
Automating the Design of an
Asynchronous DLX Microprocessor

Manish Amde
Indian Institute of Technology

Bombay, India
manish@ee.iitb.ac.in

Ivan Blunno
Politecnico di Torino

Torino, Italy
blunno@polito.it

Christos P. Sotiriou
FORTH

Heraklion, Greece
sotiriou@ics.forth.gr

ABSTRACT
In this paper the automated design of an asynchronous DLX micro-
processor is presented. The microprocessor has been designed be-
ginning with a standard RTL-like Verilog specification and the Pip-
efitter design flow has been used to automatically generate both the
specification for the direct implementation of the Control Unit and
a synthesisable Verilog specification of the Data Path. The architec-
ture of the DLX is locally synchronous and globally asynchronous
and the delay elements for the generation of the local clock signal
are automatically produced by Pipefitter as well.

The following steps of the design flows (i.e., logic synthesis,
technology mapping, placement and routing) have been completed
using standard tools leading to the final layout of the circuit.

The final microprocessor implements all the functionality of a
standard DLX (with the exception of the floating point unit) and
supports its whole set of instructions.

Some considerations on the area occupation of the microcon-
troller will be presented in the last section of this paper.

Categories and Subject Descriptors
J.6 [Computer-Aided Engineering]: Computer-aided design (CAD)

General Terms
Design

Keywords
Asynchronous, DLX, design flow

1. INTRODUCTION
The technological evolution of microelectronics in the last dec-

ade has been the key enabler for the transition from System-On-
a-Board (SOB) design to System-On-a-Chip (SOC) design. SOCs
seem to be currently the technology better suited to satisfy the de-
mands for low-power, high-performance and low-cost as imposed
by the market. Therefore, components which used to be packaged
and sold as a final product in order to be placed on a board, such

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003, June 2–6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006 ...$5.00.

as microcontrollers, DSPs and FPGAs, are now becoming the basic
components of much more complicated systems and can be fitted
on the same die. This new trend has posed the basis for the fast
spread of reusable Intellectual Property (IP) cores which offer the
big advantage of speeding up the design flow and therefore reduc-
ing time-to-market and decreasing costs [6].

However, integrating several cores inside the same system is in
general a hard problem to solve, due to the presence of many clock
domains. Each synchronous core is generally designed according
to a different timing specifications, i.e. clock period and minimum
and maximum clock skew. Thus, due to these timing assumptions
communication between cores becomes a problem. In addition, the
increasing delay of interconnect in current process technologies is
becoming comparable to the transistors switching speeds and keep-
ing the clock skew low over the ever-increasing increasing chip area
is becoming harder and harder.

In contemporary SOCs, synchronous systems also present the
following disadvantages:

• high power-consumption as the entire system, including the
clock tree, consumes power even when some clocked parts
are not involved in any computation;

• high Electro-Magnetic Interference (EMI), since the simul-
taneous switching of logic gates results in narrow current
pulses and voltage glitches on both the power supply and
ground pins [5]. These cause high-noise peaks at the high
end of the frequency spectrum. The use of high-performance,
small dimension processes for economic reasons, makes this
problem relevant even for low-frequency clock circuits.

Asynchronous circuits, on the other hand, seem to be better suited
for IP design and integration in SOC environments because of their
well known characteristics. The replacement of the global clock
signal by a local communication and synchronization protocol pres-
ents a number of advantages:

• only circuitry actually involved in computation consumes pow-
er, while other parts of the chip remain in a “stand-by” state;

• self-timed devices switch in a spread timing interval, com-
pared to their synchronous counterparts, thus presenting small
amplitude and wide current peaks which produce significanlty
less high-frequency EMI components;

• asynchronous circuits easily and naturally adapt to the speed
of the environment in which they operate;

• an asynchronous circuits timing constraints do impact on its
performance and on the performance of a system, but do not

502

30.2

propagate into global timing constraints. Thus timing con-
straints are much easier to satisfy and the system more scal-
able.

