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Abstract

Static timing analysis is a critical step in design of any digi-
tal integrated circuit. Technology and design trends have led
to significant increase in environmental and process varia-
tions which need to be incorporated in static timing analysis.
This paper presents a new, efficient and accurate block-
based static timing analysis technique considering uncer-
tainty. This new method is more efficient as its models
arrival times as cumulative density functions (CDFs) and
delays as probability functions (PDFs). Computationally
simple expression are presented for basic static timing oper-
ations. The techniques are valid for any form of the proba-
bility distribution, though the use piecewise linear modeling
of CDFs is highlighted in this paper. Reconvergent fanouts
are handled using a new technique that avoids path tracing.
Variable accuracy timing analysis can be performed by
varying the modeling accuracy of the piecewise linear
model. Regular and statistical timing on different parts of
the circuit can be incorporated into a single timing analysis
run. Accuracy and efficiency of the proposed method is dem-
onstrated for various ISCAS benchmark circuits.

1. Introduction

Static timing analysis (STA) is critical to the
measurement and optimization of the circuit
performance before its manufacture. Full chip static
timing analysis is usually performed using efficient
block-based techniques. A block-based approach
allows incremental, embedded static timing analysis
and therefore enables timing-driven flows in logic
synthesis and physical design. Hence, block-based
static timing analysis has emerged as one of the key
technologies in current design methodologies.

The timing or performance of the chip is heavily
dependent on the manufacturing process variations
(e.g. Vt, Length, etc.) and design environment
variations (e.g. VDD & temperature variations, noise
impact on timing, etc.). As the feature sizes decrease,
the ability to control the manufacturing spread or
accuracy of a given feature size is also decreasing.
Along with increased process Vvariations, the
uncertainty caused by design is also increasing. The
increase of uncertainty in design is caused by increase
of power supply and temperature variations and
interconnect loading uncertainty such as coupling
noise impact on timing. Another source of uncertainty
is the inherent error in the gate delay models, also
called the model-to-hardware correlation error. It is
critical that these increased timing uncertainties be
handled in the design process in an efficient and
accurate manner. Given the pervasive nature of static
timing, it is essential that a variation-aware static timing
approach be suitable for full chip designs.

Design variations or uncertainty in static timing
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analysis is typically handled in two broad ways. The
first set of techniques handle variations by worst casing
the circuit response. In such a scenario, static timing is
performed at various design corners (e.g. fast, slow
and nominal design corner). For example, the fast
corner is computed by placing all the gates (or
transistors) at the fast corner and performing a regular
deterministic timing analysis. The timing results of the
fast, slow and nominal corners can also be combined
to minimize the typically large error of worst-case
analysis. This approach is computationally attractive
but can be inaccurate due to its worst-case nature. The
worst-case approach has traditionally been used for
industrial designs but it is becoming inapplicable as the
timing variations continue to increase. Furthermore, to
account for intra-chip or local variations, these
techniques scale the data and clock path delays
differently using empirical factors.

Another method to handle variations in timing is to
perform statistical timing analysis. Statistical static
timing analysis has been studied over the years [4-10].
Reconvergent fanouts have caused several statistical
timing analysis approaches to have exponential
complexity. Efficient approximate techniques for
reconvergent fanout are not addressed in these
techniques. Block-based approaches to statistical STA
have been proposed in [11],[12] and [16]. In [11], the
delays of the gates and arrival times are modeled as
independent discrete random variables. Reconvergent
fanouts are not considered. False path analysis using
this basic framework is considered in [12]. A new
approach described in [16] proposes a technique which
computes both upper and lower bounds to the exact
solution, in the presence of reconvergent fanouts.
Further, they show that statistical STA performed
without accounting for reconvergent fanouts is an
upper bound on the actual delay. However, their
method of enumerating selected nodes to obtain
improved bounds may be cumbersome for large
circuits, and has exponential runtime in the worst case.
A further drawback of these block-based approaches is
that they model both gate delays and arrival times as
discrete probability density functions or PDFs. This
involves propagating impulse trains across the circuit
and taking the statistical maximum of two arrival times,
a fundamental operation in STA, becomes inefficient.
As we show in this paper, modeling the arrival times as
cumulative distribution functions or CDFs is more
efficient.

