
A Fully Pipelined Memoryless 17.8 Gbps AES-128
Encryptor

Kimmo U. Järvinen
Signal Processing Laboratory

Helsinki University of
Technology
Otakaari 5 A

FIN-02150, Finland

Kimmo.Jarvinen@hut.fi

Matti T. Tommiska
Signal Processing Laboratory

Helsinki University of
Technology
Otakaari 5 A

FIN-02150, Finland

Matti.Tommiska@hut.fi

Jorma O. Skyttä
Signal Processing Laboratory

Helsinki University of
Technology
Otakaari 5 A

FIN-02150, Finland

Jorma.Skytta@hut.fi

ABSTRACT
A fully pipelined implementation of the Advanced Encryption Stan-
dard encryption algorithm with 128-bit input and key length (AES-
128) was implemented on Xilinx’ Virtex-E and Virtex-II devices.
The design is called SIG-AES-E and it implements the S-boxes
combinatorially and thus requires no internal memory. It is con-
cluded, that SIG-AES-E is faster than other published FPGA-based
implementations of the AES-128 encryption algorithm.

Categories and Subject Descriptors
E.3 [Data Encryption]: Standards; B.2.4 [Arithmetic and Logic
Structures]: High-speed Arithmetic—Algorithms

General Terms
Algorithms, Performance, Design, Security

Keywords
Advanced Encryption Standard (AES), FPGA, pipelining

1. INTRODUCTION
The importance of cryptography is constantly increasing, since

the amount of sensitive data being transmitted over open environ-
ments is growing at an unprecedented pace. Software-based imple-
mentations of cryptographic algorithms fall short of the required
performance, as the transmission speeds of core networks reach the
gigabits per second (Gbps) range. The significance and applica-
bility of hardware-based implementations of cryptographic algo-
rithms is therefore of interest also to the Field Programmable Gate
Array (FPGA) design community.

FPGAs are nearly ideal candidates for high-speed cryptography
for several reasons. The target market is generally low- to medium-
sized, which makes the usage of Application Specific Integrated
Circuits (ASIC) less attractive because of the large initial costs in-
cluded in starting a ASIC manufacturing process. FPGA-designs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’03, February 23–25, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-651-X/03/0002 ...$5.00.

also have a quicker time-to-market cycle than ASICs. A program-
mable platform has also applications in a multi-protocol environ-
ment, such as IPSec [5], since the cryptographic algorithm to be
used can be configured on-the-fly to the target device in a fraction
of a second.

The National Institute of Standards and Technology (NIST) of
the United States announced in 1997 an Advanced Encryption Stan-
dard (AES) development effort to replace the Digital Encryption
Standard (DES). There were five candidates in the last round of the
AES algorithm selection process: MARS, RC6, Rijndael, Serpent
and Twofish. In autumn 2000 the Rijndael algorithm, developed by
Joan Daemen and Vincent Rijmen [4], was selected as the AES
algorithm. AES was formally published on November 26 2001
in Federal Information Processing Standards’ (FIPS) publication
FIPS-PUB 197 [7]. The standard became effective on May 26,
2002.

The implementation of fully unrolled secret-key cryptographic
algorithms is feasible on million-gate FPGAs. If the entire al-
gorithm with full inner and outer loop pipelining fits on a single
FPGA, the limiting factor for throughput is the achieved clock rate
as follows [3]:

throughput = blocksize× f requency (1)

Since the block size of AES is fixed at 128 bits, a 100 MHz clock
rate implies a throughput of 12.8 Gbps. Clock rates above 100
MHz should be achieved in modern FPGAs by partitioning the de-
sign into stages and pipelining the entire system. For example, the
International Data Encryption Algorithm (IDEA) with a fixed block
size of 64 bits was recently implemented with a throughput of 6.78
Gbps on a Xilinx XCV1000E [11].

A typical feature of modern FPGAs is the inclusion of embed-
ded internal memory within the device, for example BlockRAMs
in Xilinx’ Virtex devices [17, 18] and Embedded System Blocks
(ESBs) in Altera’s Apex devices [1]. This has several benefits,
since lookup tables and conversion functions can be easily imple-
mented as small RAMs within the device.

However, the amount of available internal memory may also be-
come a bottleneck when implementing a heavily pipelined design
where each stage of the pipeline requires its own unshared mem-
ory block. This may be the case with fully pipelined secret-key
cryptographic algorithms, for example DES and AES, which im-
plement non-linear substitutions with so-called S-boxes. In these
cases, a smaller and less expensive target device requires imple-
menting the design in an entirely combinatorial manner without
resorting to memory accesses.

The implementation described in this paper is called SIG-AES-
E, which reads as follows: SIG is the abbreviation for Signal Pro-
cessing Laboratory at the Helsinki University of Technology, where
the design was carried out, AES is the implemented cryptographic
algorithm, and the final E means that the design performs only
encryption. Implementations called SIG-AES-D (only decryption
supported) and SIG-AES-ED (both encryption and decryption sup-
ported) were also designed. Design methods used in the imple-
mentations of SIG-AES-D and SIG-AES-ED were similar to the
methods used in the design of SIG-AES-E. In this paper only the
design of SIG-AES-E is considered in detail.

The paper is organized as follows: a summary of the AES en-
cryption algorithm with a 128-bit key (AES-128 encryption) is pre-
sented in Section 2 and the mathematical details of mapping be-
tween different polynomial representations of GF(28) are described
in Section 3. Section 4 contains a description of the design process
with an emphasis on pipelining, and comparisons with other pub-
lished FPGA-based implementations of AES-128 encryption are
made in Section 5. The paper ends by drawing conclusions in Sec-
tion 6 and expressing acknowledgements in Section 7.

