottleneck is the NFS
server CPU. The throughput of NFS-original grows
when the request size increases from 4 KB to 8 KB, but
completely saturates after that. In contrast, the through-
put of NFS-NCache grows continuously with the request
size – at the request size of 32 KB, the throughput of
NFS-NCache is better than that of NFS-original by 92%.
There are two reasons for this significant performance
gain. First, under the all-hit workload, data copying
is likely to be the dominant performance cost since no
disk access is required, and therefore NCache’s ability
to eliminate redundant data copying can have huge im-
pact. Second, because the network link is no longer
the bottleneck, saving in the CPU utilization of NFS-
NCache over NFS-original is directly translated into
throughput gain. For example, when the request size
is 32 KB, the observed difference in CPU utilization be-
tween NFS-NCache and NFS-original is around 52%, as
shown in Figure 5(a), which is converted to the through-
put difference between NFS-NCache and NFS-original,
82 MB/sec, which is 92% gain over NFS-original’s
throughput, as shown in Figure 5(b). NFS-baseline gives
throughput improvement up to 143% over NFS-original.

400 600 800 1000 1200
Working Set Size (MB)

2000

2500

3000

3500

4000

4500

5000

5500

W
eb

 S
er

ve
r T

hr
ou

gh
pu

t (
R

eq
s/

se
c)

kHTTPd-original
kHTTPd-NCache
kHTTPd-baseline

20 40 60 80 100 120 140
Average Web Page Size (KB)

60

80

100

120

140

W
eb

 S
er

ve
r T

hr
ou

gh
pu

t (
M

B
/s

ec
) kHTTPd-original

kHTTPd-ncache
kHTTPd-baseline

(a) (b)

Figure 6. Throughput of kHTTPd. (a) Performance evaluation of kHTTPd with SPECweb99
benchmarks. (b) Performance evaluation of kHTTPd with varying request size.

The performance difference between NFS-baseline and
NFS-NCache is due to certain additional operations in
NCache, such as packet substitution and NCache buffer
management.

We also measured the throughput of the three NFS
server configurations using the SPECsfs benchmarks
and varying the percentage of NFS requests that ac-
cess regular data (as opposed to metadata). Figure 7
shows the resulting throughput measurements in terms
of operations per second. As expected, NFS-NCache
consistently performs better than NFS-original. When
the percentage of regular data requests is 30%, NFS-
NCache can sustain a throughput that is 16.3% higher
than that of NFS-original. When the percentage of reg-
ular data requests grows to 75%, NFS-NCache can sus-
tain a throughput that is 18.6% higher than that of NFS-
original. The absolute throughput gain of NFS-NCache
over NFS-original is not as significant because NCache
does not offer any performance improvements for meta-
data operations or small regular data operations, which
are dominant in the SPECsfs workload. Accordingly,
the throughput gain of NFS-NCache over NFS-original
increases as the percentage of regular data requests in-
creases. Similar with the result shown in Figure 5, the
management overhead and packet substitution overhead
incurred by NCache contribute to the performance dis-
parity between NFS-baseline and NFS-NCache.

5.5 Throughput of kHTTPd

We measured the throughput of the three web sever
configurations under the SPECweb99 benchmark and
the all-hit workload. The results using the SPECweb99
benchmark with various working set sizes are shown
in Figure 6(a). kHTTPd-NCache consistently shows
between 10% to 20% throughput improvement over
kHTTPd-original. Due to NCache’s overhead, this
improvement is not as large as 40% improvement of
kHTTPd-baseline over kHTTPd-original. As the work-
ing set size increases, the throughput drops for all three
configurations, because the buffer cache hit ratio de-
creases. But the throughput degradation of kHTTPd-
NCache is particularly noticeable, especially when the

30 40 50 60 70 80
Proportion of Regular Data Operations (%)

8

10

12

14

16

18

N
FS

 S
er

ve
r T

hr
ou

gh
pu

t (
10

00
 O

ps
/s

ec
)

NFS-original
NFS-NCache
NFS-baseline

Figure 7. Performance evaluation of NFS
server with SPECsfs benchmarks. The file
system size is set at 2 GB and the total
accessed file set is chosen to be 10% of
the file system.

working set size increases from 500 MB to 750 MB.
This is because NCache requires additional memory to
store the metadata of network-centric cache, and re-
duces the effective amount of memory available for data
caching leading to higher cache miss ratio.

Figure 6(b) shows the performance comparison of
kHTTPd for different request sizes under the all-hit
workload, where the request sizes were varied from
16 KB to 128 KB. The overall performance improve-
ment of kHTTPd increases with increase in request size.
This is because of reduction in total number of requests
reducing the aggregate per request overhead. For small
request sizes the performance improvement of kHTTPd-
NCache is around 8% and increases up to 47% for
large request size of 128 KB. The overheads incurred by
kHTTPd-NCache, in comparison to kHTTPd-baseline,
are typically data substitution overhead and buffer man-
agement overhead.1

In general, the performance gain of kHTTPd-NCache
over kHTTPd-original is smaller than that of NFS-
NCache over NFS-original as in Figure 5(b) for two rea-
sons. First, the data copying overhead per request in
kHTTPd is inherently lower than that in NFS server, as

1Detailed measurement of overhead NCache may incur can be
found in http://www.ecsl.cs.sunysb.edu/tr/TR177.ps.gz

shown in the read path column of Table 2, because of
the sendfile interface. Second, the per-packet overhead
of HTTP is higher than that of NFS because HTTP runs
on TCP and NFS runs on UDP in our experiments.

