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Abstract – With the rapid increase of design complexity and the 
decrease of device features in nano-scale technologies, 
interconnection optimization in digital systems becomes more 
and more important. In this paper we develop a simultaneous 
FU and register (SFR) binding algorithm for multiplexer 
optimization based on min-cost network flow. Unlike most of the 
prior approaches in which functional unit binding and register 
binding are performed sequentially, our approach performs 
these two highly correlated tasks gradually and concurrently. We 
also present an ILP formulation of the combined functional unit 
and register binding problem for the optimality study of 
heuristics. Experimental results show that when compared to 
traditional binding algorithms, our simultaneous resource 
binding algorithm is close to optimal solutions for small-size 
designs (only 5% more MUX) and achieves significant reduction 
for MUX area (12%) and timing (10%) for a set of real-life 
benchmark designs. 
 
 

I. Introduction 
As VLSI circuits move into the era of nano-scale technology 

and gigahertz clock frequency, the system’s area and performance 
have increasingly become dominated by the interconnection. 
Studies show that interconnects consume over 70% of the total 
area and over 75% of the total power for most of the FPGA 
designs [10][16]. The multiplexer (MUX), one of the basic data 
path connection elements, contributes a significant amount of 
these costs, especially for FPGA designs. A recent study from 
Altera [18], based on the analysis of 100 customer designs, stated 
that multiplexers account for 26% of the logic element utilization. 
Optimizing multiplexer is very important for the overall quality of 
digital designs. 

The behavioral synthesis, which compiles designs specified in 
high-level languages into register-transfer level code, determines 
the main micro-architecture of designs and thus has a big impact 
on the design quality. Behavioral synthesis consists of three basic 
stages: resource allocation, scheduling, and resource binding. 
Allocation determines how many instances of each type of 
resources (functional units or registers) are needed; scheduling 
determines when a computational operation will be executed; 
resource binding assigns operations (or variables) to the resources. 
Each of these three steps has influence on the multiplexer 
utilization. In this paper we will assume that the first two steps are 
already finished and focus only on the third step, resource binding, 
for multiplexer optimization. 

Specifically, the task of functional unit (FU) binding is to assign 
operations to functional units of the same type, and the task of 
register (REG) binding is to assign variables to registers. A MUX 
will be introduced before a register whenever more than one 
functional unit produces results and stores them into this register. 

In a similar way, a MUX will be introduced before an input port of 
a functional unit whenever more than one register feeds data to 
this port. Results of FU binding and REG binding jointly 
determine the final interconnection structure. To optimize MUX, 
both of these two tasks need to be performed carefully. 
Unfortunately, there is a cyclic inter-dependency between them 
that compromises the performance. Specifically, the assignment 
decision of operations to functional units is based on the 
knowledge of the assignment of variables to registers. On the other 
hand, the assignment of variables to registers can be informed only 
if the functional unit binding is performed beforehand. This cyclic 
inter-dependency was recognized in previous works, but most of 
these broke it up by simply solving one task completely before 
doing the other. This simple method has to sacrifice one task’s 
accuracy and thus might not lead to good solutions. 

Even if the result of one binding task is fixed, the problem of 
the other binding problem with the goal of minimizing MUX 
remains to be NP-Hard [12]. Because of the significant effect of 
interconnection on the overall chip qualities, many heuristics have 
been proposed to optimize interconnection. In earlier works from 
the 1980s, clique partitioning methods and branch-and-bound 
search algorithms are applied to bind functional units and registers 
[13][14][19]. Later on, a weighted bipartite-matching algorithm 
was presented to solve both register and functional unit binding 
[8]. The cost of edges represents the possibility that the sharing of 
two operations or two variables will introduce a MUX. The 
authors experimented with two flows in which the functional unit 
binding and the register binding were solved in different orders. 
Experimental data showed that the ordering did not impact the 
interconnection result much. In [9], an integrated flow was 
proposed to perform scheduling, allocation and binding all 
together in a step-by-step fashion. For each control step, the 
maximum possible number of operations are selected out of the 
ready operations and scheduled at the current step. Then a network 
flow is constructed to solve the concurrent functional unit binding 
and register binding. This method breaks up the cyclic 
inter-dependency in a better way than previous methods, but the 
drawback is that it can only perform local exploration and thus 
compromises the final quality due to the lack of global exploration. 
In [20], the min-cost network flow algorithm is applied to solve 
both binding tasks. Again, the inter-dependency is broken by 
solving one task completely before starting the other. In [4], a 
bipartite-based algorithm is proposed for register binding with the 
goal of optimizing MUX. The authors assume that functional unit 
binding is already done and fixed. The work in [5] solved the same 
problem as [4], but formulated it as a k-cofamily problem solved 
by the min-cost network flow. 

