
Internet-based Collaborative Test Generation with MOSCITO

A. Schneider1, E. Ivask2, P. Miklos3, J. Raik2, K.H. Diener1, R. Ubar2, T. Cibáková3, E. Gramatová3
1Fraunhofer Institute for Integrated Circuits (IIS/EAS), Germany

2Tallinn Technical University (TTU), Estonia
3Institute for Informatics (IIN), Slovakia

Abstract

This paper offers an Internet-based environment for
enhancing problem-specific design flows with test pattern
generation and fault simulation capabilities. Automatic
Test Pattern Generation (ATPG) and fault simulation tools
at structural and hierarchical levels available at geograph-
ically different places running under the virtual environ-
ment using the MOSCITO system are presented. These
tools can be used separately, or in multiple applications,
for test pattern generation of digital circuits. In order to
link different tools together and with commercial design
systems, respectively a set of translators was developed.
The functionality of the integrated design and test system
was verified by several benchmark circuits.

1 Introduction

The quality of testing and the speed of test generation de-
pend on the system description, the fault models and the
used Test Pattern Generation (TPG) tools. Hierarchical test
pattern generation approaches can considerably improve the
quality of testing, in particular, for complex digital systems.
To find an optimal test set for a Circuit Under Test (CUT)
with a high defect coverage, generally, several TPG systems
are needed.

The Internet opens a new dimension, and offers new
chances using tools from different sources. The basic idea
of this paper aimes at exploiting an Internet-based tool inte-
gration. For that purpose several TPG tools implemented at
geographically different places were successfully integrated
into the new virtual environment MOSCITO [1]. The essen-
tial features due to this integration environment were exper-
imentally proved. The results obtained are presented also.

The paper is organized as follows. The MOSCITO sys-
tem is described in section 2. The tool environment and the

2 MOSCITO

Starting from the idea to connect tools via the Internet to
form an appropriate workflow for solving dedicated design
problems the MOSCITO system was developed and imple-
mented. The main emphasis was put on the following as-
pects:

• Encapsulation of design tools and adaptation of the
tool-specific control and data input/output to the
MOSCITO framework (MOSCITO agent, see below).

• Communication between the tools for data exchange to
support distributed, Internet-based work.

• Uniform graphical user front-end program for the con-
figuration of the tools, the control of the whole work-
flow and the visualization of result data.

Moreover, an important goal is to provide the functional-
ity of a tool (e.g. fault simulator, a test pattern generator, a
netlist translator, ...) to a potential user as a service in a local
area network (LAN). This approach is similar to the Appli-
cation Service Provider (ASP) idea or the recent approach
of Web Services. In the present system the following tools
have been integrated in MOSCITO:

• several translators for EDIF, ISCAS, and VHDL
design description formats,

• Turbo-Tester tools for logic level fault simulation and
test generation [2],

• DECIDER - a hierarchical test pattern generation for
digital systems [3], [4],

• DefGen - ATPG for IDDQ and voltage testing of digital
circuits [5], [6],

• Tst2Alb - a data converter between ATPG tools
• ALB - an automatic fault library builder [7].
All the tools can act as MOSCITO agents and each of

them provides a demanded service. The user are empow-
ered to combine all the services to a problem-specific work-
flow. That means, the needed tools have not to be installed
tools description are given in section 3 and section 4 respec-
tively. Experimental results are shown in section 5.

on the users local computer. Due to that fact the user’s effort
for installation, configuration and maintenance of software
will be drastically reduced. Furthermore, specialized tools

can be executed on their native platform with a high per-
formance (e.g. supercomputer with fast CPUs and large
memory, Workstation-Cluster). So the entire workflow will
speed up. To facilitate remote computing in this way is im-
portant for application with huge amount of computing
time: e.g. fault simulation as well as test pattern generation.

The MOSCITO framework was implemented in JAVA
and can run on different computing platforms. The only pre-
requisit is an installed Java Virtual Machine. At the moment
MOSCITO is used on SUN workstation (Solaris) and on
PCs (Microsoft Windows and LINUX).

