
Coverage-Oriented Verification of Banias
Alon Gluska

Intel Israel
Science Industries Center

Haifa 31015, ISRAEL
alon.gluska@intel.com

ABSTRACT
The growing complexity of state-of-art microprocessors dictates
the use of cost-effective verification methods. Functional
coverage was widely applied in the verification of Banias, Intel’s
new IA-32 microprocessor designed solely for the mobile
computing market. In this paper, we describe the practical
coverage approach as was carried out in the verification of
Banias. According to this Coverage-Oriented verification
approach, focus shifts gradually from basic logic cleanup using
random testing, where verification follows a predefined test plan,
to coverage-driven verification, where verification resources are
steered to hit coverage holes. This practical approach enables
reaching higher quality for lower effort under a tightened
schedule, and provides a clear metric to measure the progress of
verification and the quality of the design under test. As the
conclusions will show, the retrospective evaluation of this
approach shed light on its significant impact beyond original
intentions, as well as uncovering several potential areas for
refinement that will make this approach even more effective on
future projects.

Categories and Subject Descriptors
B.5.2 [Design Aids]: Verification

General Terms
Design, Verification.

Keywords
Logic Design, Logic Verification, Coverage, Functional
Coverage.

1. Introduction
Logic verification is a major bottleneck for the completion of
large hardware designs, and frequently most of design resources
are dedicated to verification. Therefore, a methodological way to
design the verification environment, drive its execution and
measure its progress has an extremely high impact on the
schedule and cost of designs.

Functional coverage, derived from the explicit functional
specification of the device, is considered the answer in multiple

references. The Coverage-Driven Verification (CDV) approach
[9] makes coverage the core engine that drives the whole
verification flow. Coverage space is defined up front, and
coverage is used to measure the quality of the random testing and
steer verification resources towards covering holes until a
satisfactory level of coverage is attained. This, in theory, enables
reaching high quality verification in a timely manner. However,
the use of Coverage-Driven approach is impractical for most
designs. Among the reasons are the difficulties in the application
of coverage in early stages due to RTL instability, pressure on
logic cleanup, not yet acquired knowledge, and the lack of
supportive EDA tools.

In this paper, we present our experience with Coverage-Oriented
Verification, a practical derivative of the Coverage-Driven
approach. In the Coverage-Oriented approach, verification is
driven first by the detection of as many RTL bugs as possible
using random and direct-random tests that follow a detailed test
plan. When this method produces a drop in bug detection,
coverage is gradually measured and the results steer the
verification toward the completion of the missing events.

Coverage-Oriented verification was applied in the verification of
Banias, a microprocessor designed exclusively for the mobile
computers. The Banias design introduced a wide variety of
complex logic features for which a comprehensive verification
approach was required. We applied advanced functional coverage
techniques throughout the entire design to ensure exercising all
desired corner cases. This effort directly led to RTL bug
sightings, although the number of bugs found as a result of the
coverage analysis was below our initial expectations. Moreover,
almost all these bugs were detected in a single module.

The analysis of our comprehensive coverage effort yielded
several very interesting findings. It showed that coverage had a
significant impact beyond bug detection. For instance, it enforces
the study of delicate mechanisms in order to improve coverage,
which led in turn to improvements in testing and a higher
confidence level. The analysis also led to a set of conclusions
regarding the scope and size of the coverage space, the scheduling
of coverage effort along the verification flow, correlation with test
plans, and more. We will apply these conclusions in our next
projects.

The paper is organized as follows. As a background, we briefly
present Banias and its verification strategy. We will also present
Coverage-Driven verification, as a basis for the Coverage-
Oriented approach we took in Banias verification. We will present
the results of our coverage efforts, with some analysis and
explanations. Finally, we present our findings and conclusions for
more effective use of coverage in verification.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2003, June 2-6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006…$5.00.

