
Simultaneous FU and Register Binding
Based on Network Flow Method

Jason Cong and Junjuan Xu

UCLA Computer Science Department, Los Angeles, CA 90095, USA
{cong, irene.xu}@cs.ucla.edu

Abstract – With the rapid increase of design complexity and the
decrease of device features in nano-scale technologies,
interconnection optimization in digital systems becomes more
and more important. In this paper we develop a simultaneous
FU and register (SFR) binding algorithm for multiplexer
optimization based on min-cost network flow. Unlike most of the
prior approaches in which functional unit binding and register
binding are performed sequentially, our approach performs
these two highly correlated tasks gradually and concurrently. We
also present an ILP formulation of the combined functional unit
and register binding problem for the optimality study of
heuristics. Experimental results show that when compared to
traditional binding algorithms, our simultaneous resource
binding algorithm is close to optimal solutions for small-size
designs (only 5% more MUX) and achieves significant reduction
for MUX area (12%) and timing (10%) for a set of real-life
benchmark designs.

I. Introduction
As VLSI circuits move into the era of nano-scale technology

and gigahertz clock frequency, the system’s area and performance
have increasingly become dominated by the interconnection.
Studies show that interconnects consume over 70% of the total
area and over 75% of the total power for most of the FPGA
designs [10][16]. The multiplexer (MUX), one of the basic data
path connection elements, contributes a significant amount of
these costs, especially for FPGA designs. A recent study from
Altera [18], based on the analysis of 100 customer designs, stated
that multiplexers account for 26% of the logic element utilization.
Optimizing multiplexer is very important for the overall quality of
digital designs.

The behavioral synthesis, which compiles designs specified in
high-level languages into register-transfer level code, determines
the main micro-architecture of designs and thus has a big impact
on the design quality. Behavioral synthesis consists of three basic
stages: resource allocation, scheduling, and resource binding.
Allocation determines how many instances of each type of
resources (functional units or registers) are needed; scheduling
determines when a computational operation will be executed;
resource binding assigns operations (or variables) to the resources.
Each of these three steps has influence on the multiplexer
utilization. In this paper we will assume that the first two steps are
already finished and focus only on the third step, resource binding,
for multiplexer optimization.

Specifically, the task of functional unit (FU) binding is to assign
operations to functional units of the same type, and the task of
register (REG) binding is to assign variables to registers. A MUX
will be introduced before a register whenever more than one
functional unit produces results and stores them into this register.

In a similar way, a MUX will be introduced before an input port of
a functional unit whenever more than one register feeds data to
this port. Results of FU binding and REG binding jointly
determine the final interconnection structure. To optimize MUX,
both of these two tasks need to be performed carefully.
Unfortunately, there is a cyclic inter-dependency between them
that compromises the performance. Specifically, the assignment
decision of operations to functional units is based on the
knowledge of the assignment of variables to registers. On the other
hand, the assignment of variables to registers can be informed only
if the functional unit binding is performed beforehand. This cyclic
inter-dependency was recognized in previous works, but most of
these broke it up by simply solving one task completely before
doing the other. This simple method has to sacrifice one task’s
accuracy and thus might not lead to good solutions.

Even if the result of one binding task is fixed, the problem of
the other binding problem with the goal of minimizing MUX
remains to be NP-Hard [12]. Because of the significant effect of
interconnection on the overall chip qualities, many heuristics have
been proposed to optimize interconnection. In earlier works from
the 1980s, clique partitioning methods and branch-and-bound
search algorithms are applied to bind functional units and registers
[13][14][19]. Later on, a weighted bipartite-matching algorithm
was presented to solve both register and functional unit binding
[8]. The cost of edges represents the possibility that the sharing of
two operations or two variables will introduce a MUX. The
authors experimented with two flows in which the functional unit
binding and the register binding were solved in different orders.
Experimental data showed that the ordering did not impact the
interconnection result much. In [9], an integrated flow was
proposed to perform scheduling, allocation and binding all
together in a step-by-step fashion. For each control step, the
maximum possible number of operations are selected out of the
ready operations and scheduled at the current step. Then a network
flow is constructed to solve the concurrent functional unit binding
and register binding. This method breaks up the cyclic
inter-dependency in a better way than previous methods, but the
drawback is that it can only perform local exploration and thus
compromises the final quality due to the lack of global exploration.
In [20], the min-cost network flow algorithm is applied to solve
both binding tasks. Again, the inter-dependency is broken by
solving one task completely before starting the other. In [4], a
bipartite-based algorithm is proposed for register binding with the
goal of optimizing MUX. The authors assume that functional unit
binding is already done and fixed. The work in [5] solved the same
problem as [4], but formulated it as a k-cofamily problem solved
by the min-cost network flow.