In contrast to the above block-based methods, a path-
based approach has been proposed in [13]. Each path
delay is modeled as a sum of individual gate delays
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with each gate delay being a function of random
variables. By assuming small deviations from the
nominal value, a linear statistical model for gate delay
is constructed that can be efficiently summed up to get
the path delay. However, to get the circuit delay a
statistical maximum is performed assuming
independent paths which is not true in general.
Another drawback of path-based approaches is that a
large number of paths is needed to be examined and
can be exponential in the worst-case. Further, path-
based approaches are not amenable to incremental
STA, a necessary requirement in the synthesis and
optimization of designs. Reference [15] describes how
to perform circuit optimization in presence of
uncertainties by considering the large number of
equally critical paths; however, it does not describe
any technique for performing statistical STA.

This paper presents a new block-based statistical
timing analysis technique. The delay and arrival times
in the circuit are modeled as random variables. The
arrival times are modeled as Cumulative Probability
Distribution Functions (CDFs) and the gate delays are
modeled as Probability Density Functions (PDFs).
This leads to efficient expressions for both max and
addition operations, the two key functions in both
regular and statistical timing analysis. Although the
proposed approach can handle any form of the CDF,
in this paper the CDFs are modeled as piecewise
linear for computational efficiency. Waveshape of
arrival time CDFs are similar to voltage waveforms in
deterministic timing analysis. The modeling of arrival
time CDFs as piecewise linear is consistent with
modeling the voltage waveforms in regular timing as
piecewise linear. The accuracy of any CDF can be
varied by varying the number of segments in the
piecewise linear approximation. Typically, only a few
points are sufficient to obtain the desired accuracy.
Parts of the circuit (or gates) can be modeled as
deterministic. The deterministic part of the circuit is
modeled as step CDFs (or impulse PDFs). Piecewise
linear CDFs imply piecewise constant PDFs for the
gate delays.

Dependency in statistical timing analysis can come
from two type of sources. The first source is
reconvergent fanout due to the circuit toplogy. The
second source of dependency is the manufacturing
process parameters. The gates of the circuit which
depend on same or similar process parameters cause
correlation in delay and arrival times. This paper
addresses the dependency caused by reconvergent
fanout, which is a necessary first step in a statistical
STA framework. Reconvergent fanouts are efficiently
handled by a novel common mode removal approach
using the idea of a statistical “subtraction” as opposed
to expensive path-tracing commonly used in the
literature.

For simplicity, the discussion assumes a late-mode STA,
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however, the proposed method can be easily applied to
early-mode STA as well. The remaining part of the paper
is organized as follows. Section 2 describes the basics
of the new statistical timing analysis approach.
Techniques to account for reconvergent fanout are
presented in Section 3. Section 4 presents results for
various ISCAS benchmark circuits followed by
conclusions and future work in Section 5.

2. Statistical Timing Analysis

The problem in deterministic static timing analysis is to
compute arrival times at the output nodes. Using this
the slack and hence the critical path of the circuit are
determined. Arrival times at the input and delay of the
gates are specified as deterministic numbers. In case
of statistical timing analysis, the arrival times and
delays of the gates are specified as distributions. In
general, the distribution of delays of the gates can take
any form (i.e. normal, uniform, etc.). The problem in
statistical timing analysis is to compute distribution of
arrival times at the intermediate nodes and the output
nodes. Given the required arrival time and distribution
of output arrival times, critical paths and slack
distributions can be computed for a given probability or
confidence level.

Timing analysis is performed by levelizing the circuit.
The arrival time at the input is propagated through the
gates at each level till it reaches the output.
Propagating the arrival times through a gate is a key
function in static timing.

Consider a two input gate shown in Figure 1.

Ai 1
] ot
A 0
T

Dio : Delay from Input Node i to Output node o
D.0 : Delay from Input Node j to Output node o

1
Figure 1 A gate with output o and inputs i and j.

In deterministic static timing analysis, arrival time A4,
at output node o is given by:

A, 4;+D;,) (1)
Computation of max and addition is straight forward in
regular timing analysis. We now define these
operations in statistical timing analysis. In the
proposed approach arrival times are modeled as
cumulative density functions (CDFs) and the delays
are modeled as probability density functions (PDFs).

