
Coverage-Oriented Verification of Banias 
Alon Gluska 

Intel Israel 
Science Industries Center 

Haifa 31015, ISRAEL 
alon.gluska@intel.com 

   
ABSTRACT 
The growing complexity of state-of-art microprocessors dictates 
the use of cost-effective verification methods. Functional 
coverage was widely applied in the verification of Banias, Intel’s 
new IA-32 microprocessor designed solely for the mobile 
computing market. In this paper, we describe the practical 
coverage approach as was carried out in the verification of 
Banias. According to this Coverage-Oriented verification 
approach, focus shifts gradually from basic logic cleanup using 
random testing, where verification follows a predefined test plan, 
to coverage-driven verification, where verification resources are 
steered to hit coverage holes.  This practical approach enables 
reaching higher quality for lower effort under a tightened 
schedule, and provides a clear metric to measure the progress of 
verification and the quality of the design under test. As the 
conclusions will show, the retrospective evaluation of this 
approach shed light on its significant impact beyond original 
intentions, as well as uncovering several potential areas for 
refinement that will make this approach even more effective on 
future projects. 

Categories and Subject Descriptors 
B.5.2 [Design Aids]: Verification 

General Terms 
Design, Verification. 

Keywords 
Logic Design, Logic Verification, Coverage, Functional 
Coverage. 

1. Introduction 
Logic verification is a major bottleneck for the completion of 
large hardware designs, and frequently most of design resources 
are dedicated to verification. Therefore, a methodological way to 
design the verification environment, drive its execution and 
measure its progress has an extremely high impact on the 
schedule and cost of designs. 

Functional coverage, derived from the explicit functional 
specification of the device, is considered the answer in multiple 

references. The Coverage-Driven Verification (CDV) approach 
[9] makes coverage the core engine that drives the whole 
verification flow. Coverage space is defined up front, and 
coverage is used to measure the quality of the random testing and 
steer verification resources towards covering holes until a 
satisfactory level of coverage is attained. This, in theory, enables 
reaching high quality verification in a timely manner. However, 
the use of Coverage-Driven approach is impractical for most 
designs. Among the reasons are the difficulties in the application 
of coverage in early stages due to RTL instability, pressure on 
logic cleanup, not yet acquired knowledge, and the lack of 
supportive EDA tools. 

In this paper, we present our experience with Coverage-Oriented 
Verification, a practical derivative of the Coverage-Driven 
approach. In the Coverage-Oriented approach, verification is 
driven first by the detection of as many RTL bugs as possible 
using random and direct-random tests that follow a detailed test 
plan. When this method produces a drop in bug detection, 
coverage is gradually measured and the results steer the 
verification toward the completion of the missing events. 

Coverage-Oriented verification was applied in the verification of 
Banias, a microprocessor designed exclusively for the mobile 
computers. The Banias design introduced a wide variety of 
complex logic features for which a comprehensive verification 
approach was required. We applied advanced functional coverage 
techniques throughout the entire design to ensure exercising all 
desired corner cases. This effort directly led to RTL bug 
sightings, although the number of bugs found as a result of the 
coverage analysis was below our initial expectations. Moreover, 
almost all these bugs were detected in a single module. 

The analysis of our comprehensive coverage effort yielded 
several very interesting findings. It showed that coverage had a 
significant impact beyond bug detection. For instance, it enforces 
the study of delicate mechanisms in order to improve coverage, 
which led in turn to improvements in testing and a higher 
confidence level. The analysis also led to a set of conclusions 
regarding the scope and size of the coverage space, the scheduling 
of coverage effort along the verification flow, correlation with test 
plans, and more. We will apply these conclusions in our next 
projects. 