18.1

280

2. Banias and its Verification
2.1 Modular Verification
Banias design targeted highest performance in a given power
envelope, different form factors, and longer battery life. The chip
holds 80M transistors and 350 functional blocks partitioned into
five clusters. Its verification corresponded the design modularity.
We developed a Cluster Test Environment (CTE) for each of the
RTL clusters and two Unit-Level Test environments (ULTs) for
specific units. The CTEs were built using Verisity’s Specman for
both specification and test generation. The CTEs were designed
carefully to enable verification of most of the RTL functionality.
Accurate Behavioral Functional Models (BFMs) of the external
world and comprehensive checking mechanisms provided the
verification engineers with effective platforms that serve as the
core verification platforms throughout the project.
The majority of Banias verification was carried out at the cluster
level where 62% of the RTL bugs were detected. Tests developed
in the cluster-level were mostly random and directed-random,
with the heavy use of checkers written in Specman’s e and C.
CTEs proved to be very convenient for test development and
debug. They enabled parallel progress in all clusters and a
subsequent pull-in of the verification effort. However, they did
not serve as the sole verification platforms because some complex
interfaces could not be modeled, and checkers proved sometimes
missing, incomplete or inaccurate.
Verification at the Full-Chip (FC) level consisted of the
simulation of IA-32 legacy test suites, with additional ~15% of
new tests developed for new features. Legacy tests were mostly
directed, while the new tests were direct-random generated using
an enhanced version of a proprietary IA-32 random test generator.
FC verification was used primarily for features that were not
modeled in the CTEs as well as a safety net for the whole design.
This was very successful in hitting 37% of the bugs, several of
which that were in areas missed by the cluster teams. Although
the FC simulation environment was robust, it was relatively quite
slow with significantly lower debug capabilities than the compact
CTEs.
An additional small team used Formal Verification techniques to
prove properties in few selected areas. They detected several
dozens of RTL bugs, 10 of which are considered ‘high quality’
and had a high probability of escaping to silicon.

3. Use of Functional Coverage in Design
Verification
3.1 Functional Coverage
In current industrial practice, verification consists of the
generation and simulation of massive amounts of random tests.
Advanced random generators can improve the quality of
generated tests, but cannot detect areas in the design that are not
tested while others are tested repeatedly. The main technique for
checking and showing that the testing has been thorough is called
coverage analysis [2], [12]). The idea is to create a comprehensive
list of tasks and check that each task was covered during
verification. Verification resources can be steered toward areas of
low coverage, making verification efforts more effective.

In general, coverage is divided into two distinct types: program-
based and functional.
In program-based, coverage tasks are automatically derived from
the HDL or RTL. For example, this method will check that each
statement in the HDL was executed or each transition in the state-
machine was made. Program-based methods are easy to define
and measure. Once the coverage metric is defined, coverage tasks
are automatically derived. Many commercial program-based
coverage tools are available in the market.
Functional coverage, as the name implies, focuses on the
functionality of the design and is to prove that all functions
undergo simulation. Therefore, functional coverage is
implementation specific and coverage spaces need to be defined
manually. This makes the coverage subjective and difficult to
measure. In addition, very few commercial coverage tools are
available. IBM presented in [1] a user-defined coverage tool that
employed a relational database for coverage definition and
collection. Verisity recently introduced improved coverage
definition and measurement capabilities within their Specman
simulation platform. Intel has its own coverage tool that is
natively linked to its proprietary design environment [4].
Being tightly coupled with the quality of the RTL, functional
coverage is referred to as essential in panels and methodology
papers (e.g., in [1], [3], [4], [7] and [9]). However, being difficult
to specify and measure, it is not yet considered as an inseparable
part of the verification flow. When used, coverage is usually
carried out in late stages of the design and focuses on limited
parts of the RTL as a means to find escapees from the core
verification effort. Functional coverage is rarely mentioned in
most test cases published in recent years.

We can mention two exceptions: Functional coverage was
intensively used for the verification of Pentium 4 in order to direct
future testing towards the uncovered areas (see [4]). In [5],
multiple coverage techniques were used at late stages of the
design as a metric for the completeness of verification.

Coverage plan

Test developmentInstrumentation of
Coverage tasks

Coverage collection

Coverage analysis

Bug analysisStudy of the arch
and uarch

Figure 1: The Functional Coverage Iterative Flow

281

3.2 The Coverage-Driven Verification
Approach
The Coverage-Driven Verification approach incorporates
functional coverage as the core engine that drives the verification
flow. It is presented schematically in Figure 1. Verification starts
with a coverage plan derived from a study of the RTL
functionality. The simulation environment, test generator, and
coverage tools are designed accordingly to facilitate the
implementation of the coverage plan. Random tests are generated
and simulated. Coverage is then used to steer the verification
resources toward the coverage holes. Note that feedback from
coverage analysis is used for enhancements and bug fixes to the
simulation environment and/or the test generator, as well as
directing updates to the coverage plan. Except for specific cases,
they should drive the improvement of the random testing
capabilities rather than the development of specific tests.
The main idea behind the Coverage-Driven approach is that many
or most of the interesting corner cases can be easily hit by random
or direct-random testing. However, as long as we do not know for
sure, we tend to craft tests manually and use a huge amount of
random tests and simulation cycles that frequently contribute very
little to the overall testing space [3]. Focusing on coverage holes
and hard-to-reach cases reduces the total effort invested in
verification in both headcount and computing.
Once the desired coverage is achieved, we are ready to tape-out
the product. The same coverage monitors and random test
templates can be subsequently reused to quickly verify
modifications to the RTL and in future proliferations.