Among the above-mentioned related works, none handle the 
cyclic inter-dependency well and may sacrifice the optimality of 
one or both tasks. In this paper, instead of solving these two tasks 
separately, we propose a simultaneous FU and register binding 
algorithm, named SFR, to tackle this cyclic inter-dependency 
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without compromising any task’s performance. Given a scheduled 
DFG and available resources, our goal is to minimize the total area 
of multiplexers. Specifically, two resource binding tasks are 
performed gradually and interactively so that both of them can 
make assignment decisions based on the intermediate partial 
binding information supplied by each other. In this way, neither of 
the two tasks has to sacrifice accuracy. As the binding process 
progresses and more binding information is gained, necessary 
adjustments will be made and operations and variables which are 
already bound together might be separated to allow for 
optimization. More details of the SFR binding algorithm will be 
provided in Section III. Also, we present an ILP formulation of the 
multiplexer minimization problem for the purpose of an optimality 
study. Both the SFR binding algorithm and the ILP formulation 
support general scenarios, such as multi-cycle operations, 
pipelined operations and chaining. Experimental results show that 
our synthesis flow can achieve a significant amount of savings in 
terms of MUX area and timing. 

In the remainder of this paper, we will introduce related 
preliminaries and define the problem to be solved in Section II. 
The simultaneous binding algorithm, as well as the formal ILP 
formulation, will be presented in Sections III and IV. Section V 
shows the experimental results, and Section VI concludes this 
paper. 

II. Preliminaries and definitions 
The inputs to the resource binding problem are a scheduled 

DFG, and the available resources include a number of functional 
units and registers. A DFG is an acyclic directed graph, in which 
nodes represent operations, and edges represent data dependence. 
Data propagated along the edges are called variables. Variables 
produced in one clock cycle and used in another clock cycle need 
to be registered.  

The set of operations to be bound is denoted as O, and the set of 
variables to be stored is denoted as V. We use Of to represent the 
group of operations of type f. For two operations oi and oj of the 
same function type f, if their execution times do not overlap and 
operation oi comes before oj, we call operations oi and oj 
compatible with each other, and denote this compatibility as oi → 
oj. Compatible operations can be bound into a single functional 
unit without lifetime conflict. For pipelined operations, we only 
consider the initiating execution time for compatibility calculation. 
The lifetime of a variable v is defined as the time period from the 
control step where v is generated to the last control step where v is 
consumed by other operations. Similarly, for two variables vi and 
vj, if their corresponding lifetimes do not overlap and variable vi is 
produced before vj, we call variables vi and vj compatible with 
each other, and denote this compatibility as vi → vj. 

We define FU sharing ratio as 1 – |F| / |O|, where |F| is the 
total number of functional units, and |O| is the total number of 
operations to be bound. Define REG sharing ratio as 1 – |R| / |V|, 
where |R| is the total number of registers, and |V| is the total 
number of variables to be bound. The higher the sharing ratio, the 
less resources utilized, and more operations or variables are 
grouped to a single resource instance. These definitions will be 
used in the synthesis algorithm in Section III. 

The resource binding problem to be solved in this paper is 
formulated as follows: 

Given: (1) A scheduled DFG G(O, A), where O is the operation 
set, and A is the data dependence among operations, (2) A group 
of functional units F, and a group of registers R. 

Objective: Bind the DFG with the given resources such that the 
total area of the required multiplexers is minimized. 

Note that since the number of functional units and registers is 
fixed, minimizing MUX is equal to minimizing the total area. 

III. Simultaneous FU and register binding 
algorithm 

In this section we will first introduce the whole synthesis flow, 
and then present the construction of the core min-cost network 
flow, which decides which operations and variables are grouped 
together and share a same resource instance. 

