
Low Cost Instruction Cache Designs for
Tag Comparison Elimination

Youtao Zhang Jun Yang
Computer Science Department Computer Science and Engineering Department

University of Texas at Dallas University of California at Riverside
Richardson, TX 75083 Riverside, CA 92521

ABSTRACT
Tag comparison elimination (TCE) is an effective approach to re-
duce I-cache energy. Current research focuses on finding good
tradeoffs between hardware cost and percentage of comparisons
that can be removed. For this purpose, two low cost innovations
are proposed in this paper. We design a small dedicated TCE table
whose size is flexible both horizontally (entry size) and vertically
(number of entries). The design also minimizes interactions with
the I-cache. For a 64-way 16K cache, the new design reduces the
tag comparisons to 4.0% with a fraction only 20% of the hardware
cost of the way memoization technique [5]. The result is 40% better
compared to a recent proposed low cost design [2] of comparable
hardware cost.

Categories and Subject Descriptors
B.3.2 [Memory Structures]

General Terms
Design

Keywords
Tag Comparison Elimination, Low-Power Instruction Cache

1. INTRODUCTION
Instruction cache in modern processors consumes a significant

portion of the chip power. As an example, the StrongArm SA110
spends 27% of its total power in instruction cache [11]. For highly
associative caches, the power consumption is a particular concern
since large number of tag comparisons are carried in parallel. There-
fore, reducing instruction cache power is of great interest in low
power processor design community.

Tag comparison elimination (TCE) techniques have been pro-
posed to remove unnecessary tag comparisons to achieve power
reduction. A tag comparison is considered unnecessary if we can
determine a match or a mismatch without a real comparison. The
decision is made based on the runtime information that is main-
tained in low cost hardware.

Panwar and Rennels [3] classified tag comparisons into intra-
and inter- cache line ones. Inter-cache line tag comparisons are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’03, August 25–27, 2003, Seoul, Korea.
Copyright 2003 ACM 1-58113-682-X/03/0008 ...$5.00.

from instructions that switch from one cache line to another: the
instructions at the end of a cache line and taken branch instruc-
tions. A compiler approach is proposed to annotate these instruc-
tions such that all intra-cache tag comparisons can be removed. In
way memoization technique proposed by Ma, Zhang and Asanvoic
[5], various linking information and way numbers are maintained
per cache line. Although it achieves good tag comparison reduc-
tion, the extra hardware required is overly high and the cache needs
substantial amount of modifications. These limitations made the
design undesirable for highly associative caches.

Therefore, recent research focuses on finding good trade-offs be-
tween hardware cost and TCE amount. The history-based TCE
is such a scheme [2]. This technique is closely coupled with the
design of BTB. Especially, it needs to store the target addresses
of not-taken branches, as opposed to storing targets for only the
taken branches that is normally used. Consequently, the perfor-
mance degradation occurs due to less effective BTB. On average,
we observed 2% increase in execution time which means that be-
sides the instruction cache, the rest of the processor burns out 2%
of extra power. Alternatively, if the not-taken branch targets are not
stored, the required tag comparisons increase twice as much.

A number of other techniques are also proposed to reduce the
instruction cache power consumption. “Way prediction” technique
predicts a cache way and accesses it as a direct-mapped cache [1,
4]. This technique has been realized in commercial processors [8].
Our design is non-speculative and thus different from way predic-
tion. Phased cache separates tag and data access into two stages.
After tag access stage, only one data line is accessed if a tag match
has been found. Filter cache [10] adds another cache hierarchy in
front of L1 cache with a smaller L0 cache so that a large percent-
age of instruction cache accesses hit in L0 cache. It is a design that
trades performance for power.

In this paper, we propose two innovative TCE designs for the
instruction cache. A small table is specifically designed for TCE
only. In this way, the cache or the BTB is minimally affected. In
addition, the energy consumed to access a small table is less than
the energy to access the information stored in the cache. In our
design, both horizontal (bits per entry) and vertical (table entries)
sizes of the table are flexible which provides the flexibility when
integrating the TCE mechanism into the processor design.