The paper is organized as follows. As a background, we briefly 
present Banias and its verification strategy. We will also present 
Coverage-Driven verification, as a basis for the Coverage-
Oriented approach we took in Banias verification. We will present 
the results of our coverage efforts, with some analysis and 
explanations. Finally, we present our findings and conclusions for 
more effective use of coverage in verification. 
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2. Banias and its Verification 
2.1 Modular Verification 
Banias design targeted highest performance in a given power 
envelope, different form factors, and longer battery life. The chip 
holds 80M transistors and 350 functional blocks partitioned into 
five clusters. Its verification corresponded the design modularity. 
We developed a Cluster Test Environment (CTE) for each of the 
RTL clusters and two Unit-Level Test environments (ULTs) for 
specific units.  The CTEs were built using Verisity’s Specman for 
both specification and test generation. The CTEs were designed 
carefully to enable verification of most of the RTL functionality. 
Accurate Behavioral Functional Models (BFMs) of the external 
world and comprehensive checking mechanisms provided the 
verification engineers with effective platforms that serve as the 
core verification platforms throughout the project.  
The majority of Banias verification was carried out at the cluster 
level where 62% of the RTL bugs were detected. Tests developed 
in the cluster-level were mostly random and directed-random, 
with the heavy use of checkers written in Specman’s e and C. 
CTEs proved to be very convenient for test development and 
debug. They enabled parallel progress in all clusters and a 
subsequent pull-in of the verification effort. However, they did 
not serve as the sole verification platforms because some complex 
interfaces could not be modeled, and checkers proved sometimes 
missing, incomplete or inaccurate. 
Verification at the Full-Chip (FC) level consisted of the 
simulation of IA-32 legacy test suites, with additional ~15% of 
new tests developed for new features. Legacy tests were mostly 
directed, while the new tests were direct-random generated using 
an enhanced version of a proprietary IA-32 random test generator. 
FC verification was used primarily for features that were not 
modeled in the CTEs as well as a safety net for the whole design. 
This was very successful in hitting 37% of the bugs, several of 
which that were in areas missed by the cluster teams. Although 
the FC simulation environment was robust, it was relatively quite 
slow with significantly lower debug capabilities than the compact 
CTEs. 
An additional small team used Formal Verification techniques to 
prove properties in few selected areas. They detected several 
dozens of RTL bugs, 10 of which are considered ‘high quality’ 
and had a high probability of escaping to silicon. 
 

3. Use of Functional Coverage in Design 
Verification 
3.1 Functional Coverage 
In current industrial practice, verification consists of the 
generation and simulation of massive amounts of random tests. 
Advanced random generators can improve the quality of 
generated tests, but cannot detect areas in the design that are not 
tested while others are tested repeatedly. The main technique for 
checking and showing that the testing has been thorough is called 
coverage analysis [2], [12]). The idea is to create a comprehensive 
list of tasks and check that each task was covered during 
verification. Verification resources can be steered toward areas of 
low coverage, making verification efforts more effective. 

In general, coverage is divided into two distinct types: program-
based and functional. 
In program-based, coverage tasks are automatically derived from 
the HDL or RTL. For example, this method will check that each 
statement in the HDL was executed or each transition in the state-
machine was made. Program-based methods are easy to define 
and measure. Once the coverage metric is defined, coverage tasks 
are automatically derived. Many commercial program-based 
coverage tools are available in the market. 
Functional coverage, as the name implies, focuses on the 
functionality of the design and is to prove that all functions 
undergo simulation. Therefore, functional coverage is 
implementation specific and coverage spaces need to be defined 
manually. This makes the coverage subjective and difficult to 
measure. In addition, very few commercial coverage tools are 
available. IBM presented in [1] a user-defined coverage tool that 
employed a relational database for coverage definition and 
collection. Verisity recently introduced improved coverage 
definition and measurement capabilities within their Specman 
simulation platform. Intel has its own coverage tool that is 
natively linked to its proprietary design environment [4]. 
Being tightly coupled with the quality of the RTL, functional 
coverage is referred to as essential in panels and methodology 
papers (e.g., in [1], [3], [4], [7] and [9]). However, being difficult 
to specify and measure, it is not yet considered as an inseparable 
part of the verification flow. When used, coverage is usually 
carried out in late stages of the design and focuses on limited 
parts of the RTL as a means to find escapees from the core 
verification effort. Functional coverage is rarely mentioned in 
most test cases published in recent years. 