A. The SFR binding algorithm 

The basic idea of the simultaneous FU and register (SFR) 
binding algorithm is that neither all of the functional unit binding 
nor all of the register binding is finished in one single step. Instead, 
the resource sharing ratio will start from a low value with large 
numbers of resources and gradually increase till the used resources 
come down to the given resource constraints. During this gradual 
binding process, both of the two binding tasks are performed 
concurrently and are able to access the intermediate partial 
information from the other. Also, necessary adjustments will be 
made to improve chances for optimization. 

 
Figure 1. The SFR Binding algorithm 

The SFR binding algorithm is shown in Figure 1. breg is the 
number of registers to be used in each iteration, and bfu is the total 
number of functional units to be used. The number of functional 
units of each type will be derived from bfu. Initially, bfu and breg are 
set to the total number of operations and variables, respectively. 
Then they are decreased gradually by r% after each iteration, 
where r is a value to control how fast the resource sharing ratio 
increases. When bfu and breg reach the given resource constraints, 
the whole process is completed. 

The calculation of bfu(f) for type f is the rounding of bfu · |Ff| ⁄ |F|, 
where Ff is the set of functional units of type f given in the 
resource constraints, and F is the complete set of functional units 
given in the resource constraints. This calculation means that each 
type of operations occupies proportional resources decided by the 
resource constraints. 



After resource allocation is done, functional unit binding and 
register binding are performed based on the intermediate binding 
results from the previous iteration, which has a smaller resource 
sharing ratio. At this point, the two tasks can be done in any order. 
In Figure 1, we show the situation where functional unit binding is 
performed first. The current functional unit binding makes 
assignment decisions based on the complete binding information 
from the previous iteration. After the functional unit binding is 
finished in the current iteration, its solution is available for the 
subsequent register binding step in the same iteration. Therefore, 
the current register binding will be performed based on the register 
information from the previous iteration and the latest functional 
unit information from the current iteration. How such information 
guides the assignment will be discussed in the next subsection. 
Obviously, we may perform register binding first in the current 
iteration, so we still have some inter-dependency in the same 
iteration. However, compared to the overall cyclic inter- 
dependency and the traditional algorithms, our method has much 
less influence on the final binding solution, since these two tasks 
can interact with each other instead of being separated completely. 

After binding is finished, MUX is generated in front of registers 
and functional units where they are needed. Then the whole 
binding information, including resource binding, MUX size and 
critical paths, is fed into the next iteration to guide the resource 
binding with fewer resources. 

In this synthesis flow both functional unit binding and register 
binding are performed gradually and interactively. Each 
intermediate binding solution is gained based on previous binding 
results with smaller resource sharing ratios and it then provides 
useful information for subsequent iterations with larger resource 
sharing ratios. In this way, the cyclic inter-dependency between 
the two binding tasks is broken up and neither has to be solved 
completely prior to the other. 

We will use a simple example to illustrate the advantage of the 
SFR binding algorithm over traditional algorithms. Figure 2(a) 
shows a scheduling solution with six operations of the same 
function type, oi (i∈[1,6]). The arrows represent the lifetime of 
their output variables, vi (i∈[1,6]). For the sake of simplicity, we 
only consider MUX before registers. We can see that all pairs of 
operations are compatible and can share the same functional unit. 
Except that variable v1 conflicts with variable v2, other pairs of 
variables are compatible and can share the same register. Assume 
that available resources include two functional units and two 
registers. 

Assume there are two iterations in the SFR binding algorithm 
for this example, and in the first iteration both bfu and breg are 
equal to 3. Assume we prefer to bind o1 and o2 together based on 
estimated information. Suppose the functional binding solution 
from the first iteration is {o1, o2}, {o3, o4}, {o5, o6}, and the 
register binding solution is {v1, v3}, {v2, v4}, {v5, v6}. Note that o1 
and o2 are bound together due to estimated information, while in 
the subsequent register binding, their output variables, v1 and v2, 
are stored into different registers due to their conflict. The 
intermediate binding is shown in Figure 2(b). A two-input MUX is 
required in front of register R1 and R2, since they have two 
different functional units feeding data into them. Inaccurate 
estimation in the functional unit binding leads to these 
unnecessary MUX. In the second iteration with resource 
constraints set as two functional units and two registers, since 
more information about the register binding is gained, the 
functional unit binding has the chance to make an adjustment and 
split o1 and o2 apart. Suppose the functional binding solution from 