Among the above-mentioned related works, none handle the
cyclic inter-dependency well and may sacrifice the optimality of
one or both tasks. In this paper, instead of solving these two tasks
separately, we propose a simultaneous FU and register binding
algorithm, named SFR, to tackle this cyclic inter-dependency

978-3-9810801-3-1/DATE08 © 2008 EDAA

without compromising any task’s performance. Given a scheduled
DFG and available resources, our goal is to minimize the total area
of multiplexers. Specifically, two resource binding tasks are
performed gradually and interactively so that both of them can
make assignment decisions based on the intermediate partial
binding information supplied by each other. In this way, neither of
the two tasks has to sacrifice accuracy. As the binding process
progresses and more binding information is gained, necessary
adjustments will be made and operations and variables which are
already bound together might be separated to allow for
optimization. More details of the SFR binding algorithm will be
provided in Section III. Also, we present an ILP formulation of the
multiplexer minimization problem for the purpose of an optimality
study. Both the SFR binding algorithm and the ILP formulation
support general scenarios, such as multi-cycle operations,
pipelined operations and chaining. Experimental results show that
our synthesis flow can achieve a significant amount of savings in
terms of MUX area and timing.

In the remainder of this paper, we will introduce related
preliminaries and define the problem to be solved in Section II.
The simultaneous binding algorithm, as well as the formal ILP
formulation, will be presented in Sections III and IV. Section V
shows the experimental results, and Section VI concludes this
paper.

II. Preliminaries and definitions
The inputs to the resource binding problem are a scheduled

DFG, and the available resources include a number of functional
units and registers. A DFG is an acyclic directed graph, in which
nodes represent operations, and edges represent data dependence.
Data propagated along the edges are called variables. Variables
produced in one clock cycle and used in another clock cycle need
to be registered.

The set of operations to be bound is denoted as O, and the set of
variables to be stored is denoted as V. We use Of to represent the
group of operations of type f. For two operations oi and oj of the
same function type f, if their execution times do not overlap and
operation oi comes before oj, we call operations oi and oj
compatible with each other, and denote this compatibility as oi →
oj. Compatible operations can be bound into a single functional
unit without lifetime conflict. For pipelined operations, we only
consider the initiating execution time for compatibility calculation.
The lifetime of a variable v is defined as the time period from the
control step where v is generated to the last control step where v is
consumed by other operations. Similarly, for two variables vi and
vj, if their corresponding lifetimes do not overlap and variable vi is
produced before vj, we call variables vi and vj compatible with
each other, and denote this compatibility as vi → vj.

We define FU sharing ratio as 1 – |F| / |O|, where |F| is the
total number of functional units, and |O| is the total number of
operations to be bound. Define REG sharing ratio as 1 – |R| / |V|,
where |R| is the total number of registers, and |V| is the total
number of variables to be bound. The higher the sharing ratio, the
less resources utilized, and more operations or variables are
grouped to a single resource instance. These definitions will be
used in the synthesis algorithm in Section III.

The resource binding problem to be solved in this paper is
formulated as follows:

Given: (1) A scheduled DFG G(O, A), where O is the operation
set, and A is the data dependence among operations, (2) A group
of functional units F, and a group of registers R.

Objective: Bind the DFG with the given resources such that the
total area of the required multiplexers is minimized.

Note that since the number of functional units and registers is
fixed, minimizing MUX is equal to minimizing the total area.

III. Simultaneous FU and register binding
algorithm

In this section we will first introduce the whole synthesis flow,
and then present the construction of the core min-cost network
flow, which decides which operations and variables are grouped
together and share a same resource instance.