2.1 Software architecture

MOSCITO mainly consists of three software layers:
• kernel layer,
• interface layer,
• extensions.

The MOSCITO kernel provides functionality for basic ob-
ject and data management, file handling, XML processing,
and communication. Due to the fact that MOSCITO is an
open system a special interface layer provides programming
interfaces for integration of new tools (e.g. test pattern gen-
erators, simulators, translators), new workflows (chain or
cycle of a certain number of tools), and appropriate viewers
such as for diagrams, plain text and images. Each interface
is represented by a Java class which contains the basic func-
tionality. The user only needs to extend this class and can
implement its own extension. A large number of templates
and example implementations helps the user to integrate a
new tool or workflow in less than one or two days.

2.2 Tool encapsulation

For the integration of design tools (e.g. fault simulators,
test pattern generators, netlist translators) with MOSCITO a
sophisticated agent interface (MOSCITO agent) was intro-
duced. Thus a tool, e.g. TPG, is embedded into a MOSCITO
agent for:

• adaptating the input data to the embedded tool,
• converting the tool-specific data (simulation results,

logfiles, test vectors),
• mapping the control information to the embedded tool

and the transfer and conversion of status information
(warning and error messages) to be submitted to the
user.

For embedding programs into a MOSCITO agent there
are three ways:

• Integration of the entire program: the software has to
be run capable as a batch job (e.g. ATPG). In this way
the integration of a lot of commercial tools is possible.

• Embedding of a library via the Java Native Interface
(JNI): e.g. C, C++ or FORTRAN routines can be
embedded.

• Direct integration of Java-classes and applications,
respectively, in particular for software written in JAVA.

Encapsulation of the tools as a MOSCITO agent guaran-
tees an uniform interface to the framework. All tool-specific
details are aggregated in a special agent description file.
This file is necessary to create tool-specific dialogs for the
configuration of the tool via the front-end program.

2.3 Communication

The implementation of the tool communication is based
on TCP/IP-sockets. Thus the tools can be executed on dif-
ferent computers or on different computing platforms (e.g.
UNIX, Windows). All we need for communication is a
LAN or Internet access. In this way, a lot of problems
caused by the limited availability of the tools (e.g. incom-
patible computing platform, insufficient resources) can be
prevented.

Usually, it is necessary to adapt/convert input as well as
output data for each tool. To minimize the implementation
effort for parsers, translators and converters, the format for
all data transmitted in MOSCITO was set to a special XML
format, the Moscito Markup Language (MoscitoML).

2.4 Graphical User Interface (GUI)

To offer a uniform and consistent concept for the user in-

MOSCITO kernel

AgentWorkflow ...

Viewer

Scope

Desktop

Operating System with Java Virtual Machine
(Windows, Solaris, Linux, ...)

Cycle4

Singleton

Chain3

EDIF-SSBDD

ATPG

VHDL-DD

Chart

Text

Figure 1. MOSCITO software architecture.
 teraction the MOSCITO system has been provided with a
graphical front-end with the following functionality:

• The problem description including all data (models,
specification, initial values, configuration) can be read

in from a MOSCITO project file.
• Workflows can be chosen from a set of predefined

flows for the specific problem.
• A browser supports the choice of agents (tools) needed

for the solution of the problem from the set of available
services.

• With buttons for start, pause, resume and stop the
workflow can be controlled by the user.

• A console window collects all messages from the run-
ning tools and allows the observation of the proper
operation or trouble shooting, respectively.

• The visualization module MOSCITO Scope supports
the display of all result data (test vectors, statistic
information).

The graphical front-end aims at using design tools via the
Internet in a simple and efficient manner. Actually, the
front-end is available as a JAVA application and has to be
installed together with the MOSCITO software.