2. THE AES-128 ALGORITHM
The Advanced Encryption Standard (AES) algorithm is a sym-

metric block cipher that processes data blocks of 128 bits using
cipher keys with lengths of 128, 192 and 256 bits. The AES algo-
rithm is also called the Rijndael algorithm named after its inventors,
Joan Daemen and Vincent Rijmen. In this paper, only the 128 bit
encryption version (AES-128 encryption) supported by SIG-AES-
E is considered. A detailed specification of the AES algorithm, in-
cluding AES-192 and AES-256, can be found in [7]. In the follow-
ing chapters, the description generally concentrates on AES-128,
but whenever the description is valid for all variants of AES, the
generic abbreviation AES is used.

Data is handled mainly as bytes in the AES algorithm. One byte
forms an element in a polynomial representation of Galois Field
GF(28). A byte can be represented in hexadecimal notation as
{ab}, where a represents the four most significant bits (MSB) and
b represents the four least significant bits (LSB) of the byte.

In this paper, the representation used in the official standard is
called F1, formally defined as GF(2) [x]/m(x), where m(x) is an
irreducible polynomial

m(x) = x8 + x4 + x3 + x +1. (2)

Additions are performed as bitwise XORs between operands in
polynomial representations of F1. Multiplications in F1 are per-
formed as a multiplication of the regular polynomials. The mul-
tiplication result can be a 14-degree polynomial which doesn’t fit
into a byte. Thus the final multiplication result in F1 is the result of
the polynomial multiplication modulo m(x).

128-bit data block and key are considered as a byte array with
four rows and four columns. AES-128 consists of ten rounds. One
AES encryption round includes four transformations: SubBytes,
ShiftRows, MixColumns and AddRoundKey. The first and last round
differ from other rounds in that there is an additional AddRound-
Key transformation at the beginning of the first round and no Mix-
Columns transformation is performed in the last round. Key Ex-
pansion in the AES algorithm calculates RoundKeys based on the
original cipher key. The RoundKeys are needed in AddRoundKeys.
In AES-128 encryption, the first RoundKey used in the additional
AddRoundKey at the beginning of the first round is always the orig-
inal key. Intermediate results after every transformation are called
States.

The SubBytes transformation operates with every byte of the
State separately. SubBytes consists of two transformations:

1. Multiplicative inverse. The zero element is mapped to itself.

2. Affine transformation which can be expressed in matrix form
as:























b′0
b′1
b′2
b′3
b′4
b′5
b′6
b′7























=























1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1













































b0
b1
b2
b3
b4
b5
b6
b7























+























1
1
0
0
0
1
1
0























.

(3)
When it comes to FPGA-based implementations of the AES al-
gorithm, SubBytes has usually been implemented by using a sub-
stitution table (S-Box) located in internal embedded memory, i.e.
BlockRAMs in Xilinx’ devices.

The ShiftRows transformation performs a cyclical left shift on
the last three rows of the State. The first row is not shifted. The
second row is shifted one byte, the third row is shifted two bytes
and the fourth row is shifted three bytes. Thus, ShiftRows proceeds
as follows:

s′r,c = sr,(c+r)mod 4, 0 ≤ r ≤ 3 and 0 ≤ c ≤ 3, (4)

where sr,c is the byte (row r, column c) of the State.
The MixColumns transformation operates separately on every

column of the State. A column is considered as a polynomial over
F1 and multiplied modulo x4 + x +1 with the polynomial

a(x) = {03}x3 +{01}x2 +{01}x +{02}. (5)

This results in replacing the four bytes of the column by the follow-
ing equations:

s′0,c = ({02}• s0,c)⊕ ({03}• s1,c)⊕ s2,c ⊕ s3,c (6)

s′1,c = s0,c ⊕ ({02}• s1,c)⊕ ({03}• s2,c)⊕ s3,c (7)

s′2,c = s0,c ⊕ s1,c ⊕ ({02}• s2,c)⊕ ({03}• s3,c) (8)

s′3,c = ({03}• s0,c)⊕ s1,c ⊕ s2,c ⊕ ({02}• s3,c), (9)

where • and ⊕ are multiplication and addition (bitwise XOR).
The AddRoundKey transformation performs an addition (bitwise

XOR) of the State with the RoundKey.
The Key Expansion calculates RoundKeys for every AddRound-

Key transformation. In AES-128 encryption, the original cipher
key is the first RoundKey rk[0] used in the additional AddRound-
Key at the beginning of the first round. RoundKey rk[i], where
i > 0, is calculated from the previous RoundKey rk[i − 1]. Let
p[j], where 0 ≤ j ≤ 3, be the column j of the previous Round-
Key rk[i−1] and let w[j] be the column j of the RoundKey being
calculated. Then the new RoundKey rk[i] is calculated as follows:

w[0] = p[0]⊕ (RotWord(SubWord(p[3]))⊕ rcon[i])

w[1] = p[1]⊕w[0]

w[2] = p[2]⊕w[1]

w[3] = p[3]⊕w[2].

RotWord() is a function that takes a four byte input [a0,a1,a2,a3]
and returns it rotated: [a1,a2,a3,a0]. The function SubWord()
performs a SubBytes transformation for four bytes. The Round
constant rcon[i] contains values [xi−1,{00},{00},{00}] where
xi−1 are the powers of x (x is denoted as {02}) in F1.