A. The SFR binding algorithm

The basic idea of the simultaneous FU and register (SFR)
binding algorithm is that neither all of the functional unit binding
nor all of the register binding is finished in one single step. Instead,
the resource sharing ratio will start from a low value with large
numbers of resources and gradually increase till the used resources
come down to the given resource constraints. During this gradual
binding process, both of the two binding tasks are performed
concurrently and are able to access the intermediate partial
information from the other. Also, necessary adjustments will be
made to improve chances for optimization.

Figure 1. The SFR Binding algorithm

The SFR binding algorithm is shown in Figure 1. breg is the
number of registers to be used in each iteration, and bfu is the total
number of functional units to be used. The number of functional
units of each type will be derived from bfu. Initially, bfu and breg are
set to the total number of operations and variables, respectively.
Then they are decreased gradually by r% after each iteration,
where r is a value to control how fast the resource sharing ratio
increases. When bfu and breg reach the given resource constraints,
the whole process is completed.

The calculation of bfu(f) for type f is the rounding of bfu · |Ff| ⁄ |F|,
where Ff is the set of functional units of type f given in the
resource constraints, and F is the complete set of functional units
given in the resource constraints. This calculation means that each
type of operations occupies proportional resources decided by the
resource constraints.

After resource allocation is done, functional unit binding and
register binding are performed based on the intermediate binding
results from the previous iteration, which has a smaller resource
sharing ratio. At this point, the two tasks can be done in any order.
In Figure 1, we show the situation where functional unit binding is
performed first. The current functional unit binding makes
assignment decisions based on the complete binding information
from the previous iteration. After the functional unit binding is
finished in the current iteration, its solution is available for the
subsequent register binding step in the same iteration. Therefore,
the current register binding will be performed based on the register
information from the previous iteration and the latest functional
unit information from the current iteration. How such information
guides the assignment will be discussed in the next subsection.
Obviously, we may perform register binding first in the current
iteration, so we still have some inter-dependency in the same
iteration. However, compared to the overall cyclic inter-
dependency and the traditional algorithms, our method has much
less influence on the final binding solution, since these two tasks
can interact with each other instead of being separated completely.

After binding is finished, MUX is generated in front of registers
and functional units where they are needed. Then the whole
binding information, including resource binding, MUX size and
critical paths, is fed into the next iteration to guide the resource
binding with fewer resources.

In this synthesis flow both functional unit binding and register
binding are performed gradually and interactively. Each
intermediate binding solution is gained based on previous binding
results with smaller resource sharing ratios and it then provides
useful information for subsequent iterations with larger resource
sharing ratios. In this way, the cyclic inter-dependency between
the two binding tasks is broken up and neither has to be solved
completely prior to the other.

We will use a simple example to illustrate the advantage of the
SFR binding algorithm over traditional algorithms. Figure 2(a)
shows a scheduling solution with six operations of the same
function type, oi (i∈[1,6]). The arrows represent the lifetime of
their output variables, vi (i∈[1,6]). For the sake of simplicity, we
only consider MUX before registers. We can see that all pairs of
operations are compatible and can share the same functional unit.
Except that variable v1 conflicts with variable v2, other pairs of
variables are compatible and can share the same register. Assume
that available resources include two functional units and two
registers.

Assume there are two iterations in the SFR binding algorithm
for this example, and in the first iteration both bfu and breg are
equal to 3. Assume we prefer to bind o1 and o2 together based on
estimated information. Suppose the functional binding solution
from the first iteration is {o1, o2}, {o3, o4}, {o5, o6}, and the
register binding solution is {v1, v3}, {v2, v4}, {v5, v6}. Note that o1
and o2 are bound together due to estimated information, while in
the subsequent register binding, their output variables, v1 and v2,
are stored into different registers due to their conflict. The
intermediate binding is shown in Figure 2(b). A two-input MUX is
required in front of register R1 and R2, since they have two
different functional units feeding data into them. Inaccurate
estimation in the functional unit binding leads to these
unnecessary MUX. In the second iteration with resource
constraints set as two functional units and two registers, since
more information about the register binding is gained, the
functional unit binding has the chance to make an adjustment and
split o1 and o2 apart. Suppose the functional binding solution from