2.5 Internet-based usage

At first it is necessary to start one MOSCITO server on
each host belonging to a domain of services. After that an
administrator has to register one or more MOSCITO agents
(e.g. VHDL-DD translator, Sysnopsys agent for synthesis,
ATPG) so that they are available as remote services via
LAN or Internet. Now a user can start the MOSCITO front-
end program (GUI) and can browse through registered
agents, can select, configure, and initialize the appropriated
workflow and the needed agents. MOSCITO automatically
calls remote tools and establishes direct connections be-
tween the tools for data transfer. Furthermore, the GUI al-
lows the user to control and observe the data processing pro-
vided by a certain workflow. Result data are transmitted to
the front-end and displayed by appropriate viewers (text, di-
agrams, images). Finally MOSCITO closes the connections
between all remote tools and organizes correct termination
of them.

3 Tool environment

To validate the MOSCITO system and to collect experi-
ences while using it for real-life applications an experimen-
tal tool environment for test pattern generation (shown in
Fig. 3) was designed and mapped to a MOSCITO work-
flow. In the following chapters the functionality of the tools
themself will be explained in detail.

Design information can be generated in different ways,
by VHDL files to be processed by commercial or experi-

tation format are widely used. For linking together test gen-
eration and fault simulation tools with all the needed for-
mats, different translators are developed.

For exchanging information between different tools (e.g.
test libraries), an appropriate exchange interface was devel-
oped.This interface makes possible to generate test patterns
in one geographical site and to analyze the quality of pat-
terns in another site. In such a way, joint experiments were
carried out in the field of defect-oriented test [9] where de-
fect level analysis was performed in Poland, and logic level
defect oriented fault simulation and test generation were
carried out in Slovakia and Estonia.

4 Tool descriptions

4.1 Logic-level ATPG tools

The Turbo Tester ATPG software (block 6 in Fig.1) con-
sists of a set of tools for solving different test related tasks
by different methods and algorithms:

• test pattern generation by deterministic, random and
genetic algorithms

• test optimization (test compaction)
• fault simulation and fault grading for combinational

and sequential circuits
• defect-oriented fault simulation and test generation
• multi-valued simulation for detecting hazards and ana-

lyzing dynamic behaviour of circuits
• testability analysis and fault diagnosis.

InternetInternet

LAN

Figure 2. Distributed workflow: four MOSCITO agents
are running on different remote hosts controlled by the

user´s Front End.

User´s
Front-End
(GUI)

ATPG

EDIF-SSBDD

VHDL-DD

Synopsys
mental high-level or logic synthesis systems, or provided
manually by schematic editors. The gate-level design is pre-
sented in the EDIF format. In university research practice,
ISCAS benchmark families with a dedicated ISCAS presen-

All the Turbo Tester tools operate on the model of Struc-
turally Synthesized Binary Decision Diagrams (SSBDD)
[10]. The tools of Turbo Tester run on the structural level.

Two possibilities are available - gate-level and macro-level.
In the second case, the gate network is transformed into
macro network where each macro represents a tree-like sub-
network. Using the macro-level helps to reduce the com-
plexity of the model and to improve the performance of
tools. The fault model in the Turbo Tester is the traditional
stuck-at model. However, the fault simulator and test gener-
ator can be run also in the defect-oriented mode, where de-
fects in the library components can be taken into account. In
this case, additional input information about defects in the
form of defect tables for the library components is needed
[9].

4.2 Hierarchical ATPG

In addition to the gate-level tools, a hierarchical test gen-
eration system DECIDER [3], [4] has been developed and
linked to MOSCITO. DECIDER includes a Register-Trans-
fer Level (RTL) VHDL interface for importing high-level
design information, and also an EDIF interface for import-
ing gate-level descriptions of logic

The ATPG uses a top-down approach, with a novel meth-
od of combining random and deterministic techniques.
Tests are generated for each functional unit (FU) of the sys-
tem separately. First, a high-level symbolic test frame (test
plan) is created for testing the given FU by deterministic
search. As the result, a symbolic path for propagating faults
through the network of components is activated and corre-

sponding constraints are extracted. The frame will adopt the
role of a filter between the random TPG and the FU under
test. If the filter does not allow to find a random test with
100% fault coverage for the component under test, another
test frame will be chosen or generated in addition to the pre-
viously created ones. In such a way, the following main
parts in the ATPG are used alternatively: deterministic high-
level test frame generator, random low-level test generator,
high-level simulator for transporting random patterns to the
component under test and low-level fault simulator for esti-
mating the quality of random patterns.