We can mention two exceptions: Functional coverage was 
intensively used for the verification of Pentium 4 in order to direct 
future testing towards the uncovered areas (see [4]). In [5], 
multiple coverage techniques were used at late stages of the 
design as a metric for the completeness of verification.  
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Figure 1: The Functional Coverage Iterative Flow 
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3.2 The Coverage-Driven Verification 
Approach 
The Coverage-Driven Verification approach incorporates 
functional coverage as the core engine that drives the verification 
flow. It is presented schematically in Figure 1. Verification starts 
with a coverage plan derived from a study of the RTL 
functionality. The simulation environment, test generator, and 
coverage tools are designed accordingly to facilitate the 
implementation of the coverage plan. Random tests are generated 
and simulated. Coverage is then used to steer the verification 
resources toward the coverage holes. Note that feedback from 
coverage analysis is used for enhancements and bug fixes to the 
simulation environment and/or the test generator, as well as 
directing updates to the coverage plan. Except for specific cases, 
they should drive the improvement of the random testing 
capabilities rather than the development of specific tests. 
The main idea behind the Coverage-Driven approach is that many 
or most of the interesting corner cases can be easily hit by random 
or direct-random testing. However, as long as we do not know for 
sure, we tend to craft tests manually and use a huge amount of 
random tests and simulation cycles that frequently contribute very 
little to the overall testing space [3]. Focusing on coverage holes 
and hard-to-reach cases reduces the total effort invested in 
verification in both headcount and computing. 
Once the desired coverage is achieved, we are ready to tape-out 
the product. The same coverage monitors and random test 
templates can be subsequently reused to quickly verify 
modifications to the RTL and in future proliferations. 

3.3 Coverage-Oriented Verification 
In many cases, the pure Coverage-Driven verification is simply 
impractical. Design instability with the focus on bug detection, 
together with not yet acquired detailed knowledge, render the 
development of coverage monitors inapplicable at the beginning 
of the verification flow. 
In Banias, we used a different approach that we called Coverage-
Oriented. Our verification started by developing random tests 
according to the test plan specifications, in order to detect as 
many bugs as quickly as possible. Considering our future 
coverage efforts, we used random and directed-random testing, 
without embellishing corner cases or careful crafting delicate test 
cases. This delivered a major clean up of the RTL for a reasonable 
effort, while enabling the progress of other activities that are 
dependent on the health of the RTL such as circuit design, timing 
and power analysis. As was also evident, the direct-random 
testing that employed abstractions and testing knowledge within 
testbenches, enabled hitting the majority of conditions defined in 
our test plans. Functional coverage started only after the RTL 
became stable, with a drop in the bug rate, and when verification 
engineers acquired a detailed knowledge of the RTL. Coverage 
became the steering vehicle for the completion of the verification 
process, giving the verification engineers and the project 
management a quality-related picture of the convergence of 
verification.  By that, the Coverage-Oriented approach is a 
practical alternative to Coverage-Driven.  
 

4. Experience and Results 
4.1 Coverage in Banias 
Most of the logic verification of Banias was carried out at the 
cluster level. Consequently, we also performed most of the 
coverage tracking and analysis at this level, with complementary 
effort at the FC level, where coverage resulted from IA-32 legacy 
and new tests. Some coverage tasks could be hit only in the FC 
environment, either because they were difficult to model in the 
CTEs or because they spanned over the cluster boundaries. For 
others, we wanted to ensure a certain level of coverage for further 
confidence beyond that which was already achieved at the cluster 
level. This was due to the inherent uncertainty in the accuracy of 
CTE behavioral stubs or the completeness of checking. 
We assigned resources to the instrumentation of coverage 
monitors when the number of RTL bugs started dropping. 
Schedule-wise, this occurred around the middle of the verification 
period, after most of the random templates had been implemented 
according to the detailed coverage plans. 
Our primary coverage tool was Proto [11], which is used widely 
in Intel for coverage instrumentation and collection. Proto enables 
the definition of complex temporal matrices of vectors. We used 
Proto to build coverage monitors and measure results for a total 
number of 1.3 million micro architectural conditions. Out of the 
total number of new direct-random tests, approximately 15% were 
developed as a result of coverage analysis. The sum effort for 
coverage definition, instrumentation, collection and analysis is 
estimated as 12% of the total staffing resources invested in the 
verification of Banias. 