the second iteration is {o1, o3, o4}, {o2, o5, o6}, and the register
binding solution is {v1, v3, v4}, {v2, v5, v6}. The complete binding
solution is shown in Figure 2(c). Redundant MUX is eliminated
due to the gradual binding and the interaction of the two binding
tasks. In traditional algorithms, since we prefer to bind o1 and o2
together based on estimation, we might come to the functional unit
binding of {o1, o2, o3}, {o4, o5, o6}, and then the register binding of
{v1, v3, v4}, {v2, v5, v6}. The binding solution is shown in Figure
2(d). A two-input MUX is required in front of both of two
registers. Inaccurate estimation, which is intrinsic in traditional
algorithms, leads to this suboptimal result.

Figure 2. (a) A scheduling example, (b) binding solution from

Iteration 1 in SFR, (c) binding solution from Iteration 2 in
SFR, (d) binding solution from traditional algorithms

B. Network flow construction

Network flow formulation has been used widely for binding
problems with the goal of optimizing all kinds of qualities of
concern, such as interconnection, switching activity, and power
consumption [2][5][6][11][20]. Due to its polynomial-time
complexity and flexibility for considering multiple metrics in the
cost function, we still utilize the network flow formulation for the
resource binding with the goal of optimizing MUX.

During each iteration, the register binding and the functional
unit binding of each type of operations (e.g., addition and
multiplication) are performed separately. The network
construction for each of the tasks is almost the same, except that
the compatibility is calculated differently (as explained in Section
II). We will use functional unit binding to illustrate the network
construction.

A network H = (s, t, Vn, En) is constructed based on Of in the
DFG and the compatibilities of operations. We introduce the
source vertex s and sink vertex t. Vn is the vertex set, and En is the
edge set of the network. For each operation in Of, there is a
corresponding vertex in Vn. When two operations are compatible,
there is a directed edge connecting the two corresponding vertices.
s is connected to all vertices, and all vertices are connected to t.
The maximum capacity of each edge is 1. Both the outflow of s
and the inflow of t are equal to bfu(f). Each edge is associated with
a weight, which represents the cost of binding two operations into
a single functional unit.

In the following we will use the example in Figure 3(a) to
illustrate the construction of H. The constructed network is shown
in Figure 3(b). From the definition of compatibility, we have that
o1 → o2, o1 → o3, and o3 → o2. The corresponding three edges are
drawn in the network.

The cost of edges starting from s or ending at t is set as 0. The
cost of edges from oi to oj is defined as

C(oi, oj) = g(MUX, timing, consistency), (0)
where “MUX” represents the possibility of introducing MUX due
to sharing, “timing” considers if splitting oi or oj will help to
decrease the clock period, and the goal of “consistency” is to
maintain the binding consistency among successive intermediate
binding solutions. The possibility of introducing MUX is based on
the register binding and compatibility of the input and output
variables of oi and oj. The idea is the same as that in [5][8][20].
We will not repeat it here. MUX introduces non-negligible delay
compared to other datapath components [5]. Avoiding putting
them on critical paths will help to improve the timing of designs.
If either oi or oj is on the critical paths in a previous binding
solution, a non-zero weight will be added to C(oi, oj); otherwise,
the weight of “timing” will be 0. This means if any of these two
operations is on critical paths, in order to alleviate the impact of
MUX on timing, we will prefer not to bind them together at this
time. If oi and oj do not share a same resource instance in the
binding solution of the previous iteration, a non-zero weight will
be added to C(oi, oj); otherwise, the weight of “consistency” will
be 0. This means if two operations share a common resource
instance in a previous iteration, we will prefer that they stay
together.

Figure 3. A scheduling and its network H and Hd

From the definition of edge costs, it is easy to see that the
resource binding solution derived from the network flow with
smaller total cost has a smaller MUX area, improved timing and
good consistency with previous solutions.