These test patterns are the input stimuli for the RTL de-
sign. Since the test generation implements also high-level
fault models, we do not know the precise gate-level stuck-
at fault coverage of these tests. Therefore, the test patterns
have to be converted in order to correspond to the stimuli for
the gate-level netlist of the entire design. This is required for
gate-level fault simulation in order to measure the quality of
generated tests.

4.3 Defect-oriented ATPG system

The DefGen ATPG system (block 10 in Fig.1) is a hier-
archical ATPG system for combinational circuits for IDDQ
and/or voltage testing [5], [6]. The random, deterministic
TPG algorithms and a fault simulator are involved in the
ATPG system. The TPG process uses the functional fault
model and runs over the functional test set specified for

Behavioral level
VHDL description
(IIS/EAS)

High-level synthesis

RTL VHDL

VHDL-DD translator
(TTU)

Behavioral level
VHDL description
(IIS/EAS)

Logic synthesis

Gate-level EDIF

EDIF-SSBDD translator
(TTU)

Schematic entry

RTL VHDL description
description

ISCAS-SSBDD translator
(TTU)

ISCAS benchmarks

ISCAS netlist

Commercial
CAD software

High-level DD model SSBDD model

Functional test (IIS/EAS)

Hierarchical ATPG
(TTU)

Turbo Tester
(TTU)

DefGen
(IIN)

University software

Test patterns exchange interface

InternetInternet EDIF-ISCAS translator
(TTU)

MOSCITO user

3

21

5 6

4

10 11

9

7

8

Figure 3. Integrated design and test flow

each functional cell of a CUT structure. The deterministic
TPG techniques are based on justification and propagation
of the predefined test patterns for each cell in a cicuit de-
scription. The functional test set for each cell is named a list
of fault conditions and it is a part of the fault conditions li-
brary for DefGen. These lists can be created e.g. from a de-
fect analysis of circuits cell at the low level or can be spec-
ified by the designer with regards to the used fault model for
the investigated cells. The input format for circuit descrip-
tion is the language from ISCAS'85 benchmark circuits.
The EDIF-ISCAS translator from Turbo tester (block 8 in
Fig.1) can be used as the interface to DefGen.

An Automatic Fault Library Builder (ALB) has been de-
veloped and implemented for finding an optimal functional
patterns for cells in the CUT structure [14]. The patterns are
generated from different defect/fault tables for selected cell.
Then, the received list of functional patterns are involved
into the fault conditions library of the DefGen ATPG sys-
tem. Some defect tables have been created for several com-
binational standard gates (e.g. from the 0.8 µm CMOS li-
brary) and lists of optimal patterns have been generated by
ALB for the ATPG experiments.

Test Pattern Generation (TPG) technique at higher levels
of abstraction rests upon a functional fault model and phys-
ical defect - functional fault relationships in the form of a
defect coverage table at the lower level. Each table (one for
a given cell) includes the following information:

• list of all possible faults (e.g. shorts, bridges between
nonequipotential conducting paths resulting in a short
circuit - which are caused by physical defects);

• erroneous logical functions performed by the faulty
gate;

• list of input test patterns detecting possible physical

The lists of erroneous functions and test patterns can be
obtained by electrical simulations at the transistor level or
calculated using Boolean algebra. Probabilities of defects
occurrence can be calculated by layout probabilistic analy-
sis at the physical level taking into account defect density
and size distribution.

Some experiments have been performed with the ATPG
tools running at the Tallinn Technical University and the In-
stitute of Informatics of the Slovak Academy of Sciences
using defect tables created at the Warsaw Technical Univer-
sity separately [15]. These systems have been integrated un-
der the MOSCITO system developed and provided by the
Fraunhofer Institute for Integrated Circuits for testing their
functionality in the new virtual environment.