The rest of the paper is organized as follows. In section 2, we
discuss the details of our designs. Experimental results are given in
section 3. Section 4 concludes the paper.

2. DESIGN DETAILS
We will first introduce the design of the small, dedicated table

used for TCE and then describe how we can reduce the hardware
cost using a way mask.

266

2.1 TCE Table
tag

sequential link (1 bit+4 bits)

branch link [4*(1 bit + 4 bits)]

word 0-7

tev bit (1 bit)

line link (2 bits)

overflow bit (1 bit)

Figure 1: A small dedicated table.

Our first step is to construct a small table (TCE table) that is
separated from instruction cache and stores necessary information
for TCE. The entry fields are very much like those in [5] but require
much less space in both dimensions. Vertically, there are fewer
number of entries. Therefore, multiple cache lines are mapped to a
single table entry. At anytime, a single table entry represents only
one line in a group. Thus, a handshake between the table entry and
the cache line is needed and it is established as the following: (1)
each cache line contains a table-entry-valid (tev) bit that indicates
if the information in the corresponding table entry belongs to the
line, and (2) each table entry keeps a link that remembers which
line in a group is currently being linked, e.g. a table that has 1/4 of
the cache lines number of entries needs to keep 2 bits for each such
a link (Figure 1). We will discuss the economic way of organizing
table entry horizontally in section 2.2.

Next, we will elaborate the fields maintained by the small table.
Suppose we have a 16KB cache with 32 bytes per cache line. There
are in total 512 cache lines. Assume that we let the number of
entries in the table be 1/4 of the number of cache lines, i.e., 128, the
information maintained in each table entry is described as follows.

• Line link. A 2-bit line link is used to distinguish which of
the 4 possible cache lines is currently linked with this table
entry.

• Sequential link. A sequential link contains a valid bit and
log(A) bits to memorize the way number of its next cache
line, where A is the cache associativity. For a direct-mapped
cache, sequential link contains only one bit (log(A) = 0).

• Branch links. We use 4 links for branch targets per table en-
try. The number of such links is the instructions per cache
line divided by two since there are at most half of instruc-
tions are branches per cache line [5]. Each of the link is
again log(A) bits plus a valid bit. Similarly, the branch link
reduces to one bit when the cache is direct-mapped.

• Overflow bit. A 1-bit overflow flag is used to indicate if the
corresponding cache line is pointed by some branch links in
other table entries.

2.2 Way Mask
The above design can be applied to both directed mapped and

set-associative caches. However, when the cache is highly asso-
ciative, the hardware cost is still significant. In this section, we
propose to reduce bits used in each table entry, i.e. reduce the hard-
ware cost horizontally.

Let us first analyze the bit usage of each table entry. Using the
same cache configuration as before, suppose now the set associa-
tivity is 64. Then, to remember a way number, 6 bits are needed.
Therefore, each table entry has 38 bits(2+(1+6)+1+4×(6+1))
in total, in which 24 are used for remembering way numbers for
branches. We studied the distribution of branches in the cache
by sampling the cache every 10,000 instructions. Figure 2 plots
the breakdown of the percentage of cache lines that hold zero to
four branches. We found that most cache lines contain zero or one

branch, and on average, 68.8% lines have no branches, 16.1% lines
contain only one branch.

This study suggests that many bits used for remembering way
numbers are wasted. In other words, compacting the branch links
would hardly degrade the overall TCE amount. We therefore pro-
pose to use a pair of way masks that encodes all the information of
branch links per entry but use only the number of bits that equal to 2
branch links. For cache lines that contain a single branch, the mask
pair itself reveals the way number. For multiple branch links, the
mask pair covers only a slightly larger superset of all remembered
way numbers.