3. ISOMORPHISM BETWEEN F1 AND F2

As mentioned, the SubBytes transformation of the AES algo-
rithm can be implemented with lookup tables located in Block-
RAMs. This has obvious benefits, but in designing a fully pipe-
lined design, the amount of available internal memory may become
a bottleneck. Consequentially, a more expensive target device may
be needed if every SubBytes transformation is implemented as a
lookup table (See also Section 4.1).

Instead of the table implementation in F1 it was decided to per-
form the SubBytes transformation by calculating the multiplicative
inverse of the SubBytes in F2 := GF(24) [x]/(x2 + Ax + B) as de-
scribed in [4] and [15]. To make this work a byte representing an
element in F1 must be transformed to a byte representing an el-
ement in F2 [9]. All multiplications in GF(24) are performed in
GF(2) [y]/(y4 + y+1). Constants A and B can be chosen freely as
long as x2 + Ax + B is irreducible. In the implementation of SIG-
AES-E, the constants are chosen as follows: A = 0b0001 = {1}
and B = 0b1000 = {8}. Thus the irreducible polynomial becomes
x2 + x + y3.

The problem is to find the isomorphism Φ : F1 7→ F2. F1 can
also be considered as a vector space with the base {1,x,x2, . . . ,x7},
where x is considered as a root of m(x). Thus Φ is also a linear
transformation, and can be formed [8] by mapping the powers of
roots in F1 to the corresponding values in F2. The irreducible poly-
nomial m(x) has a root Z = {20}. Calculating the powers Z i in F2
gives the following results:

Z0 = 1 = {01}

Z1 = yx = {20}

Z2 = y2x +(y2 + y) = {46}

Z3 = y2x +(y3 + y2) = {4c}

Z4 = (y+1)x +(y3 + y2) = {3c}

Z5 = (y3 + y2 +1)x +(y2 +1) = {d5}

Z6 = (y+1)x + y2 = {34}

Z7 = (y3 + y2 + y)x + y2 +1 = {e5}.

The transformation Φ in matrix form is given by:

Φ =























1 0 0 0 0 1 0 1
0 0 1 0 0 0 0 0
0 0 1 1 1 1 1 1
0 0 0 1 1 0 0 0
0 0 0 0 1 1 1 0
0 1 0 0 1 0 1 1
0 0 1 1 0 1 0 1
0 0 0 0 0 1 0 1























. (10)

The inverse transformation Φ−1 : F2 7→ F1 is also needed. Φ−1 can
be defined by inverting the matrix Φ with the result as follows:

Φ−1 =























1 0 0 0 0 0 0 1
0 0 0 0 1 1 0 1
0 1 0 0 0 0 0 0
0 1 0 0 0 0 1 1
0 1 0 1 0 0 1 1
0 0 1 0 1 0 1 0
0 1 1 1 0 0 0 1
0 0 1 0 1 0 1 1























. (11)

In addition to the multiplicative inverse also other transformations
in the AES-128 encryption algorithm are calculated in F2. This
makes encryption faster and saves significant amounts of space

since the transformations Φ and Φ−1 are performed only once. The
transformation Φ is performed for both the key and data block at the
beginning of the encryption and the inverse transformation Φ−1 is
performed for the encrypted data block at the end of the last round.
The following subsections describe how the mapping of SubBytes,
MixColumns, AddRoundKey, ShiftRows and Key Expansion to F2
was performed.

3.1 SubBytes in F2

If a byte is mapped to F2 with the transformation Φ, the multi-
plicative inverse can be calculated as follows [4, 15]:

(bx + c)−1 = b(b2B+bcA+ c2)−1x+

(c+bA)(b2B+bcA+ c2)−1, (12)

where b are the four most significant and c the four least significant
bits of the byte. As already mentioned, it was chosen that A =
0b0001 = {1} and B = 0b1000 = {8}. The multiplicative inverse
(b2B+bcA+ c2)−1 can be calculated into a table.

Also the affine transformation defined by Equation (3) must be
mapped to F2. Since Φ is also a linear transformation, the affine
transformation can be calculated as follows. Let

b′ = Tb+ c (13)

be the affine transformation in F1 and let

b′
φ = Tφbφ + cφ (14)

be the affine transformation in F2. Because

b′ = Φ−1b′
φ = Φ−1(Tφbφ + cφ) (15)

and bφ = Φb, Equation (13) can be expressed as

b′ = Φ−1(Tφ(Φb)+ cφ) = (Φ−1TφΦ)b+Φ−1cφ. (16)

Combining Equations (13) and (16) results in

Tφ = ΦT Φ−1 (17)

and

cφ = Φc. (18)

The affine transformation in F2 can now be expressed in matrix
form:






















b′0
b′1
b′2
b′3
b′4
b′5
b′6
b′7























=























1 0 1 1 0 1 0 1
1 0 0 1 0 1 1 0
1 1 1 1 0 0 1 0
0 1 1 1 1 0 0 0
1 0 1 0 0 0 0 0
0 1 0 0 1 0 1 1
0 0 1 0 0 1 0 1
0 0 0 1 0 1 1 1













































b0
b1
b2
b3
b4
b5
b6
b7























+























0
0
0
0
0
0
1
1























.