the second iteration is {o1, o3, o4}, {o2, o5, o6}, and the register 
binding solution is {v1, v3, v4}, {v2, v5, v6}. The complete binding 
solution is shown in Figure 2(c). Redundant MUX is eliminated 
due to the gradual binding and the interaction of the two binding 
tasks. In traditional algorithms, since we prefer to bind o1 and o2 
together based on estimation, we might come to the functional unit 
binding of {o1, o2, o3}, {o4, o5, o6}, and then the register binding of 
{v1, v3, v4}, {v2, v5, v6}. The binding solution is shown in Figure 
2(d). A two-input MUX is required in front of both of two 
registers. Inaccurate estimation, which is intrinsic in traditional 
algorithms, leads to this suboptimal result.  

 
Figure 2. (a) A scheduling example, (b) binding solution from 

Iteration 1 in SFR, (c) binding solution from Iteration 2 in 
SFR, (d) binding solution from traditional algorithms 

B. Network flow construction 

Network flow formulation has been used widely for binding 
problems with the goal of optimizing all kinds of qualities of 
concern, such as interconnection, switching activity, and power 
consumption [2][5][6][11][20]. Due to its polynomial-time 
complexity and flexibility for considering multiple metrics in the 
cost function, we still utilize the network flow formulation for the 
resource binding with the goal of optimizing MUX. 

During each iteration, the register binding and the functional 
unit binding of each type of operations (e.g., addition and 
multiplication) are performed separately. The network 
construction for each of the tasks is almost the same, except that 
the compatibility is calculated differently (as explained in Section 
II). We will use functional unit binding to illustrate the network 
construction. 

A network H = (s, t, Vn, En) is constructed based on Of in the 
DFG and the compatibilities of operations. We introduce the 
source vertex s and sink vertex t. Vn is the vertex set, and En is the 
edge set of the network. For each operation in Of, there is a 
corresponding vertex in Vn. When two operations are compatible, 
there is a directed edge connecting the two corresponding vertices. 
s is connected to all vertices, and all vertices are connected to t. 
The maximum capacity of each edge is 1. Both the outflow of s 
and the inflow of t are equal to bfu(f). Each edge is associated with 
a weight, which represents the cost of binding two operations into 
a single functional unit. 

In the following we will use the example in Figure 3(a) to 
illustrate the construction of H. The constructed network is shown 
in Figure 3(b). From the definition of compatibility, we have that 
o1 → o2, o1 → o3, and o3 → o2. The corresponding three edges are 
drawn in the network. 

The cost of edges starting from s or ending at t is set as 0. The 
cost of edges from oi to oj is defined as 



C(oi, oj) = g(MUX, timing, consistency),                   (0) 
where “MUX” represents the possibility of introducing MUX due 
to sharing, “timing” considers if splitting oi or oj will help to 
decrease the clock period, and the goal of “consistency” is to 
maintain the binding consistency among successive intermediate 
binding solutions. The possibility of introducing MUX is based on 
the register binding and compatibility of the input and output 
variables of oi and oj. The idea is the same as that in [5][8][20]. 
We will not repeat it here. MUX introduces non-negligible delay 
compared to other datapath components [5]. Avoiding putting 
them on critical paths will help to improve the timing of designs. 
If either oi or oj is on the critical paths in a previous binding 
solution, a non-zero weight will be added to C(oi, oj); otherwise, 
the weight of “timing” will be 0. This means if any of these two 
operations is on critical paths, in order to alleviate the impact of 
MUX on timing, we will prefer not to bind them together at this 
time. If oi and oj do not share a same resource instance in the 
binding solution of the previous iteration, a non-zero weight will 
be added to C(oi, oj); otherwise, the weight of “consistency” will 
be 0. This means if two operations share a common resource 
instance in a previous iteration, we will prefer that they stay 
together. 

 
Figure 3. A scheduling and its network H and Hd 

From the definition of edge costs, it is easy to see that the 
resource binding solution derived from the network flow with 
smaller total cost has a smaller MUX area, improved timing and 
good consistency with previous solutions. 