However, the advantages reported above do not seem to be suffi-
cient to justify the considerable effort required to re-train a designer
to the use of new methodologies, tools and languages often based
on low levels of abstraction, unless this is really essential as in the
case of a state-of-the-art microprocessor.

The use of an asynchronous design flow based on a standard
HDL, tools and cells seems to be the only way to reduce the in-
ertia of the industrial environment to asynchronous design. Design
flows like Tangram developed by Philips Research [2, 11], Balsa
developed at the University of Manchester [1] and the one used at
Theseus Logic [13] have proved to be effective in designing aca-
demic and industrial asynchronous circuits [8, 16, 14]. Neverthe-
less, the proprietary or non-standard nature of these design flows
has been a major obstacle to their widespread adoption.

The design flow we based our design on is the Pipefitter tool [4]
developed at the Politecnico di Torino.

The design of the asynchronous DLX [9] microprocessor that we
present in this paper has the twofold goal to show that:

• the design of asynchronous circuits can be much easier when
supported by a standard language based design flow,

• asynchronous circuits can provide a valuable contribution in
the field of reusable cores.

This paper is organized as follows. Section 2 gives a quick
overview of the Verilog subset supported by Pipefitter. In sec-
tions 3 and 4 the global architecture and the specification of the
asynchronous DLX will be presented and some key point of its im-
plementation will be discussed. Section 5 describes the synthesis
process. In section 6 the performance of our microprocessor will
be examined and a comparison with its synchronous counterpart
will be carried out. Directions and goals for the future will be also
pointed out.

2. THE VERILOG SPECIFICATION
The subset of the Verilog language supported by Pipefitter is de-

scribed in details in [4]. However, a brief description of the basic
statements and structures supported will help to better understand
the specification fragments in the following sections.

In each Verilog file only one module can be specified. Each
module can be considered divided into three main sections: the
prologue, the initial block and the always block.

In the prologue the I/O ports of the module are listed. For each
port, the nature (input or output) and the size must be specified.
In this section is also possible to specify internal registers (reg).

The initial block is used to specify a set of operations that
will be executed only once in the beginning. Usually this section is
used for specifying the reset sequence. This block is not mandatory
and can be missing in a file.

The always block is the main loop that describes the cyclic be-
havior of the module and it must be present in each specification.

Blocks can be either sequential (included between begin-end

statements) or concurrent (included between fork-join statements)
and can recursively contain sequential and concurrent blocks. So it
is perfectly legal to specify a sequence of blocks some of which are
concurrent blocks containing sequential and concurrent blocks.

Inside sequential and concurrent blocks it is possible to specify
assignments using the syntax target = expression. The target
of an assignment must be either an internal register or an output.

req_input req_output

data_input data_output

ack_outputack_input

Asynchronous

Module

Figure 1: Handshake protocol

The expression can be an input, an internal register or an arith-
metic/logic expression.

There are also some control-flow statements. The wait state-
ment allows to stop the execution of the program until a specified
signal doesn’t switch to a given value. The if-else and case

structures allow the user to specify choices.
Combining assignments and wait statements it is possible to

specify handshakes as summarized by the following example:

wait(request_in);

// Perform some operation

acknowledge_out = 1;

wait(!request_in);

acknowledge_out = 0;

3. INTRODUCING THE ADLX
The basic model of the microprocessor we have implemented is

similar to the one presented in [9]. This microprocessor is a 5-
stage pipelined processor called DLX. The DLX is a synchronous
processor and each stage of the pipeline completes it’s computation
in one clock period. We have restyled the DLX in such a way that
the basic data transfer between different stages remain the same but
they take place by means of handshake signals between the stages
rather than on a global clock active edge.

Our restyled version of the DLX has been called Asynchronous-
DLX (ADLX). The data transfer in ADLX is synchronized by a
4-phase handshake protocol.