5 Experiments

The described environment has been tested in the frame
of European project VILAB by the partners IIS/EAS (Ger-
many), IIN (Slovakia), LIU (Sweden), TTU (Estonia) for
several designs according to the following general algo-
rithm (the reference to exploited tools in Fig. 1 is given in
parentheses):

1. The user evaluates the quality of his own functional
test for the new design (2) by using Turbo Tester fault
simulator (4,6). Alternatively, he can also make use of
other university fault simulator (10,11).

2. If the results are acceptable (test has obtained the
demanded quality) go to END, else go to Step 3.

3. The user can work with the implemented ATPGs 5, 6
or 10. If the IDDQ or defect oriented testing is
demanded he uses DefGen (8,10).

4. If the stuck-at-fault model is accepted, the user can

Figure 4. MOSCITO Desktop - the graphical user interface.

Console for logging messages
sent by encapsulated tools

Scope for displaying results
(text files, waves, images)

Browser for selecting and configuring agents
(e.g. TPG tools, translators, ...)

Browser for selecting workflow
(e.g. Chain3, Chain4, Singleton, Cycle4, ...)
defects.
• (optional) probabilities of occurrence of the physical

defects.

work with the ATPGs 5, 6 or 10. If the circuit is a sim-
ple sequential or combinational one (e.g. only FSM
without data-path) go to 5. If the circuit consists of the

control- and data-paths the user can work with the hier-
archical ATPG (3,4,5). In this case, both the RTL
description from high-level synthesis system (1) and
the gate-level description from logic synthesis system
(2) are needed. If the results are acceptable (test has the
needed quality), go to END, else go to Step 5.

5. The user can work with the gate-level ATPG (4,6). If
the results are acceptable (test has the needed quality),
then go to END, else go to Step 6.

6. The testability should be now improved by redesign.
Some flip-flops can be included, for example, into the
scan-path. For testing the new full or partial scan-path
design the user can work again with the gate-level
ATPG (2,4,6).

7. Depending on the results (the quality of test reached),
the step 6 can be repeated till the demanded test quality
has been obtained.

8. END.
This environment has been utilized for research purpos-

es. For example, the performance of the hierarchical ATPG
(5) was compared against the existing university tools GAT-
EST and HITEC [11], [12]. For that the translator 8 was
necessary. The results of comparison of different ATPGs are
given in the table below.

6 Summary

In the paper an Internet-based environment based on
MOSCITO system is presented. The environment is fo-
cused on providing high-level and logic level design flows
with test pattern generation and fault simulation operational
activities. The main effort was put on linking together test
generators and fault simulators with varying functionalities
and diverse fault models available at geographically differ-
ent sites. The system provides interfaces and links to com-
mercial design environments (such as Synopsys) and also to
other university tools. The functionality of the integrated
design and test system was verified by several benchmark
circuits and by different design and test flows.

Acknowledgements: This work has been supported by the Euro-
pean Community under the INCO Copernicus project CP977133
VILAB: Microelectronics Virtual Laboratory for Cooperation in
Research and Knowledge Transfer. Partially this work has been
supported also by Estonian Science Foundation (Grants No 3658
and 4300) and by the Slovak VEGA project grant 2/6091/20 -
Behavioural and real Defet Test Generation for Digital Circuits
and Systems.

References

[1] P. Schneider, S. Parodat, A. Schneider, P. Schwarz: A modu-
lar approach for simulation-based optimization of MEMS.
Design, Modeling, and Simulation in Microelectronics, 28-
30 November 2000, Singapore, pp 71-82, SPIE Proceedings
Series Volume 4228

[2] J. Raik, R. Ubar: Feasibility of Structurally Synthesized
BDD Models for Test Generation. Proc. of the IEEE Euro-
pean Test Workshop, Barcelona (Spain), May 27-29, 1998,
pp.145-146.

[3] J. Raik, R. Ubar: Sequential Circuit Test Generation Using
Decision Diagram Models. IEEE Proc. of DATE. Munich,
March 9-12, 1999, pp. 736-740.