(19)

3.2 MixColumns in F2

The MixColumns transformation of the AES-128 encryption al-
gorithm must also be mapped to F2. The addition in F2 is calcu-
lated in a similar fashion as in F1 (that is, by bitwise XORing the
operands), and therefore only the multiplications must be mapped
to F2. Because Φ maps {01} to {01} it suffices to map only the
multiplications with {02} and {03}. Writing

a = a7x7 +a6x6 +a5x5 +a4x4 +a3x3 +a2x2 +a1x +a0 (20)

multiplication {02}•a in F1 can be calculated as follows:

{02}•a = x(a7x7 +a6x6 +a5x5 +a4x4 +a3x3 +a2x2+

a1x +a0)

= a7x8 +a6x7 +a5x6 +a4x5 +a3x4 +a2x3+

a1x2 +a0x mod x8 + x4 + x3 + x +1

= a6x7 +a5x6 +a4x5 +(a3 +a7)x
4+

(a2 +a7)x
3 +a1x2 +(a0 +a7)x +a7. (21)

Multiplication {03}•a results in the following equation:

{03}•a = (a6 +a7)x
7 +(a5 +a6)x

6 +(a4 +a5)x
5+

(a3 +a4 +a7)x
4 +(a2 +a3 +a7)x

3+

(a1 +a2)x
2 +(a0 +a1 +a7)x +(a0 +a7). (22)

Equations (21) and (22) can be expressed as matrices M2 and M3
so that

{02}•a = M2a =























0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0













































a0
a1
a2
a3
a4
a5
a6
a7























(23)

and

{03}•a = M3a =























1 0 0 0 0 0 0 1
1 1 0 0 0 0 0 1
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 1
0 0 0 1 1 0 0 1
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1













































a0
a1
a2
a3
a4
a5
a6
a7























.

(24)
Matrices Mφ2 and Mφ3 for multiplication in F2 can be calculated
from M2 and M3 as follows:

Mφ2 = ΦM2Φ−1 =























0 0 0 0 1 0 0 1
0 0 0 0 1 1 0 1
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
0 0 0 1 0 0 0 1
1 0 0 1 1 0 0 1
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0























(25)

and

Mφ3 = ΦM3Φ−1 =























1 0 0 0 1 0 0 1
0 1 0 0 1 1 0 1
0 0 1 0 0 1 1 0
0 0 0 1 0 0 1 1
0 0 0 1 1 0 0 1
1 0 0 1 1 1 0 1
0 1 0 0 0 1 1 0
0 0 1 0 0 0 1 1























. (26)

3.3 AddRoundKey and ShiftRows in F2

Because addition is calculated as a bitwise XOR in both F1 and
in F2 there is no need for changes in the AddRoundKey transfor-

mation. Also the ShiftRows transformation remains unchanged,
because no calculations are required there.

3.4 Key Expansion in F2

In the Key Expansion, the function SubWord() and the round
constant rcon[i] must be mapped to F2. SubWord(), which
consists of four SubBytes, is mapped as described in Section 3.1.
The rcon[i] values (powers of x) are mapped to F2 by multipling
them with the matrix Φ. The values of rcon[i] are presented in
Table 1. All the transformations of the AES-128 encryption algo-

F1 F2 F1 F2
01 01 20 d5
02 20 40 34
04 46 80 e5
08 4c 1b 51
10 3c 36 8f

Table 1: The values of rcon[i] in F1 and F2.

rithm have now been mapped from F1 to F2. The encryption can be
implemented as follows: first both the 128-bit data block and the
128-bit key are mapped to F2 with the transformation Φ and then
the encryption is carried out as described above. At the end of the
last round the encrypted data is mapped back to F1 with the inverse
transformation Φ−1.

4. DESIGN AND IMPLEMENTATION
The AES-128 encryption implementation (SIG-AES-E) was de-

signed fully pipelined so that a new data-key pair can be input at
every clock cycle. The SIG-AES-E design has 128-bit inputs for
data and key. A new data-key pair is loaded if load is high. En-
cryption of one data block requires 43 clock cycles. The output
done is high when the encrypted data block is ready in edata
(128-bit output).

The AES-128 consists of ten rounds. The transformation Φ :
F1 7→ F2 for both data and key and the additional AddRoundKey
at the beginning of the first round are performed in the first block
round0. After round0 every block (round1 . . . round10)
completes one round of the AES-128 encryption algorithm. Thus,
SIG-AES-E consists of eleven separate blocks as presented in Fig-
ure 1. At the end of the last block the inverse transformation Φ−1 :
F2 7→ F1 is calculated.

ROUND2ROUND0 ROUND1 ROUND3 ROUND4 ROUND5

round0 round1_9 round1_9 round1_9 round1_9 round1_9

round1_9 round1_9 round1_9 round1_9 round10

ROUND6 ROUND7 ROUND8 ROUND9 ROUND10 edata

done

data

key

load

Figure 1: Block diagram of SIG-AES-E

4.1 The Target Device Families
Xilinx’ Virtex-E device family [17] is an improved version of the

older Virtex family. The flagship of Xilinx’ Virtex series is Virtex-
II [18], which has better performance and higher density than Vir-
tex or Virtex-E. The basic unit of the Virtex devices is called slice
and its structure is presented in Figure 2. The devices chosen as tar-
get devices for implementation were Virtex-E XCV1000E-8 with
12288 slices and Virtex-II XC2V2000-5 with 10752 slices. The

area resources of the devices can be modelled so that XCV1000E
has about 1.6 million and XC2V2000 about 2 million equivalent
ASIC gates.

G1
G2
G3
G4

F1
F2
F3
F4

BX

BY

CIN

YB

XB

Y

X

YQ

XQ

SP
D
CE

D Q
CE

RC

LUT

LUT

COUT

RC

Qcarry &
control

carry &
control

SP

Figure 2: Virtex-E slice.

The internal memory cell in Virtex-E and Virtex-II devices is
called BlockRAM, which consists of 4096 memory bits. There
are varying amounts of BlockRAM in Xilinx’ devices, for exam-
ple, XCV1000E has 96 BlockRAM cells equalling 393216 memory
bits [17].