The clock cycle of the DLX has to to be greater than the slowest
stage in the pipeline, hence the performance of the DLX are dic-
tated by the worst-case delay of the whole architecture. As a conse-
quence both latency and throughput can be strongly penalized. On
the other hand, in the ADLX the data transfer between two stages
is not dependent on a clock edge and can begin as soon as the pre-
vious 4-phase handshake for the given data has taken place. Such
an architecture also allows for skipping stages when no computa-
tion has to take place allowing for better performances. Also some
instructions could be executed faster than others due to different
memory and ALU requirements and therefore the time for execu-
tion of different instructions will automatically adapt to the specific
case. The ADLX promises to give better performances in terms of
speed as it tends to give an average-case performance rather than a
worst-case.

The ADLX is also free from the problem of clock distribution
to the entire circuit like the DLX but has the extra area overhead
of control circuitry to implement the 4-phase handshake protocols
and the delay elements.

The basic 4-phase protocol for implementing the handshake is
based on asynchronous channels as shown in figure 1. Each data
(or group of data) must be accompanied by two wires: one for the
request signal and the other for the acknowledge. The Verilog spec-
ification for the data transfer shown in figure 1 is as follows.

wait(req_input) ;

503

data_output = data_input ;

fork

begin

ack_input = 1 ;

wait(!req_input) ;

ack_input = 0 ;

end

begin

req_output = 1 ;

wait(ack_output) ;

req_output = 0 ;

wait(!ack_output) ;

end

join

The concurrency of the input and output handshakes and there
presence in only separate parallel branches makes the input and out-
put stages semi-decoupled [7] from each other and frees the input
or output stage as soon as they have terminated their handshakes.

4. THE ADLX ARCHITECTURE
The Data Path of the ADLX is similar to that of the DLX as

shown in figure 2 but is based on channel communications rather
than data communications, as described in section 3.

The 5 stages of the pipeline are Instruction Fetch (IF), Instruc-
tion Decode (ID), Execute (EX), Memory Access (MEM), Write-
Back (WB). Despite the similarity between the global architecture
of synchronous and asynchronous implementations of the DLX,
problems like control and data hazards had to be handled with a
particular care as described in sections 4.1 and 4.2.

Only the Core of the DLX was designed meanwhile all the mem-
ory structures (i.e., instruction memory, register file and data mem-
ory) were modeled as Verilog behavioral unit for testing and debug-
ging purposes. This opportunity showed another major advantage
of using a standard language based methodology versus a special
purpose language based methodology. In the former case it is in-
deed possible to simulate together modules which have been spec-
ified at different levels of abstraction (e.g., gate level for the Core
and behavioral level for the memories modules).

The following example of fragment of Verilog behavioral speci-
fication (coming from the IF stage) and the corresponding synthe-
sisable specification automatically generated by Pipefitter can be
useful in understanding how Pipefitter works.

The fragment

outdata_Add = outdata_MUX_1 + 4;

specifies an add operation between the register outdata MUX 1

and the constant 4. The result must then be loaded into the regis-
ter outdata Add. For such a specification Pipefitter will generate
a fragment of Control Unit, and some modules in the Data Path.
Apart from the trivial constant element, two modules will be spec-
ified for the Data Path: an Operative Unit for the add operation
and a register where the result must be stored. The synthesisable
specification is listed below for both the modules.

module _IF_OU_0(ck, input_1_0, input_2_0, output_0);

input ck;

input [31:0] input_1_0;

input [31:0] input_2_0;

output [31:0] output_0;

reg [31:0] output_0;

always @(posedge ck)

output_0 = input_1_0 + input_2_0;

endmodule

module _IF_reg_outdata_Add(ck, en, input_0,

output_0);

input ck;

input en;

input [31:0] input_0;

output [31:0] output_0;

reg [31:0] output_0;

always @(posedge ck) if(en) output_0 = input_0;

endmodule

These two modules will also have to be instantiated inside the
global Data Path module as follows:

...