To guarantee that only one unit flow goes through each node o 
∈ Of, we can apply a node-splitting technique, which was first 
adopted in [2] to guarantee that we will have a legal binding 
solution. This technique splits every vertex o ∈ Of in H into two 
nodes, o and od. There is an edge from o to od. All the edges 
coming out from o will be connected to od instead. Both the flow 
capacity lower bound and upper bound are 1 for the edge (o, od). 
We denote the network after splitting as Hd. Figure 3(c) shows the 
split version of H from Figure 3(b). 

Lemma 1: A flow u, with | u | = 1, in the network Hd 
corresponds to a group of operations that are compatible with each 
other and thus can be bound to a same resource instance. 

Theorem 1: The min-cost bfu(f)-flow of Hd, min-flow, binds Of 
to exactly bfu(f) functional units.      € 

The proofs of the above lemma and theorem are omitted due to 
page limitations. 

The min-cost network flow can be solved by 
shortest-path-based algorithms [3]. After we obtain the min-cost 
flow, each edge (oi

d, oj) with a unit flow represents that operations 
oi and oj should be bound together into the same resource instance. 

IV. ILP formulation 

To gain a better knowledge of the quality of the proposed 
algorithm, we formulate the MUX optimization problem as an ILP 
formulation. ILP either maximizes or minimizes an objective 
function of a set of variables, subject to a group of linear equation 
and inequality constraints and integral restrictions on all of the 
variables. 

Let |F| be the total number of given functional units, and |R| be 
the total number of given registers. We give each resource 
instance an identifier ranging from 1 to |F| + |R|. Let CF(i) be the 
set of functional units which can execute operation oi. Let CR be 
the set of all registers. Let xi,k represent whether operation oi (or 
variable vi) is bound to the functional unit k (or register k). If this 
is the case, xi,k is set as 1; otherwise, the value is 0. Let ck,l,p 
represent if there is connection from resource instance k to the port 
p of resource instance l (registers have one input, but functional 
units have two or more inputs). Let mk,p represent the number of 
connections to the port p of resource instance k. 

Based on the above definitions, the constraint that each 
operation/variable is bound to one and only one resource instance 
is described below. 

∑
∈

=
)(

, 1
iCFk

kix        ∀oi∈O                           (1) 

∑
∈

=
CRk

kix 1,
         ∀vi∈V                           (2) 

Each resource can only be occupied by only one 
operation/variable at one time, which means those conflicting 
operations/variables cannot be bound to a same resource. 

1)( ,, ≤+ kjki xx   ∀!(oi→oj) && !(oj→oi), ∀k∈CF(i)∩CF(j) (3) 

1)( ,, ≤+ rjri xx     ∀ !(vi → vj) && !(vj → vi), ∀r∈CR     (4) 

For dataflow from oi to oj, suppose that oi is bound to functional 
unit k, the output variable of oi, vi, is bound to register r, and oj is 
bound to functional unit l. There will be a connection from 
functional unit k to register r, and from register r to the 
corresponding port of functional unit l. In inequation (6) below, p 
in cr,l,p is the port of oj into which the output of oi is fed.  

0,,,, 1 rkriki cxx ≤−+     ∀vi∈V, ∀k∈CF(i), ∀r∈CR       (5) 

plrljri cxx ,,,, 1 ≤−+     ∀ (oi,oj)∈E && oi and oj not chained, 

∀r∈CR, ∀ l∈ CF(j)                                  (6) 
If oi and oj are chained, there is only one connection from 

functional unit k to functional unit l. 

plkljki cxx ,,,, 1 ≤−+     ∀ (oi,oj)∈E && oi and oj chained,    

∀ k∈ CF(i), ∀ l∈CF(j)                                (7) 
mk,p is the summation of connections from other resource 

instances to the port p of resource instance k. 

∑
+∈

=
|]R|  |F|,1[

,,,
l

pkpkl mc   ∀k∈[1,|F|+|R|], ∀p∈ports (8) 

The objective function is the sum of the connections in front of 
all resource instances. 

∑
∈+∈ portsp|],R|  |F|,1[

,:min
l

pkm  

The description of interconnection constraints is similar to [15]. 
However, [15] describes minimizing the total wiring area after a 
preliminary floor-planning is done, while our formulation is to 
minimize MUX. 