To guarantee that only one unit flow goes through each node o
∈ Of, we can apply a node-splitting technique, which was first
adopted in [2] to guarantee that we will have a legal binding
solution. This technique splits every vertex o ∈ Of in H into two
nodes, o and od. There is an edge from o to od. All the edges
coming out from o will be connected to od instead. Both the flow
capacity lower bound and upper bound are 1 for the edge (o, od).
We denote the network after splitting as Hd. Figure 3(c) shows the
split version of H from Figure 3(b).

Lemma 1: A flow u, with | u | = 1, in the network Hd
corresponds to a group of operations that are compatible with each
other and thus can be bound to a same resource instance.

Theorem 1: The min-cost bfu(f)-flow of Hd, min-flow, binds Of
to exactly bfu(f) functional units. €

The proofs of the above lemma and theorem are omitted due to
page limitations.

The min-cost network flow can be solved by
shortest-path-based algorithms [3]. After we obtain the min-cost
flow, each edge (oi

d, oj) with a unit flow represents that operations
oi and oj should be bound together into the same resource instance.

IV. ILP formulation

To gain a better knowledge of the quality of the proposed
algorithm, we formulate the MUX optimization problem as an ILP
formulation. ILP either maximizes or minimizes an objective
function of a set of variables, subject to a group of linear equation
and inequality constraints and integral restrictions on all of the
variables.

Let |F| be the total number of given functional units, and |R| be
the total number of given registers. We give each resource
instance an identifier ranging from 1 to |F| + |R|. Let CF(i) be the
set of functional units which can execute operation oi. Let CR be
the set of all registers. Let xi,k represent whether operation oi (or
variable vi) is bound to the functional unit k (or register k). If this
is the case, xi,k is set as 1; otherwise, the value is 0. Let ck,l,p
represent if there is connection from resource instance k to the port
p of resource instance l (registers have one input, but functional
units have two or more inputs). Let mk,p represent the number of
connections to the port p of resource instance k.

Based on the above definitions, the constraint that each
operation/variable is bound to one and only one resource instance
is described below.

∑
∈

=
)(

, 1
iCFk

kix ∀oi∈O (1)

∑
∈

=
CRk

kix 1,
 ∀vi∈V (2)

Each resource can only be occupied by only one
operation/variable at one time, which means those conflicting
operations/variables cannot be bound to a same resource.

1)(,, ≤+ kjki xx ∀!(oi→oj) && !(oj→oi), ∀k∈CF(i)∩CF(j) (3)

1)(,, ≤+ rjri xx ∀ !(vi → vj) && !(vj → vi), ∀r∈CR (4)

For dataflow from oi to oj, suppose that oi is bound to functional
unit k, the output variable of oi, vi, is bound to register r, and oj is
bound to functional unit l. There will be a connection from
functional unit k to register r, and from register r to the
corresponding port of functional unit l. In inequation (6) below, p
in cr,l,p is the port of oj into which the output of oi is fed.

0,,,, 1 rkriki cxx ≤−+ ∀vi∈V, ∀k∈CF(i), ∀r∈CR (5)

plrljri cxx ,,,, 1 ≤−+ ∀ (oi,oj)∈E && oi and oj not chained,

∀r∈CR, ∀ l∈ CF(j) (6)
If oi and oj are chained, there is only one connection from

functional unit k to functional unit l.

plkljki cxx ,,,, 1 ≤−+ ∀ (oi,oj)∈E && oi and oj chained,

∀ k∈ CF(i), ∀ l∈CF(j) (7)
mk,p is the summation of connections from other resource

instances to the port p of resource instance k.

∑
+∈

=
|]R| |F|,1[

,,,
l

pkpkl mc ∀k∈[1,|F|+|R|], ∀p∈ports (8)

The objective function is the sum of the connections in front of
all resource instances.

∑
∈+∈ portsp|],R| |F|,1[

,:min
l

pkm

The description of interconnection constraints is similar to [15].
However, [15] describes minimizing the total wiring area after a
preliminary floor-planning is done, while our formulation is to
minimize MUX.