If an AES S-box is implemented as a lookup table, 28×8 = 2048
memory bits are needed. This requires one half of a BlockRAM,
because a BlockRAM cell can be shared between two S-boxes in
dual-port mode.

If SIG-AES-E had been implemented with lookup tables, a sin-
gle round would have required 8 BlockRAMs for data handling and
2 BlockRAMs for Key Expansion. Thus a single round would have
required 10 BlockRAMs and the total number of required Block-
RAMs for the entire ten-round pipelined design would have been
100. The smallest member of Xilinx’ Virtex-E device family with
enough BlockRAMs would have been XCV1600E, but because
SIG-AES-E was implemented as a purely combinatorial design, the
design fitted into an XCV1000E (See also Table 3).

4.2 Round0

128
dataout

128
keyout

11
done

clk

load

round0

keyin

datain
128

128

control0

phiinputreg

inputreg phi reg128

keyadd128
128

128

128

128

Figure 3: The inner structure of the first block.

The block diagram of the first block round0 is presented in
Figure 3. Inputregs are 128-bit registers where new data and
new key are loaded when load is high. The phi blocks map data
and key from F1 to F2 as described in Section 3. The keyadd128
is a 128-bit XOR which calculates the additional AddRoundKey of
the first round of the AES-128 encryption algorithm.
Reg128 (128-bit register) ensures that both data and key arrive

to the block outputs during the same clock cycle. Control0 in-
cludes 1-bit registers and therefore done follows load after a
delay of three clock cycles. Each block in round0, excluding
control0, requires one clock cycle, and round0 is executed in
three clock cycles.

4.3 Round1 9

1
load

1
done

128
dataout

8

8

8

8

32 32

4x

128

128

round1_9

keyout8

datain

clk

keyin

rcon

column
mix− keyadd

8

8

8

8

sbox

sbox

sbox

sbox

32

128
subkey

control1_10

128

reg128

32

Figure 4: The inner structure of blocks 1–9.

Blocks 1–9 in Figure 1 are identical and the block diagram is
presented in Figure 4. At the beginning of round1 9 data is reor-
ganized for the ShiftRows transformation. Each column of the data
block is handled separately.

First, the SubBytes transformation is performed for every byte of
the column in the sbox blocks. Two clock cycles are required to
perform the transformation. During the first clock cycles the terms
(8b2 +bc+ c2)−1 and (c+b) in Equation (12) are calculated. The
rest of Equation (12) with the affine transformation of SubBytes is
calculated during the second clock cycle.

The MixColumns transformation for one column is performed in
the mixcolumn block as presented in section 3.2. In the keyadd
block one column of the data block is added with the corresponding
column of the RoundKey with a 32-bit XOR operation.

The subkey block calculates new RoundKey based on the pre-
vious RoundKey (keyin). Details of the subkey operation are
described in Section 4.5.

4.4 Round10

1
done

1
load

128
edata

128
datain

clk

keyin
128

88
sbox

sbox

16x

88

128

128

subkey

reg128

control1_10

{8f}
8

round10

keyadd10
(keyadd &

phi_inv)

Figure 5: The inner structure of block 10.

The last block called round10 differs slightly from round1 9.
This can be seen in Figure 5. No MixColumns transformation is
performed in the last round of the AES-128 encryption algorithm.
In addition to the AddRoundKey operation the inverse transforma-
tion Φ−1 is also calculated in the keyadd10 block.

The ShiftRows transformation is performed in the same way as
in round1 9. Reg128 must be inserted because the calculation
of a new RoundKey in subkey requires three clock cycles (see
Section 4.5) and it takes only two clock cycles to perform the Sub-
Bytes transformation in sboxes.

4.5 Subkey

sbox

sbox

sbox

sbox

rcon

keyin(127−96)

keyin(95−64)

keyin(63−32)

keyin(31−0)

keyout(127−96)

keyout(95−64)

keyout(63−32)

keyout(31−0)

MSB

LSB

31−24

23−16

15−8

7−0

reg

reg

reg

reg

Figure 6: The calculation of a new RoundKey.

The subkey block performs Key Expansion of the AES-128 al-
gorithm, which means that a new RoundKey is calculated from the
RoundKey of the previous round. Details of the subkey calcula-
tion are presented in Figure 6.

The SubWord()-function of the Key Expansion is performed
by four sboxes. They are similar to the sboxes described earlier,
and thus two clock cycles are required to complete SubWord().
The rest of the subkey block is calculated in one clock cycle.
In total, the calculation of a new RoundKey requires three clock
cycles.

The RotWord()-function in Key Expansion is performed by
reorganizing the bytes after SubWord(). Only the eight most
significant bits of the round constant rcon[i] are passed to the
subkey block because the rest of the bits are always zero. It also
suffices to perform the XOR operation only with bits 16–23 be-
cause a⊕0 = a.

4.6 Synthesis and Place&Route
The implementation of SIG-AES-E was performed using VHDL

as the design language and Aldec’s Active-HDL as the main de-
sign tool. Synplicity’s Synplify Pro 7.1 was used as the synthesis
tool and Xilinx’ ISE 4.1 was used as the place&route tool. The
flow chart of the design process is presented in Figure 7. As men-
tioned in Section 4.1, Virtex-E XCV1000E-8 with 12288 slices and
Virtex-II XC2V2000-5 with 10752 slices were chosen as the target
devices.