Arrival Time

= max(4;+ D,
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Figure 2 Arrival times are modeled as Cumulative Probability
Density Functions (CDFs).
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Figure 2 illustrates the modeling of arrival times with
CDFs. The first non-zero value of arrival time which
has a non-zero cumulative probability is the lower
bound on the arrival time. On the other hand, the value
of arrival where the cumulative probability reaches 1.0
is the upper bound on the arrival time. Arrival times in
regular deterministic static timing can be viewed as a
step function (as shown in Figure 3).

Arrival Time

Prob. 0
(Value id- Deterministic
less than scalar value of
equal to / Avrrival Time
Time t) 0.0

| Time t>

Figure 3 Arrival times in regular deterministic static timing can
be viewed as step Cumulative Probability Density Functions
(CDFs).

The cumulative density functions are modeled as
piecewise linear. Figure 4 shows the approximation of
a cumulative density function with a three point
piecewise linear function. The accuracy of the CDF
modeling can be increased by increasing the number
of points (or segment) in the piecewise linear model.
Later on in the paper, the results are presented for
three point, five point, and seven point piecewise

linear model.

Arrival Time

0.9
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Figure 4 Three point piecewise linear (PWL) modeling of the cu-
mulative density function (CDF).

Piecewise linear modeling of CDFs lead to probability
density functions (PDFs) being piecewise constant.
The PDFs are not continuous, though their CDFs are
continuous. The PDFs being non-continuous is not an
issue, as long as CDFs of gate delays are continuous,
CDFs of all the arrival times are also continuous.
Previous techniques[11][16] have used impulse train
modeling for PDFs (or piecewise constant CDFs).
Piecewise linear CDFs (or piecewise constant PDFs)
used in this paper are much more efficient
representation of the distributions as compared to
piecewise constant CDFs (or impulse train PDFs) as
piecewise linear CDFs require much lower number of
segments for the same accuracy.

At any node i in the timing graph, C;(¢) is defined as
the notation for its CDF. For delay between node i
and node j, Pij(t) is defined as the PDF and C;;(¢) is
defined as the CDF. From the definition of CD1/= and
PDF, P;(#) is the derivative of C;;(#). Using this
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notation the max and addition operations are defined
next. For now, these expressions assume that the
variables (arrival time, delays) are independent.
Techniques to handle interdependence due to
reconvergent fanouts will be presented later in Section
3.

Addition Operation:

Let Dy, be the delay between node i and node j. Or
The sum of two random numbers is convolution of
their probability functions. The CDF of delay at node j

(4; is given by the convolution of C;(z) (i.e. CDF of
4;) with P;;(¢) (i.e. PDF of D;;). Or

C; = J'Ci(th)PU(T)dT
0

3)

Max Operation:

Let 4, be the max of arrival time as node a(4,) and
arrival time at node b(4, ). That is,

A, = max(A,, Ap) 4)
The CDF at node o can simply be given by
Co(1) = Co(1)Cp(1) &)

That is, the CDF of the maximum of two independent
random variables is simply the product of the CDF of
the two variables. This simple expression is only
possible if the variables are modeled as CDFs. If the
variables are modeled as PDFs the max is significantly
more complicated and which is why we model the
arrival times as CDFs. Let

Ao = max(AmAb) (6)
The CDF of 4, is given by probability of 4,<¢.If 4,
and 4, are independent, the probability of both 4,
and 4, being less than ¢ can be computed by the
multiplication of CDF of arrival time at node a (C,(?))
with the CDF of arrival time at node b (C.(¢) ), giving
equation (5).

Once the expression for max and addition have been
defined, statistical timing can be performed just like
regular timing. The difference is that when addition of
arrival time 4; is needed with delay D,, a convolution
of C; is performed with P;, instead of an algebraic
add. And when max of two variables is needed, their
CDFs are multiplied to yield the resultant CDF. Hence,
the fundamental static timing operation in equation (1)
is modified as follows in the proposed statistical timing
analysis:

Ao Djo) (7

Co = (Cl K Pio)(Cj O Pjo) (8)
where C, is the CDF of arrival time at node o (4, ).