For a benchmark with 15 operations and 9 variables, when the 
resource constraint is set at five functional units and five registers, 
the ILP formulation comprises 190 variables and 582 equation and 
inequation constraints. For a benchmark with 48 operations, 33 



variables, 20 functional units and 17 registers, the number of 
variables and constraints increases to 2145 and 17598. Solving the 
ILP problem of such sizes is very time- consuming and solutions 
may not be reached within a reasonable time. 

We would like to point out that only when two or more 
interconnections are connected to a single port, a MUX will be 
introduced. Also, the MUX area is not exactly linear to its input 
number. Figure 4 shows the curve of MUX inputs and its area in 
terms of LUTs based on the Xilinx Virtex2P device [1]. The 
bitwidth of ports is set at 32. In the objective function, we simply 
minimize the total connections among resource instances, which 
might not lead to the optimal solution with the smallest MUX area. 
We observe that the total interconnections are highly correlated 
with the total inputs of MUX. Minimizing one objective will lead 
to optimizing the other, though not necessarily optimally. We also 
observe that when the MUX’s inputs are less than six, which is the 
case for small designs, the curve is very close to a line. 
Furthermore, due to the huge number of variables and constraints 
for medium- and large-size designs, we can only test small designs 
with ILP. In this case, ILP will generate optimal or near-optimal 
solutions for small designs and can be a good standard for 
evaluating the quality of heuristics. 
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Figure 4. MUX area 

V. Experimental results 
The binding algorithm and ILP formulation are implemented in 

xPilot, a platform-based behavioral synthesis system developed at 
UCLA [7]. In this framework a behavioral description in C is first 
parsed and optimized into a control- and data-flow graph. After 
the scheduling and resource allocation is done, the simultaneous 
binding flow and the ILP binding discussed in Section III and IV 
are then performed. This tool is platform-based and integrates area 
and timing estimators targeted at different user-defined hardware 
platforms. In this paper, all the experimental data are based on the 
Xilinx Virtex2P device [1], and the set of real-life benchmarks are 
from [17]. These examples are data-dominated behavioral 
description in signal and image processing applications. 

A. Comparison to previous works 

To evaluate the efficiency of our simultaneous binding solution, 
we implemented the resource binding algorithm recently proposed 
in [20], which is also based on the min-cost network flow, but 
breaks the cyclic inter-dependency by solving one task completely 
before starting the other. We experimented with two different 
traditional flows based on the algorithm of [20]: 
“FU+REG”: Functional unit binding is performed first, followed 
by register binding. 
“REG+FU”: Register binding is performed first, followed by 
functional unit binding. 

Also, we add a post-processing step after the resource binding is 
finished, where we redo resource binding repeatedly until the 

MUX area does not decrease any more. For instance, after adding 
the post-processing, “FU+REG” would be “FU+REG+FU+REG 
+FU…”. The second “FU” will be performed based on the 
previous “REG” and the second “REG” will be based on the 
second “FU”. The purpose of the post-processing is to understand 
how much iterative refinement of FU and register binding can save 
the MUX area. 

Table 1 summaries the MUX area of six different flows in terms 
of LUTs. Column “SFR” shows the results from the simultaneous 
flow. Column “SFR+Post” shows the results of the simultaneous 
flow followed by the post-processing. The remaining four columns 
list the results from “FU+REG”, “REG+FU” and the versions 
with post-processing. The last row lists the comparison results 
over “SFR”. We can see that “SFR” consistently introduces less 
MUX than “FU+REG” and “REG+FU” (12% and 9% better on 
average, respectively). Also, we observe that the post-processing 
does work for “FU+REG” and “REG+FU” with an improvement 
of 4% and 1.7%. However, the post-processing cannot improve 
“SFR” further. Even after the improvement by post-processing to 
“FU+REG” and “REG+FU”, “SFR” still performs better. 

For the total area in terms of the number of occupied LUTs, 
“SFR” achieves a saving of 4% and 3% compared to “FU+REG” 
and “REG+FU” on average. Details are omitted due to page 
limitation. 

Table 2 summaries the timing results given by the six flows in 
terms of clock period (ns). “SFR” still out-performs the last four 
columns, because the simultaneous flow is capable of making 
necessary adjustments to alleviate the introduced MUX on critical 
paths due to sharing. 