For a benchmark with 15 operations and 9 variables, when the
resource constraint is set at five functional units and five registers,
the ILP formulation comprises 190 variables and 582 equation and
inequation constraints. For a benchmark with 48 operations, 33

variables, 20 functional units and 17 registers, the number of
variables and constraints increases to 2145 and 17598. Solving the
ILP problem of such sizes is very time- consuming and solutions
may not be reached within a reasonable time.

We would like to point out that only when two or more
interconnections are connected to a single port, a MUX will be
introduced. Also, the MUX area is not exactly linear to its input
number. Figure 4 shows the curve of MUX inputs and its area in
terms of LUTs based on the Xilinx Virtex2P device [1]. The
bitwidth of ports is set at 32. In the objective function, we simply
minimize the total connections among resource instances, which
might not lead to the optimal solution with the smallest MUX area.
We observe that the total interconnections are highly correlated
with the total inputs of MUX. Minimizing one objective will lead
to optimizing the other, though not necessarily optimally. We also
observe that when the MUX’s inputs are less than six, which is the
case for small designs, the curve is very close to a line.
Furthermore, due to the huge number of variables and constraints
for medium- and large-size designs, we can only test small designs
with ILP. In this case, ILP will generate optimal or near-optimal
solutions for small designs and can be a good standard for
evaluating the quality of heuristics.

0

50

100

150

200

250

300

2 3 4 5 6 7 8 9 10 11

MUX Inputs

M
U
X

A
r
e
a

(
L
U
T
s
)

Figure 4. MUX area

V. Experimental results
The binding algorithm and ILP formulation are implemented in

xPilot, a platform-based behavioral synthesis system developed at
UCLA [7]. In this framework a behavioral description in C is first
parsed and optimized into a control- and data-flow graph. After
the scheduling and resource allocation is done, the simultaneous
binding flow and the ILP binding discussed in Section III and IV
are then performed. This tool is platform-based and integrates area
and timing estimators targeted at different user-defined hardware
platforms. In this paper, all the experimental data are based on the
Xilinx Virtex2P device [1], and the set of real-life benchmarks are
from [17]. These examples are data-dominated behavioral
description in signal and image processing applications.

A. Comparison to previous works

To evaluate the efficiency of our simultaneous binding solution,
we implemented the resource binding algorithm recently proposed
in [20], which is also based on the min-cost network flow, but
breaks the cyclic inter-dependency by solving one task completely
before starting the other. We experimented with two different
traditional flows based on the algorithm of [20]:
“FU+REG”: Functional unit binding is performed first, followed
by register binding.
“REG+FU”: Register binding is performed first, followed by
functional unit binding.

Also, we add a post-processing step after the resource binding is
finished, where we redo resource binding repeatedly until the

MUX area does not decrease any more. For instance, after adding
the post-processing, “FU+REG” would be “FU+REG+FU+REG
+FU…”. The second “FU” will be performed based on the
previous “REG” and the second “REG” will be based on the
second “FU”. The purpose of the post-processing is to understand
how much iterative refinement of FU and register binding can save
the MUX area.

Table 1 summaries the MUX area of six different flows in terms
of LUTs. Column “SFR” shows the results from the simultaneous
flow. Column “SFR+Post” shows the results of the simultaneous
flow followed by the post-processing. The remaining four columns
list the results from “FU+REG”, “REG+FU” and the versions
with post-processing. The last row lists the comparison results
over “SFR”. We can see that “SFR” consistently introduces less
MUX than “FU+REG” and “REG+FU” (12% and 9% better on
average, respectively). Also, we observe that the post-processing
does work for “FU+REG” and “REG+FU” with an improvement
of 4% and 1.7%. However, the post-processing cannot improve
“SFR” further. Even after the improvement by post-processing to
“FU+REG” and “REG+FU”, “SFR” still performs better.

For the total area in terms of the number of occupied LUTs,
“SFR” achieves a saving of 4% and 3% compared to “FU+REG”
and “REG+FU” on average. Details are omitted due to page
limitation.

Table 2 summaries the timing results given by the six flows in
terms of clock period (ns). “SFR” still out-performs the last four
columns, because the simultaneous flow is capable of making
necessary adjustments to alleviate the introduced MUX on critical
paths due to sharing.