= max(A4;+ D,
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C;0 P,, is the convolution of CDF of 4; with PDF of
D;, and C; U P;, is the convolution of CDF of 4; with
PDF of D;,, as defined in Equation  (3).
(c;B Pio)(C-ﬁ P;,) denotes the multiplication of two

resultant CDFs tojget the max.

Statistical timing analysis can be added to a regular
static timing engine by replacing the fundamental max
and add operation in Equation (1) by the one in
Equation (8). Circuit parsing and setup, timing graph
construction, graph traversal and incremental
capabilities of regular timing can be used as is in
statistical timing analysis. Techniques described in this
section can be used for any model or form (i.e. normal,
uniform, measured, etc.) of the variations (or the
CDF). Since we use piecewise linear models for CDF,
in the next section we show how the add and
multiplication is performed in this framework.

2.1 Max and Addition with PWL modeling

As mentioned previously, convolution is performed to
add the input arrival time - which is modeled as a
piecewise linear CDF - and the gate delay - which is
modeled as a piecewise constant PDF. We break the
CDF into a sum of ramps and the PDF into a sum of
step signals. For instance, a 3-piece CDF and a 4-
piece PDF are decomposed as shown in Figure 5.

piece 3

piece 2
piece 1 piece 3

piece 4

h fhp 13

1
[ —

(b) Decomposing a PDF

(a) Decomposing a CDF
Figure 5 Decomposing a CDF and a PDF into ramps and steps

Each ramp and each step waveform are convolved
individually as shown in Figure 6. Here s is the slope
of the ramp. The resultant waveform is a quadratic.
For an n-piece CDF and an n -piece PDF, a total of n

convolutions are performed. The n’ quadratics are
then summed together to obtain the resultant CDF.
Finally, for forward propagation the quadratic CDF is
converted back to a piecewise linear CDF by sampling
at the preset probability values. No nonlinear iterations
are required for the sampling since closed-form
formulas for the crossing times can be obtained since
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the result of convolution is a quadratic.

31

0.5sv(t, +1t,— t)2
tHti

Figure 6 Convolution of a step and a ramp

The multiplication of two piecewise linear CDFs
proceeds analogously. We decompose the piecewise
linear CDF as a sum of ramps as shown in Figure 5(a).
Each ramp of the first CDF is multiplied by each ramp
of the second CDF as shown in Figure 7. The resultant
waveform is again a quadratic. For n pieces in each of
the two CDFs, »n” quadratic pieces are produced due
to multiplication. These are then summed up to get the
resultant CDF. As before, the CDF is sampled at the
preset probability values to get the piecewise linear
CDF for forward propagation.

2.2 Time Complexity of the Proposed Method
It is well known that block-based deterministic timing
analysis can be performed in O(E + V) where E and
V are the number of edges and vertices in the timing
graph respectively. In the statistical case, convolution
is performed for each edge in the timing graph and the
multiplication is performed at each vertex for all the
incident edges in the timing graph. Since each of these
operations takes O(nz) time for an n -piece CDF/PDF
model, the overall complexity of our approach is
O’E+7).

ss,(t—1))(t—1,)

t3 = max(tl, tz)
Figure 7 Multiplication of two ramps

3. Handling Reconvergent Fanouts

The complexity of statistical timing analysis usually
increases due to reconvergent fanounts. In this
section, a new technique is presented to capture
reconvergent fanouts in the proposed statistical timing



framework. We illustrate the basic principle behind our
approach through the circuit in Figure 8. In this
example, two paths originating from node r
reconverge as inputs to the same gate at nodes i and
j. This causes both the arrival time 4; and 4; to
depend on arrival time A4,. This dependency
potentially complicates the computation of arrival time
4, since equation (5) can no longer be used.

D, : Delay from Node r to Node i through Path 1
Path 1 fromrtoi i

L
Path 2 fromrto j ]

D2 : Delay from Node r to Node j through Path 2

Figure 8 Example of reconvergent fanout. Two fanouts from
node r reconverge downstream as inputs i and j of the same
gate.