The key observation in constructing the masks is that many branch
links share same bits. For the same example, we compact all 4
branch links into a pair of way masks. The way mask pair consists
of a “0-mask” and a “1-mask”, each having 6 bits. The mask sim-
ply records on each bit position whether 0 or 1 appears in any of
the branch links. Thus a “1” in the ith bit of 0-mask means that 0
appears at the ith bit for at least one branch link; a “0” means all the
ith bits are 1. The meaning of 1-mask mask is analogous. Figure
3 shows an example of a way mask constructed from two branch
links, 110110 and 110011. The common bits between the two are,
from left to right, the 1st, 2nd, and 5th bit having 1’s and the 3rd bit
having a 0. Therefore, the 1st, 2nd, and 5th bit in 0-mask should
be 0, but 1 in 1-mask. The 3rd bit in 0-mask should be 1, but 0
in 1-mask. All the rest bits in both masks should be 1. Thus the
0-mask should be 001101 and the 1-mask should be 110111.

To generate way numbers from the masks, we first need to find
out what are the bits that can be either 0 or 1. These bits are rep-
resented as 1’s in both 0- and 1- masks. If there are n such bits,
the number of ways we should compare is 2n. To get those bits,
we simply take the XOR of both masks and look for the 0’s in the
result. Replace those 0’s with x’s which means that they are non-
deterministic. The rest bits are deterministic—either 0 or 1. They
can be simply retrieved from the 1-mask by ANDing it with the
XOR results. In the above example, the XOR of the 0- and 1-mask
is 111010. Replacing 0’s with x’s yields 111x1x. Then AND this
value with 1-mask, we have 110x1x. Therefore, the ways we need
to compare tags are: 110010, 110011, 110110, and 110111. In-
stead of 64 tag comparisons, we are only comparing 4. Each table
entry now contains 26 bits, as opposed to 38 bits before.

2.3 Tag Comparison Elimination
The TCE table is used for the elimination of inter- cache line tag

comparisons. Similar to [3, 2, 5], intra-line tag comparisons are
eliminated with compiler or hardware support.

As shown in Figure 4, TCE of current I-cache access is con-
trolled by the output x of the TCE control logic. Meanwhile, we
map a table entry c using the instruction address and evaluate two
conditions: (a) current instruction is the end of a cache line; (b)
current instruction is a taken branch instruction. After the current
TCE decision is made, x is updated based on a and b.

x is set to true when (1) a is true, the tev bit is true, and the
sequential link in the table entry is valid; (2) b is true, the tev bit is
true, and its corresponding branch link is true; (3) neither a or b is
true. x is set to false for rest cases: (4) a is true but the sequential
link is invalid; (5) b is true but the corresponding branch link is
invalid. Specifically, if the tev bit is false, both sequential link and
branch links are not valid. The fact that tev bit is false indicates the
corresponding table entry is either empty or used by another cache
line. If it is used by another line, we reset the tev bit of that line
and flush the table entry, then set the tev of the current cache line.

Accordingly, TCE is based on previously calculated x. If x is
true, tag comparisons are eliminated for (1)(3) and (2) if the branch

267

132.ijpeg
129.cmp.

adpcme
adpcmd

721e
721d epic

unepic
pegwite

pegwitd
mpeg2d

average
0

20

40

60

80

100

P
ec

en
ta

ge
(%

)

No Branch Instr.
1 Branch Instr.
2 Branch Instr.
3 Branch Instr.
4 Branch Instr.

Figure 2: Branch Distribution in I-
Cache.

110110 110011

001101 110111

branch link (valid bit + way #)

branch link (valid bit only)0-flag 1-flag

Figure 3: Branch link mask.

seq.
link

way
mask

or
a
b

c

c

a: end of a cache line;
b: a taken branch;
c: table entry #

and
TCE
table

a
TCE control logicb

valid tev ?

X = (true: way#) or (false: ...)

Figure 4: TCE Table Access.

mask indicates a single way number, and are reduced otherwise.
If x is false, a normal I-cache access is performed. Besides, we

update the table by writing the way number of the current access
back to the previously accessed table entry (remembered in c). Se-
quential link is updated for case (4) and the corresponding branch
link and way mask are updated for case (5).

If a normal cache access results in a cache miss, the TCE table
as well as all tev bits are flushed. This design simplifies the control
logic although selective flushing is also possible.