As mentioned, synthesis was performed with Synplify Pro. Al-
though the multiplicative inverses in GF(24) were implemented as
a 16x4 table (see Section 3.1), Synplify Pro was able to deduce
entirely combinatorial functions for the multiplicative inverses, so
that BlockRAMs were not needed. This is a substantial advantage,
since the designer is not bounded by the amount of internal memory
available in the target device.

The place&route was performed with Xilinx’ ISE 4.1. The max-
imum clock frequency was 139.1 MHz for Virtex-II and the im-

Aldec ActiveHDL

VHDL SIMULATION

SYNPLIFY

PRO 7.1

ISE 4.1

Figure 7: The flow chart of the design process.

plementation required 10750 slices, which is 99% of the device’s
resources. The maximum clock frequency for Virtex-E was 129.2
MHz and the number of used slices was 11719 (95%). The through-
put of a fully pipelined design can be calculated using Equation (1).
Thus, the throughputs for the implementations are 17.80 Gbits/s for
Virtex-II and 16.54 Gbits/s for Virtex-E. The main results of the im-
plementation are presented in Table 2.

Virtex-II Virtex-E
XC2V2000-5 XCV1000E-8

Throughput (Gbps) 17.8 16.5
Clock frequaency (MHz) 139.1 129.2
Clock cycle (ns) 7.19 7.74
Latency (ns) 318 337
Slices 10750 11719

Table 2: Summary of the implementation of SIG-AES-E.

It can be noticed from the values in Table 2 that the mapping
Φ : F1 7→ F2 has produced substantial benefits. Had an otherwise
identical implementation with the SubBytes implemented in Block-
RAMs been designed, the smallest available target device would
have been a Virtex-E XCV1600E (See also Section 4.1), which is
both bigger and more expensive than an XCV1000E.

As mentioned earlier, also an implementations called SIG-AES-
D (supports only decryption) and SIG-AES-ED (supports both en-
cryption and decryption) were designed. Same transformations
Φ : F1 7→ F2 and Φ−1 : F2 7→ F1 were used also in the designs of
SIG-AES-D and SIG-AES-ED. The matrices used in the decryp-
tion process were derived in the same way as the matrices used in
SIG-AES-E.

SIG-AES-D fits into Xilinx Virtex-E XCV1000E and Virtex-
II XC2V2000 devices. For Virtex-E maximum clock frequency
is 124.8 MHz and for Virtex-II it is 132.4 MHz. The through-
puts for SIG-AES-D implementations are 16.0 Gbits/s for Virtex-E
and 16.9 Gbits/s for Virtex-II. The area requirements of SIG-AES-
ED were 55% larger compared to SIG-AES-E. Thus, the smallest
target device in Virtex-E family SIG-AES-ED fits in is Virtex-E
XCV2000E.

5. COMPARISON
When comparing SIG-AES-E to other FPGA-based AES-128

encryption implementations, both academic and commercial de-
signs were included. Helion Technology [12] and Amphion [2]

Design Device Throughput BlockRAMs Slices B-RAMs/ Slices/
Gbps Gbps

SIG-AES-E Virtex-E XCV1000E-8 16.54 Gbps 0 11719 0 708
Weaver’s Rijndael Virtex-E XCV600E-8 1.75 Gbps 10 770 5.71 440
GMU, Pipelined Virtex-E XCV1000E-8 16.00 Gbps 80 9199 5.00 575
Amphion, High Speed Virtex-E XCV50E-8* 1.06 Gbps 10 573 9.43 541
Amphion, Ultra High Speed Virtex-E XCV1600E-8* 9.88 Gbps 100 2397 10.12 243
Helion, Fast Virtex-E XCV400E-8* 1.19 Gbps 10 450 8.40 378
Helion, Pipelined Virtex-E XCV????E-8 >10 Gbps ? ? ? ?

SIG-AES-E Virtex-II XC2V2000-5 17.80 Gbps 0 10750 0 605
Amphion, High Speed Virtex-II XC2V250-5* 1.32 Gbps 10 573 7.58 434
Amphion, Ultra High Speed Virtex-II XC2V4000-5* 10.88 Gbps 100 2181 9.19 200
Helion, Fast Virtex-II XC2V1000-5* 1.70 Gbps 10 450 5.88 265
Helion, Pipelined Virtex-II XC2V????-5 >16 Gbps ? ? ? ?

Table 3: Throughput comparison of various FPGA-based AES-128 encryption implementations. * the size of the device is an estimate
because Helion Technology and Amphion do not provide precise values.

SIG-AES-E Weaver’s GMU Amphion Amphion Helion Helion
Rijndael Pipelined High Speed Ultra High Speed Fast Pipelined

Key length
128

� � � � � � �

192
� � �

256
� � �

Modes
ECB

� � � � � � �

OFB
� �

CBC
�

CFB
�

Encrypt/Decrypt
in the same design (

�
)

�
(

�
) (

�
)

Includes
Key Expansion

� � � � � �

I/O bits
32

�

128
� � � � � �

Table 4: Feature comparison of various FPGA-based AES(-128) implementations. (
�

) there is also a version available including both
encryption and decryption

sell commercial AES-128 implementations on Xilinx Virtex-E and
Virtex-II devices. Both have several different cores with various
features and speed grades. In this comparison only the two fastest
cores from Helion and Amphion are concerned because it is not
reasonable to compare cores of which the other is designed fast
and the other compact-sized.

Nicholas Weaver’s Rijndael Core [19] and George Mason Uni-
versity’s Fully Pipelined AES implementation [10] are the aca-
demic implementations included in this comparison. It should be
noticed, that the comparison list is not an exhaustive list of pub-
lished FPGA-based AES-128 encryption implementations. For ex-
ample, the implementation described in [14] has a throughput of
6.96 Gbps on XCV812E and the implementation described in [6]
has a throughput of 1.94 Gbps on an XCV1000. However, accord-
ing to the authors’ knowledge at the time of writing this paper, no
other published FPGA-based implementation of AES-128 encryp-
tion exceeded the throughput of SIG-AES-E.