It should be noted that the interdependence of arrival
time 4; and 4; has a very specific linear form. That is

The variable of interest, arrival time at node o, 4,, is

given by
A4, = max(4,.+D+Dj, A+ Dy +Dj,) (11)

The computation in Equation (11) can be exactly
rewritten as

A4, = A, +max(Dy + Dy, Dy + D) (12)
The expression is simplified by taking out the common
mode A4,. Since Dy, D,, D;, and D;, are
independent, simple expression derived in Section 2
can be used. In other words, the CDF at node o can
simply be rewritten as

C, = C,O[(C; O D;,)(C, 0Dy, (13)
where C, is the CDF of arrival time at node r, C; is
the CDF of delay D, C, is the CDF of delay D, and

O is the convolution operator defined in Equation
(3). Note that the expression within the square bracket
is a CDF. Therefore, the dash at the end denotes the
derivative (which yields the PDF) of the expression
within the square brackets. This is required so that
convolution with C,. produces the right CDF.

To compute 4,, the computation of D; and D, is
required. One way is to perform path tracing to get
these values. However, it is simpler and more
desirable to compute D; and D, through statistical
subtraction. i.e.

Dy = 4,-4, (14)
Dy = 4;- A, (15)

The statistical subtraction is equivalent to inverse of
convolution, and one way to do this is by moment
matching. Consider the case
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A4, = 4,4, (16)
where 4, and 4, are known and 4, is the unknown.
This can be rewritten as

C

X

= c. 0P, (17)
P, =P, 0P, (18)

Since z and y are independent, their mean and
variances will add in a convolution. That is,

THERTIETS (19)
2 2 2

Oy = 0:+0, (20)
Since P,, C,, Py and C, are known, their mean and
variances can be computed from their PDFs (or their
piecewise linear CDF). Hence, the required mean and
variance of C, can be computed from algebraic
subtraction, or

M, = uxiuy (21)
ol = 0,0, 22)

Once the mean p, and variance oﬁ is computed, the

CDF, C., can be determined by fitting the mean and
variance to a probability distribution. Two moments
(mean and variance) are matched to determine the
distribution. This method can also be extended by
matching higher order moments and performing Pade
approximation to determine the CDF.

A

other logic

1 gate 5

Figure 9 A general case of reconvergent fanout

In general, an input of a gate may depend on more
than one previous node. For example, in Figure 9, the
inputs of the gate 5 depends on A, B, C and D. Some
of these vertices may also share subpaths when
reaching the inputs of gate 5. Therefore, when
computing the arrival time at the output of gate 5, this
dependency must be accounted for. To accomplish
this, we maintain a Dependency List (DL) with each
vertex in the timing graph which lists the vertices on
which the arrival time of the current vertex depends.
The vertices are sorted by the level in a descending
order i.e. the most recent vertex (i.e. the one with the
highest level) appears first and so on. The DL is
propagated as we compute the statistical arrival times
using the DLPropagate algorithm shown in Figure 10.
In the algorithm DL; denotes the DL of the ith input
and DL, denotes the DL of the output node. If an



input does not contribute to the output of the gate (for
example, it may be 1 well before any other input
arrives), its DL is not propagated to th output. In
addition, we use two other pruning heuristics to limit
the size of the DL. We allow the user to specify the
size of the list. In addition, we only carry-forward the n
most recent (i.e. level) vertices where n is again set by
the user. Thus, we know all the prior vertices that
impact the arrival time of a given vertex without any
path tracing.

Algorithm DL Propagate
DL, = NULL
if gate output has fanout > 1
add output node to DL,
for each input i of gate contributing to output
for each node v in DL, and notin DL,
add v in DL using insertion sort
in descending order by level
return DL,

Figure 10 Algorithm to propagate dependency list

Now, suppose we wish to compute the arrival time at
the output of a multi-input gate, with each input having
possibly a non-empty dependency list. An
approximate algorithm is given in Figure 11. The key
idea is to reduce the dependency of each input to a
single vertex so that (13) may be applied. In the
algorithm, 4, is the output arrival time, 4; is the arrival
time at the i th input and 4,, is the arrival time at vertex
V.

Algorithm depMax
A4, = -
L=NULL
for each input i
for each vertex v in DL,
if (v covers more than one input)
&&(v does not appearin L)
insert v according to level in L
mark inputs that v covers
if (L is empty)
proceed as in independent case
else
foreach v inL

{ j—

ov
for each input i that it covers
A,, = max(4,,4,-A4,+D,,)

A, = max(4,,4,,)

}

return 4,

Figure 11 Algrithm to compute output arrival time in presence
of reconvergent fanout

Once a dependent max is computed at the output of a

gate, th dependency lists of the inputs is not

propagated forward.