6 Conclusion

Pass-through servers are servers that relay data pack-
ets between external entities without interpreting them.
Because they don’t need to interpret packets, they should
be able to forward packets with minimal data coping,
just like standard IP routers. An NFS server backed by
an iSCSI storage server is an example of pass-through
server. Unfortunately, standard pass-through servers still
incur significant data copying overhead, mainly because
they are implemented in a modular fashion and each
module tends to have a different internal data represen-
tation.

This paper advocates a network-centric cache orga-
nization for pass-through servers that reduces the data
copying overhead without drastic modifications. The re-
sult is a significant reduction in CPU utilization because
of elimination of unnecessary data copying, which in
turn leads to up to 92% improvement in throughput for
NFS server and up to 47% for Web server. Comparison
with modified servers that emulate the “ideal” zero-copy
solution shows that the additional overhead of NCache
is well within acceptable range. Although minimizing
data copying is a well-known technique to improve sys-
tem throughput, the proposed network-centric caching
approach is novel in that it is able to substitute logical
copying for physical copying whenever possible by ex-
ploiting the fact that pass-through servers do not inter-
pret payloads, and closely approximates zero data copy-
ing without requiring wholesale changes to their existing
implementations.

Network-centric file cache is rooted in the idea that
modern file servers should be organized around net-
working rather than around computation because their
main job is to move rather than process data. It is possi-
ble to take this idea one step further by organizing disk-
resident data in a network-ready format, e.g., storing
data on disk in an SSL-ready format, so that even non-
pass-through file servers can also benefit from network-
centric caching. We are currently exploring how to ex-
tend the NCache prototype to support this generaliza-
tion.

Acknowledgment

We would like to thank the anonymous referees for
their helpful comments and Ningning Zhu for her ATP
tool. This research is supported by NSF awards ACI-
0234281, CCF-0342556, SCI-0401777, CNS-0410694
and CNS-0435373 as well as fundings from Computer
Associates Inc., New York State Center of Advanced
Technology in Sensors, National Institute of Standards
and Technologies, Siemens, and Rether Networks Inc.

References

[1] Internet Small Computer Systems Interface (iSCSI). The
Internet Engineering Task Force.

[2] iSCSI reference implementation. InterOperability Labo-
ratory.

[3] kHTTPd – Linux HTTP Accelerator.
[4] Remote Direct Memory Access. RDMA Consortium.
[5] SPECweb99 Benchmark. Standard Performance Evalu-

ation Corporation.
[6] System File Server Benchmark SPEC SFS97 R1 V3.0.

Standard Performance Evaluation Corporation.
[7] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker.

Web Caching and Zipf-like Distributions: Evidence and
Implications. In INFOCOM (1), pages 126–134, 1999.

[8] J. C. Brustoloni and P. Steenkiste. Effects of Buffering
Semantics of I/O Performance. In Symposium on Oper-
ating Systems Principles, October 1996.

[9] B.S.Ang. An evaluation of an attempt at offload-
ing TCP/IP protocol processing onto an i960RN-based
iNIC. Technical Report HPL-2001-8, HP Labs, January
2001.

[10] H. K. J. Chu. Zero-Copy TCP in Solaris. In USENIX
Annual Technical Conference, pages 253–264, January
1996.

[11] M. DeBergalis, P. Corbett, S. Kleiman, A. Lent,
D. Noveck, T. Talpey, and M. Wittle. The Direct Ac-
cess File System. In USENIX Conference on File and
Storage Technologies, March 2003.

[12] P. Druschel and L. L. Peterson. Fbufs: A High-
Bandwidth Cross-Domain Transfer Facility. In Sympo-
sium on Operating Systems Principles, pages 189–202,
1993.

[13] D. R. Engler, M. F. Kaashoek, and J. O’Toole. Exoker-
nel: An Operating System Architecture for Application-
Level Resource Management. In Symposium on Operat-
ing Systems Principles, 1995.

[14] G. Gibson, D. Nagle, K. Amiri, J. Butler, F. Chang,
H. Gobioff, C. Hardin, E. Riedel, D. Rochberg, and
J. Zelenka. A cost-effective high-bandwidth storage ar-
chitecture. In Proceedings of the Eighth International
Conference on Architectural Support for Programming
Languages and Operating Systems, 1998.

[15] K. Magoutis, S. Addetia, A. Fedorova, M. Seltzer,
J. Chase, A. Gallatin, R. Kisley, R. Wickremesinghe, and
E. Gabber. Structure and Performance of the Direct Ac-
cess File System. In Proceedings of USENIX 2002 An-
nual Technical Conference, Monterey, CA, pages 1–14,
June 2002.

[16] D. Mosberger and L. L. Peterson. Making Paths Explicit
in the Scout Operating System. In Operating Systems
Design and Implementation, pages 153–167, 1996.

[17] V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-Lite: a
unified I/O buffering and caching system. ACM Trans-
actions on Computer Systems, 18(1):37–66, 2000.

[18] G. Peng, S. Sharma, and T. Chiueh. A Case for Network-
Centric Buffer Cache Organization. In Symposium on
High Performance Interconnects, August 2003.

[19] K. Yocum and J. Chase. Payload Caching: High-Speed
Data Forwarding for Network Intermediaries. In Annual
USENIX Technical Conference,, pages 305–318, June
2001.

[20] N. Zhu, J. Chen, T. Chiueh, and D. Ellard. An NFS Trace
Player for File System Evaluation. ECSL, Stony Brook
Tech. Report, 2003.