Table 1. Experimental results of MUX area
Designs SFR SFR

+Post FU+REG FU+REG
+Post REG+FU REG+FU

+Post
chem 23936 23936 25600 25600 24576 24576

dir 5824 5824 7168 6592 6336 6336
fei 38720 38720 42432 41408 40832 40384

honda 4672 4672 4992 4992 5248 4864
lee 2688 2688 3328 3136 3008 2944

mcm 3648 3648 4160 3968 4032 4032
wang 2624 2624 2944 2880 3072 3072
Avg. - 0.0% 13.8% 9.9% 9.8% 8.1%

Table 2. Experimental results of clock period
Designs SFR SFR

+Post FU+REG FU+REG
+Post REG+FU REG+FU

+Post
chem 15.3 15.3 15.3 15.3 15.7 15.7

dir 12.6 12.6 15.0 15.0 15.0 15.0
fei 15.0 15.0 15.0 15.0 15.0 15.3

honda 15.0 15.0 15.3 15.7 15.0 15.3
lee 12.6 12.6 15.0 15.0 15.3 15.3

mcm 12.6 12.6 15.0 15.0 15.0 15.0
wang 13.0 13.0 13.0 13.0 15.3 15.3
Avg. - 0.0% 8.4% 8.7% 11.3% 12.0%

B. Binding consistency

One of the key factors of the simultaneous and gradual flow is
that it can maintain a high consistency among the successive
intermediate binding solutions. We achieve this by adding a
certain weight in the cost function to prefer previous binding
decisions. To show the impact of consistency on the solution
quality, we also perform experiments on another cost function,
which omits the weight of “consistency” in function (0). We
denote the algorithm with this new cost function as SFR’.

Let tpfu(i-1) (tpreg(i-1)) be the total number of pairs of operations
(variables) that are bound together in the (i-1) th iteration. Let cpfu(i)

(cpreg(i)) be the number of pairs of operations (variables) that share
a same resource in both (i-1) th and ith iterations. We calculate the
FU binding consistency of (i-1) th and ith iterations as cpfu(i) /
tpfu(i-1), and the REG binding consistency as cpreg(i) / tpreg(i-1).
Figure 5 shows the consistency data of SFR and SFR’ for design
chem. We can see that the consistency of SFR is most often over
90%, much higher than SFR’, which is usually less than 20%.

Figure 6 shows the results of the MUX area from these two cost
functions. SFR’ introduces 10% more MUX on average, even
worse than the traditional bindings for some designs.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Iteration #

C
on
si
st
e
nc
y

FU

REG

FU'

REG'

Figure 5. Consistency comparison of two cost functions

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

chem dir fei honda lee mcm wang

MU
X
 A

re
a

SFR

SFR'

Figure 6. Experimental results of two cost functions

C. Optimality study

Table 3. Experimental results of optimality study
Designs ILP SFR FU+REG REG+FU

t1 1152 1152 1280 1280
t2 1088 1152 1216 1216
t3 960 960 1024 1024
t4 960 1088 1152 1152
t5 1024 1088 1088 1126

Avg. - 5.1% 11.2% 11.9%
To study the optimality of the simultaneous flow, we tested it

against the ILP formulation with small designs of around 15
operations. Table 3 lists the MUX area given by four flows. The
second column shows the results from ILP, which are optimal or
near-optimal in terms of MUX area. The remaining three columns
show results from “SFR”, “FU+REG” and “REG+FU”. For these
small designs, “SFR” is very close to ILP with 5% more MUX on
average, while the two traditional flows are about 11% worse.

VI. Conclusions and Future Work
In this paper we present a simultaneous FU and register binding

algorithm, SFR, to optimize MUX, which can break up the cyclic
inter-dependency between functional unit binding and register
binding without sacrificing the performance of either task. ILP of
the binding problem is formulated to evaluate the optimality of

heuristics. Experiments show that our simultaneous synthesis flow
is close to optimal solutions and achieves significant reduction for
MUX area (12%) and timing (10%) for a set of benchmark designs,
compared to traditional binding algorithms.