4.2 Coverage Results 
We counted 19 RTL and numerous simulation environment bugs 
as a direct outcome of analysis of coverage holes. This number 
corresponds to 5.2% of the number of RTL bugs filed in the six 
months preceding tape-out. The raw number was below our 
original expectations, and furthermore, the RTL bugs were not 
distributed uniformly among the design clusters. However, our 
study suggests that these numbers are reasonable considering the 
manner in which we applied coverage. Since these bugs were 
detected in late stages of the design and in areas of high 
importance, their actual severity is significantly higher than 
almost all other bugs revealed at that period. Moreover, at least 10 
of these bugs would probably have escaped without the coverage 
feedback mechanism.  
To better understand the impact of our coverage analysis, we 
classified all 360 RTL bugs that were revealed during the last six 
months before tape-out. The results are presented in Table 1 and 
show that the weight of the coverage-related bugs for functions 
that underwent basic cleanup and were ready to coverage was 
high. 
Each of the Ci-s in the table corresponds to bugs detected in a 
specific cluster. SD stands for the Steer-Decode unit that is part of 
the C5 cluster. 
Out of the 360 RTL bugs, 44% were detected in functions that 
were not included in the coverage space. Most of these were 
features, such as Power saving, Testability and Performance 
Monitors where verification was pushed back to later stages of the 
design. 15% of the bugs were detected before the corresponding 
function was cleaned enough to enable coverage. 10% of the bugs 
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were in functions that went through coverage, but the specific 
cases were overlooked. Another 10% were detected in the cluster 
level following enhancements to CTEs or to checkers that 
improved their testing and checking capabilities. The final 8% 
were the result of late changes and bug fixes 
The interesting and disconcerting fact is that 17 of the 19 RTL 
bugs derived directly from the analysis of coverage holes were 
found in a single unit. In all the other clusters, coverage yielded a 
single bug at most. A careful study of these bugs suggests that at 
least 10 RTL bugs in the Steer-Decode unit would have been very 
hard to detect without the feedback from coverage. Complexity 
made the controllability over the numerous internal delicate cases 
very difficult. It was coverage that reflected properties that have 
never been verified. 
 

Table 1: Classification of bugs detected in the six months 
before tape-out 

 

4.3 Coverage Tracking in Banias 
When applied over all major design functions, coverage has the 
potential to serve as an important indicator for the convergence of 
the verification process. We found the standard density indicator 
extracted from dividing the number of events hit by the total 
number of events to be insufficient. Given that a coverage space 
is derived from combinations of temporal vectors, hitting 100% is 
not the necessary target in most cases. A superior approach is to 
define coverage spaces as combinations of events, and then 
require a certain subset of events to be hit. As a result, a partial 
density such as 80% is difficult to interpret, whereas its 
distribution can deem it either satisfactory or unacceptable. 
We therefore defined a metric that takes into account the density, 
distribution and relative importance of each coverage monitor. 
The following formula was used for grading the coverage of a 
given set of coverage monitors (e.g., all monitors of a single 
functional unit): 

100

),min(

0

0 ∗=

∑

∑

=

=
N

i
i

i

ii

i

i
N

i
i

m

W

P
Pp

E
e

W
G  

Where: 
o N is the number of monitors belong to the set 
o Wi is the weight of the specific monitor 
o Ei is the target number of coverage elements in the desired 

level of distribution 
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o Pi is the target percentage of covered events 
o pi is the actual percentage of covered elements 
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Where N is the number of sets in the lower level, and Wi and Gi 
are respectively the weight and grade per set. 
The metric we defined provided a hierarchical quality-related 
indicator for the design health. Coverage was tracked on a weekly 
basis and was used in addition to traditional indicators such as the 
number and severity of RTL bugs detected.  

5. Conclusions 
After tape out, we conducted a detailed study of our coverage 
experience. The objectives of the study were to evaluate the 
impact of the coverage effort, to understand the reasons for the 
small number and non-uniform distribution of RTL bugs, and, 
consequently, to identify the necessary steps required to make 
coverage more effective. We studied the execution of coverage 
and its results along the verification flow, and dispatched a 
detailed questionnaire answered by all involved engineers. 
We identified the following reasons for the relatively low number 
of RTL bugs found by the coverage effort: 
o As also reflected in Table 1, coverage was applied in almost 

all clusters to areas that were thoroughly verified using 
random and direct-random tests. No coverage was carried 
out for features of relatively lower criticality, such as 
performance monitoring and DFT where verification was 
executed during the later stages of the project. 

o Our simulation environments were very effective in bug 
detection. In spite of being new and incomplete, we detected 
62% of the total RTL bugs in the cluster level. Excluding the 
testing space that was not supported by the CTEs, the 
percentage is significantly higher. 