2.4 Implementation Issues

Table Designs. The table used for TCE is organized as a cache
structure. While its associativity can be decided independently of I-
cache, we choose a direct-mapped structure because of its simplic-
ity and energy efficiency. Note that there is no “tag comparison”
for this table structure. To index the TCE table, a portion of the
instruction address is extracted directly. The one-to-one correspon-
dence between the cache line and the table entry is done through
the handshaking between tev and the line link.

Power Model. Our power model is modified from CACTI [7] to
reflect the new table design. The total energy consumed contains
the energy consumed in the cache as well as in the table. Cache
access energy includes decoding, tag access, data access, and data
output drive. For the table access, there is no tag access portion.

Eall = Ecache + Etable

= Ectag + Ecdata + Ecoutput + Ecdecoding +

Etdecoding + Etdata + Etoutput

For highly associative caches, with the way mask design, the
number of tags needed to be checked is dynamically decided by the
mask. Thus, we dynamically model tag comparisons in the instruc-
tion cache. The dedicated small table is modeled as a cache without
tag comparison and with energy for invalidation operations.

Performance Overhead. As the table is separated and used
for TCE only, it has minimized interaction with the instruction
cache. Cache performance is only affected when the tev needs to
be updated. There are two possibilities: (1) when a new line is ac-
cessed, and it is not linked with a table entry, the tev needs to be
set and the line indicated by the line link needs to reset its tev. That
is, there are two updates in this case. (2) when a table entry whose
overflow bit is set changes its owner, or when there is a cache miss,
we need flush all bits in the table and all tev bits in the cache.

3. EXPERIMENTAL RESULTS
3.1 Settings

We implemented the proposed techniques using Simplescalar 3.0
[6] and integrate the CACTI cache energy model [7]. The base con-
figuration is a 16K bytes, 32 bytes per cache line direct-mapped

instruction cache and we vary both the cache line size and the as-
sociativity in our experiments. A set of multimedia programs are
picked up from SPEC95 and Mediabench [9] benchmark suites. A
decoder and an encoder are evaluated separately for most Media-
bench programs.

For comparison purpose, we also implemented zero-link way
memoization (WM) [5] and the history-based tag comparison scheme
(HBTC) [2]. HBTC has been augmented with two enhancements:
(1) removal of intra-cache line tag comparisons, termed as ITC in
[2]; and (2) storing not-taken branch target addresses in BTB. We
denote it as HBTC+ in the rest of the paper.

3.2 Hardware Cost
The hardware cost with respect to bit size increase is studied in

this section. We first vary the number of table entries and study
its impacts on TCE effectiveness. We use the base configuration
and vary the table entries from 128 to 32, i.e. 1/4 to 1/16 of I-
cache entries. Figure 5 reports the remaining tag comparisons as a
percentage of tag comparisons of the traditional cache.

Benchmark 128 entries (%) 64 entries (%) 32 entries (%)

132.ijpeg 0.4168 0.4399 2.3746
129.cmp. 0.5660 6.8235 8.7412
adpcme 0.0015 0.0796 0.0844
adpcmd 0.0017 0.0787 0.0788

721e 8.2218 8.9392 9.0219
721d 7.9120 8.9369 9.0872
epic 9.9448 10.4661 10.4150

unepic 0.2114 0.2332 0.2299
pegwite 1.8198 3.1713 5.4390
pegwitd 1.0814 3.3089 5.7010
mpeg2d 1.0992 1.1317 1.6154

Average 2.8433 3.9645 4.7989

Figure 5: Impact of Number of Table Entries.
As expected, remaining tag comparisons increase when the num-

ber of table entries decreases. However, even with 32 table entries,
the results are still very good – on average, 95.2% tag comparisons
are removed.