_IF_OU_0 _INST_6 (_OU_0_ck_, _reg_outdata_MUX_1,

{29’b00000000000000000000000000000,

_constant_4}, _OU_0, _OU_0_out_);

...

_IF_reg_outdata_Add _INST_8 (_reg_outdata_Add_ck_,

_reg_outdata_Add_EN_, _OU_0, _reg_outdata_Add);

...

The signals reg outdata Add ck , reg outdata Add EN and
OU 0 ck which come from the Control Unit are used to synchro-

nize this fragment of Data Path with the rest of the circuit. It is also
interesting to see how, according to the behavioral specification, the
output of the Operative Unit feeds the input of the register.

The delay elements are also generated for both the Operative
Unit and the register.

4.1 Prevention of Data Hazards
Data hazards occur when the pipeline changes the order of read/write

accesses to operands so that the value read from a register can be
different from the one we expected to read in an unpipelined ma-
chine. This happens when an instruction depends on the results of
a previous instruction still in the pipeline. The data hazards which
are possible in the ADLX are of RAW(read after write) type. To
prevent the reading of wrong value from the General Purpose Reg-
isters a mechanism of Register Locking has been implemented.

There are 32 32-bit General Purpose Registers (GPR) in the ID
stage of the ADLX. We also have a 32-bit lock register where each
bit corresponds to a GPR. The lock bit is set to one if the corre-
sponding GPR is going to be written back in the the final WB stage.
After the write back to the GPR takes place, the corresponding bit
is again assigned 0.

If any instruction tries to read a GPR while its corresponding
lock bit is 1, then the instruction is stalled till the write-back to that
GPR takes place and lock bit value changes to 0.

When GPRi is going to be written back we have

lock[i] = 1;

On Write Back, the following takes place

GPR[i] = write-back_data ;

lock[i] = 0 ;

It is also possible to use instruction scheduling to reduce the
number of data hazards in the pipeline. With this technique, the
compiler can be used to reschedule the code by rearranging the
code sequence in order to avoid hazards.

504

Instruction
Memory

Address

Add

PC

Instruction
[15−0] Sign

extended

Add
result

ALU
control

Instruction
[15−11]

Instruction
[20−16]

Shift
left 2

Control

Write
Data

Data
Memory

Read
Data

Read
Register 1

Read
Register 2

Write
Register

Write
Data

Read
Data 1

Read
Data 2

GPR

����

��

��

��

	

��

�

��

������ ��

��

��

��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
�

In
st

ru
ct

io
n

4

WB

M

EX

WB

M

WB

ALUsrc

RegDest

ALUOp

zero

ALU

result Address

PCSrc

M
em

W
ri

te

M
em

R
ea

d MemToReg

IF ID EX MEM WB

Branch

RegWrite

Jump Ju
m

pS
el

Figure 2: DLX Data Path

4.2 Prevention of Control Hazard
When a branch is executed, it may or may not change the PC

(program counter) to something other than its current value plus 4.
If a branch changes the PC to its target address, it is a taken branch;
if it falls through, it is not taken.

If the instruction is a taken branch, then the PC is normally not
changed until the end of MEM stage, after the completion of the
address calculation and comparison(see Fig. 2). Therefore the next
2 instructions may or may not be the right ones to be executed.

The scheme which we use to get around this problem is called
delayed branch. In this scheme, the next 2 sequential successors
of the branch instruction are always executed. It is the job of the
compiler to make the 2 successor instructions valid and useful or, if
not possible, to schedule a NOP instruction instead. This scheme is
used to reduce complexity of the ID stage of the pipeline and allows
normal flow of instructions in the pipeline rather than stalling for a
“stage cycle” in the code.

After this the third sequential instruction or the instruction at
the branch address is executed depending on whether the branch is
taken or not. The behavior of a delayed branch is the same whether
or not the branch instruction is taken.

5. THE SYNTHESIS PROCESS
In this section the entire synthesis process will be described in

details. This process has been carried out in three main steps: high
level synthesis, logic synthesis and physical design.