Table 1. Experimental results of MUX area 
Designs SFR SFR 

+Post FU+REG FU+REG
+Post REG+FU REG+FU

+Post
chem 23936 23936 25600 25600 24576 24576 

dir 5824 5824 7168 6592 6336 6336 
fei 38720 38720 42432 41408 40832 40384 

honda 4672 4672 4992 4992 5248 4864 
lee 2688 2688 3328 3136 3008 2944 

mcm 3648 3648 4160 3968 4032 4032 
wang 2624 2624 2944 2880 3072 3072 
Avg. -  0.0% 13.8% 9.9% 9.8% 8.1% 

Table 2. Experimental results of clock period 
Designs SFR SFR 

+Post FU+REG FU+REG
+Post REG+FU REG+FU

+Post 
chem 15.3 15.3  15.3  15.3  15.7  15.7  

dir 12.6 12.6  15.0  15.0  15.0  15.0  
fei 15.0 15.0  15.0  15.0  15.0  15.3  

honda 15.0 15.0  15.3  15.7  15.0  15.3  
lee 12.6 12.6  15.0  15.0  15.3  15.3  

mcm 12.6 12.6  15.0  15.0  15.0  15.0  
wang 13.0 13.0  13.0  13.0  15.3  15.3  
Avg. -  0.0% 8.4% 8.7% 11.3% 12.0% 

B. Binding consistency 

One of the key factors of the simultaneous and gradual flow is 
that it can maintain a high consistency among the successive 
intermediate binding solutions. We achieve this by adding a 
certain weight in the cost function to prefer previous binding 
decisions. To show the impact of consistency on the solution 
quality, we also perform experiments on another cost function, 
which omits the weight of “consistency” in function (0). We 
denote the algorithm with this new cost function as SFR’.  

Let tpfu(i-1) (tpreg(i-1)) be the total number of pairs of operations 
(variables) that are bound together in the (i-1) th iteration. Let cpfu(i) 



(cpreg(i)) be the number of pairs of operations (variables) that share 
a same resource in both (i-1) th and ith iterations. We calculate the 
FU binding consistency of (i-1) th and ith iterations as cpfu(i) / 
tpfu(i-1), and the REG binding consistency as cpreg(i) / tpreg(i-1). 
Figure 5 shows the consistency data of SFR and SFR’ for design 
chem. We can see that the consistency of SFR is most often over 
90%, much higher than SFR’, which is usually less than 20%. 

Figure 6 shows the results of the MUX area from these two cost 
functions. SFR’ introduces 10% more MUX on average, even 
worse than the traditional bindings for some designs. 

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Iteration #

C
on
si
st
e
nc
y

FU

REG

FU'

REG'

 
Figure 5. Consistency comparison of two cost functions 
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Figure 6. Experimental results of two cost functions 

C. Optimality study 

Table 3. Experimental results of optimality study 
Designs ILP SFR FU+REG REG+FU 

t1 1152 1152 1280 1280 
t2 1088 1152 1216 1216 
t3 960 960 1024 1024 
t4 960 1088 1152 1152 
t5 1024 1088 1088 1126 

Avg.  -  5.1% 11.2% 11.9% 
To study the optimality of the simultaneous flow, we tested it 

against the ILP formulation with small designs of around 15 
operations. Table 3 lists the MUX area given by four flows. The 
second column shows the results from ILP, which are optimal or 
near-optimal in terms of MUX area. The remaining three columns 
show results from “SFR”, “FU+REG” and “REG+FU”. For these 
small designs, “SFR” is very close to ILP with 5% more MUX on 
average, while the two traditional flows are about 11% worse. 

VI. Conclusions and Future Work 
In this paper we present a simultaneous FU and register binding 

algorithm, SFR, to optimize MUX, which can break up the cyclic 
inter-dependency between functional unit binding and register 
binding without sacrificing the performance of either task. ILP of 
the binding problem is formulated to evaluate the optimality of 

heuristics. Experiments show that our simultaneous synthesis flow 
is close to optimal solutions and achieves significant reduction for 
MUX area (12%) and timing (10%) for a set of benchmark designs, 
compared to traditional binding algorithms. 

When it comes to medium- and large-size designs, the ILP 
formulation cannot be solved in reasonable time due to the huge 
number of variables and constraints. Also, the real MUX area is 
replaced by the MUX input number in the ILP formulation, which 
compromises the optimal solutions. How to design algorithms that 
can give the lower bound or optimal solution of MUX area will be 
our future work.  
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