Cache 128 entries (%) 64 entries (%) 32 entries (%)
Associativity WM New WM New WM New

64-way 14.06 2.93 14.06 1.71 14.06 1.06
16-way 10.16 2.34 10.16 1.42 10.16 0.93
4-way 6.25 1.76 6.25 1.12 6.25 0.78

Directed Mapped 2.34 1.17 2.34 0.83 2.34 0.63

Figure 6: Percentage of Size Increase.
We then compare the hardware cost with WM. Figure 6 lists the

percentage of size increase as a percentage of I-cache size when
using WM and our design respectively. For example, using a table of
128 entries and the cache is 64-way associative, the size increase
is about 2.93% while for WM, the size increases is 14.1%. The new
design requires significant less hardware than WM, e.g. about 20%

268

of that of WM for the above configuration. Since the size increase of
HBTC+ is coupled with BTBs, we leave it to the implementation
and use comparable or more bits when conducting performance
comparison.

3.3 Tag Comparisons Elimination
In this section, we fix the table to be 128 entries and study the

TCE performance under both directed mapped and 64-way set-
associative cache configurations.

Directed mapped (%) 64-way (%)
Benchmark WM HBTC+ New WM HBTC+ New

132.ijpeg 0.0732 4.6600 1.4875 0.1478 4.8034 0.4168
129.cmp. 0.0285 7.0014 1.1988 0.4053 7.3642 0.5660
adpcme 0.0009 6.0785 2.5543 0.0013 6.0786 0.0015
adpcmd 0.0011 7.4714 2.5939 0.0015 7.4715 0.0017

721e 5.6851 9.9765 9.0921 6.8009 10.2635 8.2218
721d 5.5761 10.0998 8.3124 6.8051 10.2350 7.9120
epic 6.2992 12.1178 10.4427 7.7984 12.2036 9.9448

unepic 0.0792 2.9239 1.5391 0.0973 2.9353 0.2114
pegwite 0.0157 5.5611 2.7188 0.0423 5.5623 1.8198
pegwitd 0.0238 5.9000 1.9958 0.0743 5.9692 1.0814
mpeg2d 0.0080 4.8205 1.8948 0.2159 5.0473 1.0992

Average 2.0355 7.0849 2.8433 1.6173 6.9646 3.9846

Figure 7: Remaining Tag Comparisons.

The remaining tag comparisons using different configurations
and techniques are summarized in Figure 7. Compared to WM and
on average, TCE table increases 39% and 145% tag comparisons
for direct mapped cache and 64-way set associative cache respec-
tively. It is expected since TCE table keeps a subset of the infor-
mation saved in WM and makes the trade-off between hardware cost
and percentage of removable tag comparisons. On the other hand,
with comparable hardware as that of TCE table, HBTC increases
248% and 329% tag comparisons respectively from WM. Using the
results of HBTC+ as the base, the new design reduces on average
60% and 42% tag comparisons respectively. Thus TCE table is
more effective than HBTC+.

3.4 Energy Savings and Performance
Figure 8 reports energy savings and performance results of the

new design. Instead of comparing our results to WM, we compare
the results to the original cache configuration. The reason is that
cache interactions in WM, i.e. updating links in the cache, consume
significant energy and direct modeling in CACTI reports very dif-
ferent numbers from WM [5]. They used a different tool instead and
performed several circuit level cache modifications.

From Figure 8, the new design saves around 18% of total cache
energy. More appealing, we benefit low power consumption from
this separated table design, i.e. on average table consumes only
0.8% of the total energy. We observe negligible performance slow-
down. On average, it is less than 0.2% (Figure 8). The energy
overhead due to performance slowdown is thus negligible.

132.ijpeg
129.cmp.

adpcme
adpcmd

721e
721d epic

unepic
pegwite

pegwitd
mpeg2d

average
70

80

90

100

pe
rc

en
ta

ge
(%

)

Energy(table)
Energy(other)
Performance

Figure 8: Energy Savings and Performance.

3.5 Branch Mask Impact
In this section, we evaluate the impact of way mask on set asso-

ciative caches. We choose a 64-way set-associative I-cache, a TCE
table with 128 entries and vary the cache line size from 32 bytes
to 128 bytes. The results are summarized in Figure 9. From the
figure, we observe better TCE results with a larger cache line size.
The way mask slightly degrades the TCE performance. However,
its impact decreases as the cache line size increases. At 32 bytes
per line, the way mask degrades tag comparisons for about 19.9%.
While at 128 bytes per cache line, the way mask degrades the tag
comparisons for about 12%.