5.1 High Level Synthesis
The input specification as described in section 4 has been fed

as input to Pipefitter in the form of 5 separate input files (one for
each processor pipeline stage). In order to complete the first step
of the synthesis process, Pipefitter also needs some additional in-
formations. A file containing a list of the available resources and
their characteristics (i.e., I/O size and list of operations performed)
must be provided for Pipefitter to map each arithmetic/logic oper-
ation onto a physical device. This mapping process is performed

through a genetic algorithm [3] that provides a solution optimized
based on directives imposed by the designer (e.g., minimum area
occupation, minimum latency, etc.).

Pipefitter provides as output a set of files:

• An RTL-synthesisable Verilog specification for each device
in the Data Path (e.g., registers, Operative Units, constants,
etc.).

• A Verilog netlist implementing the Data Path by the instan-
tiation and the proper interconnection of all the modules de-
scribed in the previous item.

• A complete specification for the Control Unit to be fed as in-
put to AFSMGEN [15]. This tool, integrated in the automated
design flow, provides a Relative Timed or Speed Independent
(SI) [12] implementation of the Control Unit based on David
Cells (using the approach described in [10]).

• A Verilog netlist implementing the matched delay elements
required for the generation of the local clock signal.

• A Verilog netlist implementing any additional combinational
logic required to map AFSM states into Data Path signals.

• A file reporting all the timing constraints that will have to be
satisfied during the Physical Design phase.

• A top-level netlist comprising the entire circuit, which in-
stantiates and properly interconnects the Data Path, Control
Unit and the matched delay elements.

5.2 Logic Synthesis and Physical Design
Logic Synthesis consists of technology mapping all the files gen-

erated by Pipefitter in a bottom-up fashion. We performed logic
synthesis using Synopsys DC, however any synthesis tool may be
used. The bottom-up hierarchical technology mapping is neces-
sary, in order to satisfy the asynchronous local constraints and to

505

COMB.
LOGIC REG

delay

DATA_IN

request

DATA_OUT

acknowledge

Figure 3: Bundled Data Architecture

hide feedback loops from the synthesis tool. Most of the files gen-
erated by Pipefitter are readable by Synopsys DC, except for the
control unit.

The Data Path is synthesized first. Every Data Path subcircuit
is generated by Pipefitter with a register at its output and local
clock signal. Hierarchical synthesis on the asynchronous Data Path
works by technology mapping and optimizing each local Data Path
subcircuit by using the local clock signal as a “virtual” clock, set
to the minimum clock frequency. Ultimately, every local clock sig-
nal is replaced by an asynchronous driver, based on the AFSM and
the matched delay elements. After each Data Path block has been
synthesised, any remaining non-timing critical Data Path glue logic
may be mapped.

Next, the asynchronous control is synthesised. The AFSMGEN
tool maps the AFSM specification of the control circuit into a GTECH
(Synopsys Generic TECHnology library) netlist which can be read
an mapped by Synopsys DC. If the circuit generated is not SI,
then appropriate timing constraints should be applied during syn-
thesis [15]. Even if the AFSM is SI, minimum-delay hierarchi-
cal timing constraints are applied during synthesis to optimize the
logic of every state signal to ensure fast switching between states
and good performance.

The matched delay elements are synthesized based on the min-
imum “cycle” time, i.e. critical path delay of their correspond-
ing Data Path subcircuits. Thus, their appropriate delays are only
known after each Data Path subcircuit has been synthesized. The
delay elements are synthesised based on the same gate-level Verilog
netlist, but each element is synthesized with a different synthesis
script, based on the amount of delay required. In this way, Synop-
sys DC inserts the appropriate amount of buffers/inverters to meet
the timing between input and output signal of a delay element. The
delay elements apply delay in a unidirectional manner, i.e. only
on the rising edge of the input (the request/acknowledge signal).
This is because data is matched only to one of the two edges but
not both, so using the same delay for both edges would slow down
the circuit unnecessarily. The implementation of a delay element is
shown in Figure 4.