o In many cases, our coverage was too detailed. This hampered 
our focus on the riskier features. In addition, we generated 

 C1 C2 C3 C4 C5* SD Tota
l 

Coverage-related 0 0 0 1 1 17 19 
Out of coverage 
space 47 17 26 32 18 20 160 
Before basic 
cleanup 2 4 5 0 19 26 56 
Holes in the 
coverage plans 5 5 11 1 10 5 37 
Enhanced 
CTE/checker 
feature 13 8 1 0 10 1 36 
Inserted bug 23 1 3 0 4 3 32 
Coverage hole not 
analyzed 0  0 0 0 3 4 7 
Other 3 1 1   8   13 

Total 93 36 47 34 74 76 360 
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coverage spaces that were too large to be adequately 
covered. 

o And finally, in many cases our test plans were not coverage 
friendly. Test conditions were described in general terms 
only, with inconsistent references to specific signals or time 
windows This allowed subjective interpretation of test plan 
content and erroneous implementation of coverage monitors. 

The Steer-Decode unit was an exception. This unit was most 
complex and introduced major new features in Banias in order to 
improve throughput and timing. As a result, the verification of the 
unit significantly lagged behind for the duration of the project. 
The time pressure dictated an initial cleanup using random and 
directed-random only, along with trimming the coverage space to 
consist of the risky features. This enabled coverage to reveal cases 
that would hardly be hit in any alternate method we applied. 

 
5.1 Conclusion #1: Impact of coverage is 
beyond the number of bugs 
The ultimate goal of verification is to reveal all functional bugs. 
Accordingly, the impact of activities is evaluated according to the 
number of RTL bugs it exposed. We believe that this should not 
be the only parameter for functional coverage. Coverage analysis 
provides the feedback for the accuracy and effectiveness of the 
random testing. It also serves as a quality-related indicator for the 
convergence of verification and thus as an important criterion for 
tape-out. 
In Banias, about half of the coverage-related bugs were 
considered very hard to find by other means. The related function 
was complex, with many low-controllability parameters. The 
constraint-solver embedded in the random test generator enabled 
hitting a significant portion of the coverage space, but only 
coverage revealed combinations that had been never generated. 
In addition, almost all engineers claim that coverage 
instrumentation, and even more coverage analysis, enforced the 
study of micro-architecture and RTL details, and consequently led 
to the development of more creative tests. Analysis of coverage 
holes revealed cases that were actually impossible, and shed light 
on factors that were originally neglected.  This served towards the 
modification of the coverage plan. 
A further outcome of the coverage effort is raising the confidence 
level of the verification engineers. As long as verification consists 
on random tests, it heavily relies on the accuracy and 
completeness of the testbenches and the quality of test generation. 
Uncertainty tends to lead to the generation of massive number of 
tests. Feedback from coverage enables trimming expensive 
simulation cycles without impacting the quality targets.   

 

5.2 Conclusion #2: Focus and prioritize 
coverage 
Similar to other techniques, coverage is not uniformly effective 
for the varied types of validation tasks. Clearly, the more complex 
and potentially buggy a feature is, the more attention it deserves. 
However, additional considerations should be taken into account 
when identifying features for which coverage yields a smaller 
ROI. Among them: 

o Controllability. Some functions can be directly hit from the 
boundaries of the simulation environment. For example, the 
decoding and execution of instructions in all architectural 
modes can be verified by generating appropriate ASM tests. 
In such cases, it may be more cost-effective to hit the desired 
scenarios by exhaustively driving all the appropriate sets of 
inputs, rather than coding them in coverage monitors. 

o Extensiveness of random testing. Frequently, analysis of 
tests and bugs lead to a strong indication, and consequently 
to a high confidence level, that random testing exercise the 
desired features very well. Coverage measurement of such 
areas is likely to reflect the quality of testing, but will has no 
added value to the quality of the design. 