Cache line size
Benchmark 32 bytes (%) 64 bytes (%) 128 bytes (%)

4 links 1 mask 8 links 1 mask 16 links 1 mask

132.ijpeg 0.4030 1.4875 0.7744 0.7992 0.4212 0.5285
129.cmp. 0.5424 1.1988 0.5576 0.8451 0.4582 0.6255
adpcme 0.0015 2.5543 0.0011 1.1383 0.0010 0.6643
adpcmd 0.0016 2.5939 0.0013 0.8681 0.0011 0.8406

721e 8.1689 9.0921 6.1293 6.3460 5.1941 5.2351
721d 7.8857 8.3124 6.1533 6.2182 4.9261 5.1266
epic 9.9192 10.4427 7.5881 7.9031 6.6991 6.8532

unepic 0.2056 1.5391 0.5532 0.8632 0.4501 0.3478
pegwite 1.8175 2.7188 1.1955 1.4974 0.8407 1.0507
pegwitd 1.0540 1.9958 0.9533 1.2040 0.6906 0.8174
mpeg2d 1.0797 1.8948 0.9924 1.3219 0.8461 0.9014

Average 2.8254 3.9846 2.2636 2.6368 1.8662 2.0901

Figure 9: Branch Mask Impact.

4. CONCLUSIONS
Two design improvements are proposed in this paper to reduce

the hardware cost of TCE in the design of a low energy I-cache. A
small table is designed for TCE only and its size is flexible both
horizontally and vertically. Compared to previous techniques, the
proposed design has very few interactions with I-cache and no in-
teractions with BTB, the performance and energy overhead is thus
minimized. Our experiments show that a TCE table whose size
is 20% of that used in way memoization eliminates 95.2% of tag
comparisons in a 64-way set associative I-cache.

5. REFERENCES
[1] M.Powell, A. Agarwal, T.N. Vijaykumar, B. Falsafi and K. Roy,

“Reducing Set-Associative Cache Energy via Way-Predication and
Selective Direct-Mapping,” MICRO’34, 2001.

[2] K.Inoue, V.G. Moshnyaga, and K. Murakami, “A History Based
I-cache for low-Energy Multimedia Applications,” ISLPED’02, pages
148-153, Monterey, CA, 2002.

[3] R. Panwar and D. Rennels, “Reducing the Frequency of Tag Compares
for Low Power I-cache Design,” ISLPED’95, pages 57-62, 1995.

[4] B. Calder and D. Grunwald, “Next Cache Line and Set Prediction,”
ISCA-24, 1995.

[5] A. Ma, M. Zhang, and K. Asanovic, “Way Memoization to Reduce
Fetch Energy in Instruction Cache,” Workshop on Complexity-Effective
Design, in conjuction with ISCA-28, June 2001.

[6] D. Burger and T. M. Austin, “The SimpleScalar tool set, version 2.0,”
TR-CS-1342, University of Wisconsin-Madison, June 1997.

[7] P.Shivakumar and N.P. Jouppi, “CACTI 3.0: An Integrated Cache
Timing, Power, and Area Model,” TR-WRL-2001-2, Dec 2001.

[8] K.C. Yeager, “The MIPS R10000 superscalar microprocessor,” IEEE
MICRO, 16(2):28-40, April 1996.

[9] C. Lee, M. Potkonjak and W. H. Mangione-Smith, “MediaBench: A
Tool for Evaluating and Synthesizing Multimedia and Communications
Systems,” MICRO, pages 330-335, 1997.

[10] J. Kin, M. Gupta and W.H. Mangione-Smith, “The Filter Cache: An
Energy Efficient Memory Structure,” MICRO, 1997.

[11] J. Montanaro et al. , “A 160Mhz, 32b, 0.5W CMOS RISC
microprocessor,” JSSC, 31(11):1703-1712, November 1996.

269

	Main Page
	ISLPED'03
	Front Matter
	Table of Contents
	Author Index