When it comes to medium- and large-size designs, the ILP
formulation cannot be solved in reasonable time due to the huge
number of variables and constraints. Also, the real MUX area is
replaced by the MUX input number in the ILP formulation, which
compromises the optimal solutions. How to design algorithms that
can give the lower bound or optimal solution of MUX area will be
our future work.

Acknowledgements
This work is supported by National Science Foundation under

grants CCF-0096383 and CCF-0530261 and Semiconductor
Research Corporation under grant 2006-TJ-1400.

References
[1] Xilinx Web Site, http://www.xilinx.com.
[2] J. M. Chang and M. Pedram, “Register Allocation and Binding for

Low Power,” Design Automation Conference, 1995.
[3] R. K. Ahuja，T. L. Magnanti，and J. B. Orlin. Network Flows:

Theory, Algorithms, and Applications. Prentice-Hall，Englewood
Cliffs，1993.

[4] D. Chen, J. Cong, and Y. Fan, “Low-Power High-Level Synthesis for
FPGA Architectures,” International Symposium on Low Power
Electronics and Design, Seoul, Korea, pp. 134-139, Aug. 2003.

[5] D. Chen, and J. Cong, “Register Binding and Port Assignment for
Multiplexer Optimization,” ASPDAC, pp. 68-73, January 2004.

[6] D. Chen, J. Cong, and J. Xu, “Optimal Module and Voltage
Assignment for Low-Power,” ASPDAC, pp. 850~855, 2005.

[7] J. Cong, Y. Fan, G. Han, W. Jiang, and Z. Zhang, “Platform-Based
Behavior-Level and System-Level Synthesis,” Proceedings of IEEE
International SOC Conference, pp. 199-202, Sept. 2006.

[8] C.Y. Huang, et al. “Data Path Allocation Based on Bipartite
Weighted Matching,” Design Automation Conference, 1990.

[9] T. Kim and C.L. Liu, “An Integrated Data Path Synthesis Algorithm
Based on Network Flow Method,” Proc. of the IEEE Custom
Integrated Circuits Conference, 1995.

[10] F. Li, D. Chen, L. He and J. Cong, “Architecture Evaluation for
Power-efficient FPGAs,” ACM International Symposium on FPGA,
Feb. 2003.

[11] C. G. Lyuh and K. Taewhan, “High-level Synthesis for Low-Power
Based on Network Flow Method,” IEEE Trans. on VLSI Systems.
2003. 11(3): 364~375.

[12] Barry Pangrle, “On the Complexity of Connectivity Binding,” IEEE
Tran. on Computer-Aided Design, Vol.10, No.11, Nov. 1991.

[13] B. M. Pangrle, “Splicer: A Heuristic Approach to Connectivity
Binding,” Design Automation Conference, pp. 536-541, Jun. 1988.

[14] P. G. Paulin, J. P. Knight, and E. F. Girczyc, “HAL: A
Multi-Paradigm Approach to Automatic Data Path Synthesis,”
Design Automation Conference, pp. 263-270, Jul. 1986.

[15] M. Rim, R. Jain, and R. D. Leone, “Optimal Allocation and Binding
in High-Level Synthesis,” Design Automation Conference, 1992.

[16] A. Singh and M. Marek-Sadowska, “Efficient Circuit Clustering for
Area and Power Reduction in FPGAs,” ACM International
Symposium on FPGA, Feb. 2002.

[17] M. B. Srivastava and M. Potkonjak, “Optimum and Heuristic
Transformation Techniques for Simultaneous Optimization of
Latency and Throughput,” Trans. on VLSI Systems, 1995.

[18] J. Stephenson and P. Metzgen, “Logic Optimization Techniques for
Multiplexers,” Altera Literature, 2004.

[19] C-J. Tseng and D. P. Siewiorek, “Automated Synthesis of Data Path
in Digital Systems,” IEEE Tran. on CAD of ICAS, Vol.CADJ, No.3,
pp 379-395, Jul. 1986.

[20] H.W. Zhu and C.C. Jong, “Interconnection Optimization in Data Path
Allocation Using Minimal Cost Maximal Flow Algorithm,”
Microelectronics, Vol.33, No.9, pp 749-59, Sept. 2002.

	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index