[4] J. Raik, R. Ubar: Fast Test Pattern Generation for Sequential
Circuits Using Decision Diagram Representations. Journal of
Electronic Testing: Theory and Applications. Kluwer Aca-
demic Publishers. Vol. 16, No. 3, pp. 213-226, 2000.

[5] E. Gramatova, T. Cibakova, P. Miklos: Defect Oriented TPG
for combined IDDQ - Voltage Testing of Combinational Cir-
cuits. Proc. of ETW'2000.

[6] E. Gramatova, J. Gaspar, T. Cibakova: Fault Simulation for
Combined IDDQ - Voltage Tesing of Combinatorial Circuits,
Proc. of DDECS'00, pp. 52-58.

[7] T. Cibáková, E. Gramatová, W. Kuzmicz, W. Pleskacz, J.
Raik, R. Ubar: Defect-Oriented Library Builder and Hierar-
chical Test Generation. Proceedings of DDECS'2001, Gyor,
Hungary, pp.163-167.

[8] G. Jervan, P. Eles, Z. Peng, J. Raik, R. Ubar: High-Level Test
Synthesis with Hierarchical Test Generation. IEEE 17th
NORCHIP Conference, Oslo, Nov. 8-9, 1999, pp.291-296.

[9] M. Blyzniuk, FT. Cibakova, E. Gramatova, W. Kuzmicz, M.
Lobur, W. Pleskacz, J. Raik, R. Ubar: Hierarchical Defect-
Oriented Fault Simulation for Digital Circuits. IEEE Euro-
pean Test Workshop, Cascais, Portugal, Mai 23-26, 2000,
pp.151-156.

[10] R. Ubar: Multi-Valued Simulation of Digital Circuits with
Structurally Synthesized Binary Decision Diagrams. Over-
seas Publishers Assotiation N.V. Gordon and Breach Pub-
lishers, Multiple Valued Logic, Vol.4 pp. 141-157, 1998.

[11] E. M. Rudnick, J. H. Patel, G.S. Greenstein, T.M. Niermann:
Sequential Circuit Test Generation in a Genetic Algorithm
framework. Design Automation Conf., pp. 698-704, 1994.

[12] T. M. Niermann, J. H. Patel: HITEC: A Test Generation
Package for Sequential Circuits. European Conf. Design
Automation, pp. 214-218, 1991.

[13] T. M. Niermann, W. T. Cheng, J. H. Patel: PROOFS: A Fast,
Memory Efficient Sequential Circuit Fault Simulator. 27th
ACM/IEEE Design Automation Conference, pp. 535-540,
1990.

[14] T. Cibakova, E. Gramatova, W. Kuzmicz, W. Pleskacz,
J.Raik, R.Ubar: Defect-Oriented Library Builder and Hierar-
chical Test Generation, Proc. of DDECS'01, Gyor (Hungary),
April 18-20, 2001, pp. 163-168.

[15] T. Cibakova, M. Fischerova, E. Gramatova, W. Kuzmicz, W.
Pleskacz, J. Raik, R. Ubar: Defect-oriented Test Generation

DECIDER GATEST HITEC

Fault
cover %

Time
s

Fault
cover %

Time
s

Fault
cover %

Time
s

gcd 91.0 3.4 92.2 89.8 89.3 195.6

mult8x8 79.4 13.6 77.3 1585.0 63.5 1793.0

diffeq 95.8 15.8 96.0 9720.0 95.1 N.A.
Furthermore, authors believe that the MOSCITO archi-
tecture is powerful enough to solve similar problems in oth-
er application areas of automated system design. Future
work will go in this direction.

Using Probabilistic Estimation. Proc. of MIXDES'01, Zako-
pane (Poland), June 21-23, 2001, pp. 131-136.

[16] MOSCITO:
http://www.eas.iis.fhg.de/solutions/moscito

	Main Page
	DATE'02
	Front Matter
	Table of Contents
	Session Index
	Author Index