FF delaypropagation delay

~0.17ns

Figure 4: Unidirectional Delay Element

When the Data Path, control, any extra combinational logic and
the matched delay elements are all generated, they are combined
into the entire circuit. In the case of the DLX, the five Data Path
stages were implemented separately by Pipefitter and then com-

Figure 5: DLX layout. 700µm×700µm

bined to form the entire CPU. At this stage, a design is able to enter
the physical part of the flow.

During the physical part of the flow, the hierarchy is to be pre-
served, in order to enable control of the placement and routing
(P&R) process of every sublock of the design. This is due to fact
that timing constraints are local and not global, as in a synchronous
design. Control sub-circuits (AFSMs) are SI, thus do not possess
any timing assumptions, and are always guaranteed to operate cor-
rectly. Thus, the placement and routing process of control units
does not possess timing assumptions, however a good placement
does improve performance.

The timing assumptions that must be preserved during the (P&R)
process reside into the Data Path subcircuit. These include the mag-
nitude of the matched delays, which should not become less than
the critical path of the corresponding circuit, and the bundling of
data signals, i.e. that signals of Data Path blocks arrive as a bundle.
Thus, these assumptions must be guaranteed by the P&R process.

The two timing assumptions of Data Path blocks may be satis-
fied by physical design tools. In the same way that we use syn-
chronous synthesis to synthesize the Data Path blocks and then re-
place the clock with an asynchronous control signal, in the physical
part of the flow timing-driven placement, clock-tree generation and
timing-driven routing of each Data Path element may be performed
as if the module was clocked by the asynchronous signal. Next,
when modules are interconnected, the clock signal is replaced by
an asynchronous driver signal. In-placement optimization and re-
sizing can also be used to re-calibrate the matched delay elements
according to the P&R timings.

The only disadvantage of the hierarchical flow we are using is
that due to the fact that it is bottom-up it consumes more designer
time. The P&R process of the DLX has not been completed as yet.
However, we have performed trial P&R to estimate the area of the
design and to extract parasitics. Figure 5 shows a trial standard-cell
layout of the DLX processor.

6. CONCLUSIONS AND FUTURE WORK
In this paper we presented the design of a 32 bit pipelined asyn-

chronous DLX microprocessor based on a fully automated design
flow for asynchronous circuits.

The total area occupation for the ADLX was about 0.49mm2 and

506

the relative occupation of Control Unit, Data Path and Delay Ele-
ments is shown in table 1.

MODULE CU DP DE
IF 15% 79% 6%
ID 27% 67% 6%
EX 27% 67% 6%

MEM 26% 63% 11%
WB 32% 56% 12%

ADLX 25% 68% 7%

Table 1: Relative area occupation for the ADLX

This first version of the ADLX was intended to prove the effec-
tiveness and practical usability of Pipefitter. Particular care was not
taken to implement a high-performance microprocessor. In order
to evaluate the final implementation of the ADLX, it was compared
to an equivalent synchronous implementation. However it must be
pointed out that the two projects (synchronous and asynchronous)
were carried out separately and by different groups and even though
they were based on similar architectures, some differences in the
implementations can be responsible for a significant difference in
the comparison. Nevertheless, some interesting conclusions can be
drawn. The conditions under which the comparison was carried
out, are the following:

• Area comparison between the two implementations was made
at gate-level. Since no clock tree was generated for the syn-
chronous version, in order to keep the comparison fair, the
delay elements of the asynchronous implementation were not
taken into consideration.

• Each module of the pipeline was individually compared for
the two implementations as well as the complete DLX.

• Memory elements (instruction and data memories and reg-
ister file) were simulated at a behavioral level and therefore
did not have any impact on the overall performances.