The fastest software implementation available at the time of writ-

ing this paper is probably Helger Lipmaa’s assembly language im-
plementation [13]. The throughput of the Lipmaa’s implementation
is about 1.65 Gbps on a Pentium IV processor running at 3.06 GHz.

5.1 Throughput Comparison
Information on throughputs and area requirements of FPGA-

based AES-128 encryption implementations under comparison is
presented in Table 3. The values B-RAMs/Gbps and Slices/Gbps in
Table 3 illustrate the relationship between throughput and area re-
quirements. The comparison of the area requirements of SIG-AES-
E versus the other implementations is not straightforward. This is
because the critical value determining the smallest device the im-
plementation fits in is typically the number of BlockRAMs for the
other FPGA-based AES-128 encryption implementation, whereas
it is the number of slices for SIG-AES-E (See also Section 4.1). For
example, it was estimated based on available datasheets, that Am-
phion Ultra High Speed requires a Virtex-E XCV1600E devices as
it needs as many as 100 BlockRAMs. SIG-AES-E fits into a smaller

XCV1000E device although the value slices/Gbps is larger.
SIG-AES-E is the fastest FPGA-based AES-128 encryption im-

plementation in the comparison and its area requirements are mod-
erate. Amphion’s fastest core, Amhion Ultra High Speed, is slower
and requires a bigger target device. Helion Technology advertises
that Helion Pipelined has over 16 Gbits/s throughput for Virtex-
II devices, but a more detailed comparison cannot be done be-
cause Helion doesn’t provide detailed information about their core.
George Mason University’s pipelined implementation is fast and
fits in a relatively small target device. However, it requires an ex-
ternal Key Expansion unit, which means that the area requirements
are not comparable.

The other implementations (Weaver’s Rijndael, Amphion High
Speed and Helion Fast) are significantly slower because of the lack
of pipelining, but they also fit into a smaller target device.

5.2 Feature Comparison
Information on features of the FPGA-based AES implementa-

tions is collected in Table 4, and it can be noticed that there is a
lot of variation between different implementations. SIG-AES-E
supports only 128-bit key length, but at least at the present time,
AES-128 is more popular than AES-192 or AES-256. Amphion’s
High Speed and Ultra High Speed cores also support only 128-bit
key, but Amphion has cores (Amphion Standard) supporting also
192 and 256-bit key lengths.

George Mason University’s implementation includes both en-
cryption and decryption modes in the same device, and also Helion
Technology has versions with the same feature. In this compari-
son the version of Helion Technology’s AES cores supporting only
encryption is considered. As mentioned at the end of Section 4.6,
also SIG-AES-ED (both encryption and decryption supported in
the same device), was designed, but the area requirements were
55% larger than in SIG-AES-E.

Every implementation naturally supports the ECB (Electronic
Codebook) mode of operation [16]. Certain implementations sup-
port also other modes of operation, as can be seen in Table 4. Am-
phion High Speed has the most versatile mode support, as it sup-
ports ECB, OFB (Output-Feedback), CBC (Cipher Block Chain-
ing) and CFB (Cipher-Feedback) modes.

CBC and CFB require previous cipher data to calculate the next
cipher data, which makes it impossible to implement these modes
of operation in a fully pipelined fashion. On the other hand, the
OFB mode can be implemented in a fully pipelined fashion, and
it is supported by Amphion Ultra High Speed, a fully pipelined
implementation. If other modes than ECB and OFB are required, a
slower alternative must be chosen.

Regarding key expansion, it has to be noted that GMU’s imple-
mentation requires an external Key Expansion which can be re-
garded as a disadvantage. Amphion High Speed uses 32-bit inputs
and outputs instead of 128-bit inputs and outputs used by other im-
plementations in this comparison. The benefit of a smaller number
of I/O-lines is obvious, since also smaller target devices with a lim-
ited number of input/output-pins can be used. As a disadvantage,
encryption slows down significantly.

5.3 Summary of the Comparison
At the moment, SIG-AES-E appears to be the fastest available

FPGA-based implementation, when very high-speed AES-128 en-
cryption is needed. SIG-AES-E also fits into the smallest target
device as compared to other fully pipelined designs (GMU also fits
into a Virtex-E XCV1000E, but an external Key Expansion unit is
also required).

If versatile key length support is needed, Helion Fast and Pipe-

lined implementations are good choices. The comparison of the
Helion Pipelined core was difficult, because Helion did not provide
any detailed information about this core. As a general note, He-
lion’s cores seem to provide fast encryption with versatile features.

Amphion’s cores support various modes of operation, but the
fastest two of them support only 128-bit key length. They are also
slower than SIG-AES-E and Helion’s cores. On the other hand,
Amphion High Speed provides moderate throughput mixed with
reasonable area requirements and a versatile mode support.

Nicholas Weaver’s Rijndael Core is faster than Amphion High
Speed and Helion Fast. Weaver’s Rijndael Core also fits into a
Virtex-E XCV600E device, which makes it a good alternative for
the commercial cores.

GMU’s implementation supports all key lengths but requires a
128-bit RoundKey from an external Key Expansion unit. In other
words, supporting different key lengths is partially delegated to an
external device.