 

5.3 Conclusion #3: Don’t specify what you 
cannot cover 
An easy way to produce coverage spaces is by the enumeration of 
values for multiple vectors. In Banias, for example, we required 
the coverage of back-to-back bus transactions that were 
associated with numerous of fields (e.g., request), each of 
multiple possible values (e.g. code-read, data-read, write, etc.). 
The outcome space was huge and included several million entries 
that were very difficult to hit. Analysis of coverage holes did not 
point to any clear issue; it was rather the large space that made it 
difficult to increase the drive coverage numbers up. We 
eventually dropped that space and replaced it by multiple less 
aggressive ones. Each of these small spaces was directed to a 
specific small subset of the original huge domain.  Therefore, 
analysis of holes became a manageable and effective task. 
 

5.4 Conclusion #4: Start coverage just before 
failure rate drops 
In Coverage-Oriented verification, focus shifts gradually to 
coverage. So, when is the right time to start coverage? 
There is no simple answer. In general, coverage should start when 
bug rate drops., and  we near the point where the potential of the 
random testing is exploited  to its fullest. We can continue with 
the development of tests directed toward more and more specific 
corners of the design. Such tests require an increasing effort to 
develop and verify their correctness. In addition, such tests can 
hardly be generalized to consist of random selections that make 
their scope wider. A generally better approach is to develop 
coverage monitors instead. If our testbench is of reasonable 
quality, we may find that a significant portion of those corner 
cases has been already hit. 
In addition, at this point in the project, verification engineers have 
already acquired sufficient understanding of the design to more 
accurately implement coverage monitors and analyze their results. 
 

5.5 Conclusion #5: Test plans should be 
Coverage-Aware 
In Banias, we crafted detailed test plans that specified the 
scenarios to be generated and reviewed them thoroughly. We then 
used these test plans to drive the development of tests and 
coverage monitors, as well as test generation and checking 
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capabilities. In many cases, test plans that served very well for the 
development of high-quality tests were vague and incomplete for 
coverage. 
In order to be Coverage-Aware, test plans should: 
o Formally specify the coverage space 
o Refer to well-defined events including the specific RTL 

signals 
o Define the expected coverage target as defined by density 

and distribution 
o Define the relative importance level of each of the coverage 

monitors 
The formal definition is necessary to allow a smooth 
interpretation of a test plan entry into a coverage monitor. This 
need is magnified further considering that engineers other than 
those who wrote the test plans may do this at a later stage. For 
coverage purposes, test plans need to be reviewed thoroughly as 
soon as coverage monitors are developed. When possible, a 
additional preliminary review should take place as soon as RTL 
becomes available. 
 

5.6 Conclusion #6: Use coverage to improve 
test generation 
Random testing should be not only legal, but also ‘interesting’. 
This is achieved by embedding testing knowledge within the 
simulation environment to increase the chance of hitting 
interesting, frequently rare, cases. Coverage analysis can identify 
inaccuracies in implementation. In particular, these can be the 
inaccurate specification or selection of corner cases in large 
spaces, or the improper distribution of fields within their possible 
value spaces. This latter type occurs frequently when fields are 
interdependent and are selected using a constraint solver. 
Coverage should be used to ensure that the test generation is 
tuned according to specification. This requires measuring the 
distribution of basic events and accuracy of implementation. In 
Banias, analysis of coverage holes revealed environment bugs in 
almost all CTEs. 
 

6. Summary 
We applied the Coverage-Oriented Verification approach for the 
verification of Banias. In the Coverage-Oriented approach, focus 
at the beginning is given to catching the easy-to-find bug 
detection using random testing. When bug detection becomes 
harder and number of bugs drops, functional coverage gradually 
becomes the main driving strategy behind the detection of the 
hard-to-find bugs. 
In the paper, we described the Coverage-Oriented approach, and 
our experience in Banias. Coverage enforced the study of low-
level design details and the development of creative tests. 
Analysis of coverage holes led to the detection of 19 RTL bugs, 

most of them in a single unit. And finally, using a coverage-based 
metric, we produced a quality-related indicator for the 
convergence of verification. As with most first time efforts, we 
have identified several areas for improvement that can make 
coverage more effective. Among them are a better definition of 
coverage schedule, more coverage-friendly test plans, manageable 
scope of coverage spaces, etc. 
In spite of the advanced, aggressive and complex features and the 
relatively small verification team, Banias logic was exceptionally 
clean with only very few logic bugs detected in silicon. This 
suggests that Banias Coverage-Oriented verification approach and 
execution was very successful. We therefore recommend the 
Coverage-Oriented Verification approach as a practical 
alternative for Coverage-Driven. 
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