For example, referring to Figure 9, the output of gate 5
depends on 4, B, C and D. However, depMax will
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identify that inputs 1 and 2 depend on B (since B is at
a higher level than 4 ) and that inputs 3 and 4 depend
on C. Thus the arrival times due to 1 and 2 (as well as
3 and 4) will be computed using (13) and the two
resultant arrival times will be treated as independent
and combined using (5) to get the output arrival time.
The dependency lists of the inputs to gate 5 will not be
carried forward.

4. Results

The proposed block-based static timing analysis
approach in presence of uncertainty has been
implemented and its results are presented for various
ISCAS benchmark circuits. The ISCAS circuit have
been mapped using a commercial logic synthesis
system to a recent library consisting of gates with
maximum of four fanins. The cell library consists of the
following gates: inverter, 2-input nand, 2-input nor, 2-
input and, 2-input or and 4-input nand, 4-input nor, 4-
input and 4-input or cell. The circuits and their number
of gates, input and outputs are shown in . The
variations of the individual gate delays can be
modeled as any distribution. The results in this section
use normal distribution for the modeling of the
variations in the proposed method and the Monte
Carlo method.

Circuit |Gates|Inputs| Outputs
C432 | 125 | 45 8
C499 | 544 | 75 33
C880 | 365 | 88 27
C1908 | 495 | 60 26
C2670 | 657 | 299 65
C3540 |1120| 74 23
C6288 | 2727 | 66 33
C7552 | 2608 | 316 108

Table 1 compares the accuracy of the proposed
statistical timing method. The comparisons are made
against golden Monte Carlo method (each with 10,000
timing runs). The results of worst case method are
also shown. The worst case method uses a regular
deterministic timing analysis with the delay of each
gate set to 30 from the mean value. The 99%
confidence point of the CDF is shown for the Monte
Carlo and the proposed method. As seen from the
table, the worst case method can be 21-24% off from
the desired monte carlo method. The proposed
method produces very accurate results as compared
to Monte Carlo method with error of only 0.3% to
0.79%. The results shown are with a 7-point piecewise
linear CDF modeling with no reconvergent fanout
correction. The Monte Carlo method takes into
account reconvergent fanout. In reference [16], it is
shown that statical timing analysis ignoring
reconvergent fanouts produces an upper bound on the
true delay. However, the table also indicates that a
statistical timing analysis without reconvergence



fanout correction is very close to the real answer.
Therefore, reconvergence does not cause a significant
difference in overall answer for these circuits. Later,
we also present results for our technique for
reconvergence fanout correction.Number of gates,
inputs and outputs for ISCAS benchmark circuit
mapped to a current library.

Circuit | Monte |Worst Case Method| Proposed Method
Carlo 99%
Method
99%
Delay Delay Error Delay Error
(ps) (ps) (%) (ps) (%)
C432 3588 4426 23.3% 3610 0.61%
C499 3505 4283 22.1% 3525 0.57%
C880 3344 4088 22.2% 3359 0.44%
C1908 3574 4355 21.8% 3587 0.27%
C2670 2549 3094 21.3% 2557 0.31%
C3540 5251 6500 23.7% 5280 0.55%
C6288 | 20704 26351 27.2% | 20868 | 0.79%
C7552 5262 6565 24.7% 5299 0.69%

Table 1 Accuracy comparison of the timing results by the
proposed method as compared to worst case method and
Monte Carlo method.

The accuracy of the proposed method is further
illustrated in Table 2. This table shows the results
obtained by Monte Carlo and the proposed method for
the 1% point in the CDF. The error compared to exact
Monte Carlo is small and varies from 0.09% to 2.42%.