6. CONCLUSIONS AND FUTURE WORK
A memoryless implementation called SIG-AES-E of the AES-

128 encryption algorithm was designed for Xilinx’ Virtex-E and
Virtex-II devices. The implementation requires no embedded mem-
ory, which is typically a limiting factor in fitting fully pipelined
secret-key cryptographic algorithms, because the S-boxes have tra-
ditionally been implemented as lookup tables within the program-
mable device.

The SIG-AES-E is a fully combinatorial implementation, be-
cause the computation of the multiplicative inverse in F1 is trans-
formed into F2. This divides the 8-bit argument into 4-bit MSB and
LSB parts, which enables the computation of the multiplicative in-
verse as described in Equation (12).

The SIG-AES-E has a throughput of 17.80 Gbps on a Virtex-II
XC2V2000-5 with a clock frequency of 139.1 MHz and requires
10750 slices. On an XCV1000E-8, the corresponding numbers are
16.54 Gbps throughput with a clock frequency of 129.2 MHz and
11719 required slices. To the authors’ knowledge, SIG-AES-E is
the fastest published FPGA-based implementation of the AES-128
encryption algorithm.

Future work includes searching for an optimum transformation
for both encryption and decryption. The area requirements might
be slightly reduced by finding a transformation Φ′ that minimizes
the number of ones in the transformation matrices. Every one in
a matrix requires one XOR-operation and therefore the number of
ones should be kept as small as possible.

Additional future work involves research into the applicability
of partial runtime reconfiguration with regard to block sharing be-
tween encryption and decryption modes. Also support for AES-192
and AES-256 is being considered.

7. ACKNOWLEDGEMENTS
The authors would like to express their gratitude to Mr. Joonas

Pihlaja of University of Helsinki for his helpful comments on calcu-
lating multiplicative inverses in different representations of GF(28)
and Mr. Jan Eriksson of the Signal Processing Laboratory at the
Helsinki University of Technology for thoroughly reviewing the
mathematical expressions and providing valuable comments on the
theoretical background of Galois fields.

This research was performed within the GO project (see website:
http://go.cs.hut.fi), a three-year multilaboratory project
at the Helsinki University of Technology, financed by the National
Technology Agency of Finland and several Finnish telecommuni-
cations companies.

8. REFERENCES
[1] Altera. APEX II Programmable Logic Device Family Data

Sheet.
www.altera.com/literature/ds/ds ap2.pdf.

[2] Amphion. www.amphion.com.
[3] P. Chodowiec, P. Khuon, and K. Gaj. Fast Implementations

of Secret-Key Block Ciphers Using Mixed Inner- and
Outer-Round Pipelining. Proceedings of the ACM/SIGDA
Ninth International Symposium on Field Programmable Gate
Arrays, Monterey, California, USA, pages 94–102, February
11-13 2001.

[4] J. Daemen and V. Rijmen. The Design of Rijndael.
Springer-Verlag Berlin Heidelberg, 2002.

[5] A. Dandalis and V. K. Prasama. An Adaptive Cryptographic
Engine for IPSec Architectures. in Proceedings of the 2000
IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM 2000), Napa Valley,
California, USA, pages 132–131, 2000.

[6] A. Elbirt, W. Yip, B. Chetwynd, and C. Paar. An
FPGA-based performance evaluation of the AES block
cipher candidate algorithm finalists. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 9:545–557,
August 2001.

[7] FIPS. Advanced Encryption Standard (AES). FIPS PUB
197, November 26 2001.
csrc.nist.gov/publications/fips/ ...
fips197/fips-197.pdf.

[8] J. B. Fraleigh. A First Course in Abstract Algebra.
Addison-Wesley Publishing Company, fourth edition, 1989.

[9] J. B. Fraleigh and R. A. Beauregard. Linear Algebra.
Addison-Wesley Publishing Company, second edition, 1990.

[10] George Mason University. Hardware IP Cores of Advanced
Encryption Standard AES-Rijndael.
ece.gmu.edu/crypto/rijndael.htm.

[11] A. Hämäläinen, M. Tommiska, and J. Skyttä. 6.78 Gigabits
per Second Implementation of the IDEA Cryptographic
Algorithm. in Proceddings of the 12th Conference on
Field-Programmable Logic and Applications, FPL 2002, La
Grande Motte, France, pages 760–769, September 2002.
Manfred Glesner, Peter Zipf and Michel Renovell (eds.).

[12] Helion Technology Limited. www.heliontech.com.
[13] H. Lipmaa. AES implementation speed comparison.

www.tcs.hut.fi/∼helger/aes/rijndael.html.
[14] M. McLoone and J. V. McCanny. Single-Chip FPGA

Implementation of the Advanced Encryption Standard
Algorithm. in Proceedings of the 11th Conference on
Field-Programmable Logic and Applications, FPL 2001,
Belfast, Northern Ireland, UK, pages 152–161, August 2001.
Gordon Brebner and Roger Woods (eds.).

[15] V. Rijmen. Efficient Implementation of Rijndael S-box.
www.esat.kuleuven.ac.be/∼rijmen/ ...
rijndael/sbox.pdf.

[16] B. Schneier. Applied Cryptography. John Wiley & Sons,
Inc., second edition, 1996.

[17] Virtex-E. Xilinx’ Virtex-E Datasheet.
www.xilinx.com/partinfo/ds022.pdf.

[18] Virtex-II. Xilinx’ Virtex-II Datasheet.
www.xilinx.com/partinfo/ds031.pdf.

[19] N. Weaver. Rijndael core.
www.cs.berkeley.edu/∼nweaver/rijndael.

	Main Page
	FPGA03
	Front Matter
	Table of Contents
	Author Index