The most significant results can be summarized as follows:

1. The introduction of synchronization logic blocks in the asyn-
chronous implementation, is responsible for an area over-
head. This overhead is more significant in strongly control-
driven stages where the data path is very small or not present
at all (e.g., MEM and WB), while it is almost negligible in
data-driven stages (e.g., EX).

2. Synchronization logic blocks are also responsible for a tim-
ing overhead and have the same impact on different stages as
described in the previous item.

3. Both area and timing overhead have a small impact on the
final ADLX. In fact, most of the area occupation in the DLX
is due to adders, ALU and registers whose area is the same
in the two implementations thanks to the bundled data ap-
proach. Similarly, the throughput is imposed by the slowest
stage in the pipeline which is, in our case, the EX. As stated
before, this stage suffered a very small timing overhead (less
than 4%) which reflects on the overall performance.

Some improvements will be carried out in future implementa-
tions that will enable the ADLX to have better performance i.e.
skipping handshakes which are not needed by certain instructions.

7. REFERENCES
[1] A. Bardsley and D. Edwards. Compiling the language Balsa

to delay-insensitive hardware. In C. D. Kloos and E. Cerny,
editors, Hardware Description Languages and their
Applications (CHDL), pages 89–91, Apr. 1997.

[2] Kees van Berkel, Joep Kessels, Marly Roncken, Ronald
Saeijs, and Frits Schalij. The VLSI-programming language
Tangram and its translation into handshake circuits. pages
384–389, 1991.

[3] I. Blunno and M. Lazarescu. Asynchronous
scheduling/binding using a genetic approach. In MIPRO
2002, May 2002.

[4] Ivan Blunno and Luciano Lavagno. Automated synthesis of
micro-pipelines from behavioral verilog hdl. In Proc.
International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 84–92. IEEE
Computer Society Press, Apr. 2000.

[5] M. Coenen. On-chip measures to achieve emc. In IEEE
International Symposium on EMC, pages 31–36, Feb. 1997.

[6] J. Dalton et al. Opencores home page, 2002. See
http://www.opencores.org.

[7] S.B. Furber and P. Day. Four-phase micropipeline latch
control circuits. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 4(2):247–253, June 1996.

[8] S.B. Furber, P. Day, J.D. Garside, N.C. Paver, et al.
AMULET1: a micropipelined ARM. In Proceedings of the
IEEE COMPCON, pages 476–485, 1994.

[9] J.L̃. Hennessy and D. Patterson. Computer Architecture: a
Quantitative Approach. Morgan Kaufmann Publisher Inc.,
1990.

[10] L. A. Hollaar. Direct implementation of asynchronous
control units. IEEE Transactions on Computers,
C-31(12):1133–1141, Dec. 1982.

[11] Joep Kessels and Ad Peeters. The Tangram framework:
Asynchronous circuits for low power. In Proc. Asia and
South Pacific Design Automation Conf., pages 255–260, Feb.
2001.

[12] L. Lavagno and A. Sangiovanni-Vincentelli. Algorithms for
synthesis and testing of asynchronous circuits. Kluwer
Academic Publishers, 1993.

[13] Michiel Ligthart, Karl Fant, Ross Smith, Alexander Taubin,
and Alex Kondratyev. Asynchronous design using
commercial HDL synthesis tools. In Proc. International
Symposium on Advanced Research in Asynchronous Circuits
and Systems, pages 114–125. IEEE Computer Society Press,
Apr. 2000.

[14] R. Smith, K. Fant, D. Parker, R. Stephani, and C. Y. Wang.
An asynchronous 2-D discrete cosine transform chip. In
Proc. International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 224–233, 1998.

[15] C.P̃. Sotiriou. Implementing asynchronous circuits using a
conventional eda tool-flow. In Proc. Design Automation
Conf., June 2002.

[16] K. van Berkel, R. Burgess, J. Kessels, A. Peeters, et al. A
fully asynchronous low-power error corrector for the DCC
player. Journal of Solid State Circuits, 29(12):1429–1439,
Dec. 1994.

507

	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index