The proposed method can be run with different
modeling complexity of the piecewise linear (PWL)
CDF. All the CDFs in each circuit are modeled as a 3-
point PWL model, a 5-point PWL model and a 7-point
PWL model. Accuracy comparisons of these three
modeling levels is shown in Table 3. As expected, the
accuracy of the proposed technique decreases with
reduction in number of segment in the PWL
approximation. However, even the 3-pt. PWL model
gives good accuracy. The computational cost of
different CDF PWL models is illustrated in Table 4.
Performance is shown as the ratio to the 3-point PWL
statistical timing run. For example, in circuit C880, the
5-point PWL model takes 2.5 times longer to run as
compared to the 3-point PWL model and the 7-point
PWL model takes 4.5 times longer to run as compared
to the 3-point PWL model.

Accuracy of statistical timing with and without
reconvergence fanout handling in shown in Figure 12
and Figure 13. The figures show the CDF of the arrival
time of the most critical output as computed by Monte
Carlo, proposed method without reconvergence and
proposed method with reconvergence. The proposed
method with reconvergence handling compares very
well to Monte Carlo validating our dominant common
mode algorithm of Section 3. Performance impact of
reconvergence handling in the proposed method is
shown in Table 5. This table shows the percentage
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runtime overhead with reconvergence handling as
compared to run time without reconvergence. The
efficient nature of reconvergent handling procedure
yields only about 10-30% penalty over timing without
reconvergence handling.

Circuit | Monte | Proposed Method
Carlo 1%CDF point
Method
1% pt.
Delay Delay Error
(ps) (ps) (%)
C432 3285 3327 0.12%
C499 3250 3278 0.86%
C880 3057 3108 1.66%
C1908 3323 3403 2.4%
C2670 2287 2289 0.09%
C3540 4899 4967 1.38%
C6288 | 20008 20326 | 1.58%
C7552 4876 4997 2.42%

Table 2 Accuracy comparison of the timing results by the
proposed method as compared to Monte Carlo method.

Circuit |7-pt. PWL CDF|5-pt. PWL CDF |3-pt. PWL CDF
Error Error Error
(%) (%) (%)
c432 0.61% 1.8% -2.2%
c499 0.57% 1.76% -2.4%
C880 0.44% 1.7% -2.54%
C1908 0.27% 1.65% -2.63%
C2670 0.31% 1.6% -2.74%
C3540 0.55% 1.81% -2.15%
C6288 0.79% 1.69% -1.38%
C7552 0.69% 1.84% -1.98%

Table 3 Accuracy comparison for variable accuracy modeling
of the CDFs for the 99% point in timing distribution.

Circuit Perf. Impact of Variable Accuracy
5-pt. PWL CDF | 7-pt. PWL CDF
C432 2.0 4.0
C499 27 4.7
C880 25 4.5
C1908 3.3 5.3
C2670 25 4.2
C3540 2.1 3.7
C6288 25 4.6
C7552 2.7 4.7

Table 4 Performance impact of variable accuracy in CDF
modeling. The runtimes are shown as ratio to the runtime of 3-
pt. PWL
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Figure 12 Accuracy of the timing distribution CDF for circuit
C432 with and without reconvergence handling as compared to
Monte Carlo.
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Figure 13 Accuracy of the timing distribution CDF for circuit
C499 with and without reconvergence handling as compared to
Monte Carlo.

Circuit | Perf. Impact of Handling Reconvergence
C432 10%
C499 21%
C880 33%
C1908 19%
C2670 18%
C3540 30%
C6288 16%
C7552 24%

Table 5 Performance impact of handling reconvergence fanout
as measured by ratio of runtime with and without
reconvergence handling.

5. Conclusions and Future Work

A new block-based static timing technique with
uncertainty has been presented in this paper. This
technique models the arrival times as cumulative
distribution functions (CDFs) and gate delays as
probability density functions (PDFs) for efficient timing
analysis. Simple expressions are presented for the key
operations: add and max. While the approach works
for any type of distribution, for efficiency the CDFs are
modeled as piecewise linear distributions. An efficient
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technique based on statistical subtraction has been
presented for handling reconvergent fanouts. Accurate
results have been demonstrated for various ISCAS
benchmark circuits. The accuracy of the analysis can
be varied by varying the accuracy of the piecewise
linear CDF model. Regular (or deterministic) timing
analysis can be easily incorporated into this statistical
framework by modeling the CDF as a step. All the
expressions for statistical timing analysis are valid in
the limiting case for deterministic timing analysis.
Future work include handling correlation in arrival
times and gate delays due to process parameters.
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