3.3 Coverage-Oriented Verification
In many cases, the pure Coverage-Driven verification is simply
impractical. Design instability with the focus on bug detection,
together with not yet acquired detailed knowledge, render the
development of coverage monitors inapplicable at the beginning
of the verification flow.
In Banias, we used a different approach that we called Coverage-
Oriented. Our verification started by developing random tests
according to the test plan specifications, in order to detect as
many bugs as quickly as possible. Considering our future
coverage efforts, we used random and directed-random testing,
without embellishing corner cases or careful crafting delicate test
cases. This delivered a major clean up of the RTL for a reasonable
effort, while enabling the progress of other activities that are
dependent on the health of the RTL such as circuit design, timing
and power analysis. As was also evident, the direct-random
testing that employed abstractions and testing knowledge within
testbenches, enabled hitting the majority of conditions defined in
our test plans. Functional coverage started only after the RTL
became stable, with a drop in the bug rate, and when verification
engineers acquired a detailed knowledge of the RTL. Coverage
became the steering vehicle for the completion of the verification
process, giving the verification engineers and the project
management a quality-related picture of the convergence of
verification. By that, the Coverage-Oriented approach is a
practical alternative to Coverage-Driven.

4. Experience and Results
4.1 Coverage in Banias
Most of the logic verification of Banias was carried out at the
cluster level. Consequently, we also performed most of the
coverage tracking and analysis at this level, with complementary
effort at the FC level, where coverage resulted from IA-32 legacy
and new tests. Some coverage tasks could be hit only in the FC
environment, either because they were difficult to model in the
CTEs or because they spanned over the cluster boundaries. For
others, we wanted to ensure a certain level of coverage for further
confidence beyond that which was already achieved at the cluster
level. This was due to the inherent uncertainty in the accuracy of
CTE behavioral stubs or the completeness of checking.
We assigned resources to the instrumentation of coverage
monitors when the number of RTL bugs started dropping.
Schedule-wise, this occurred around the middle of the verification
period, after most of the random templates had been implemented
according to the detailed coverage plans.
Our primary coverage tool was Proto [11], which is used widely
in Intel for coverage instrumentation and collection. Proto enables
the definition of complex temporal matrices of vectors. We used
Proto to build coverage monitors and measure results for a total
number of 1.3 million micro architectural conditions. Out of the
total number of new direct-random tests, approximately 15% were
developed as a result of coverage analysis. The sum effort for
coverage definition, instrumentation, collection and analysis is
estimated as 12% of the total staffing resources invested in the
verification of Banias.

4.2 Coverage Results
We counted 19 RTL and numerous simulation environment bugs
as a direct outcome of analysis of coverage holes. This number
corresponds to 5.2% of the number of RTL bugs filed in the six
months preceding tape-out. The raw number was below our
original expectations, and furthermore, the RTL bugs were not
distributed uniformly among the design clusters. However, our
study suggests that these numbers are reasonable considering the
manner in which we applied coverage. Since these bugs were
detected in late stages of the design and in areas of high
importance, their actual severity is significantly higher than
almost all other bugs revealed at that period. Moreover, at least 10
of these bugs would probably have escaped without the coverage
feedback mechanism.
To better understand the impact of our coverage analysis, we
classified all 360 RTL bugs that were revealed during the last six
months before tape-out. The results are presented in Table 1 and
show that the weight of the coverage-related bugs for functions
that underwent basic cleanup and were ready to coverage was
high.
Each of the Ci-s in the table corresponds to bugs detected in a
specific cluster. SD stands for the Steer-Decode unit that is part of
the C5 cluster.
Out of the 360 RTL bugs, 44% were detected in functions that
were not included in the coverage space. Most of these were
features, such as Power saving, Testability and Performance
Monitors where verification was pushed back to later stages of the
design. 15% of the bugs were detected before the corresponding
function was cleaned enough to enable coverage. 10% of the bugs

282

were in functions that went through coverage, but the specific
cases were overlooked. Another 10% were detected in the cluster
level following enhancements to CTEs or to checkers that
improved their testing and checking capabilities. The final 8%
were the result of late changes and bug fixes
The interesting and disconcerting fact is that 17 of the 19 RTL
bugs derived directly from the analysis of coverage holes were
found in a single unit. In all the other clusters, coverage yielded a
single bug at most. A careful study of these bugs suggests that at
least 10 RTL bugs in the Steer-Decode unit would have been very
hard to detect without the feedback from coverage. Complexity
made the controllability over the numerous internal delicate cases
very difficult. It was coverage that reflected properties that have
never been verified.

Table 1: Classification of bugs detected in the six months
before tape-out

4.3 Coverage Tracking in Banias
When applied over all major design functions, coverage has the
potential to serve as an important indicator for the convergence of
the verification process. We found the standard density indicator
extracted from dividing the number of events hit by the total
number of events to be insufficient. Given that a coverage space
is derived from combinations of temporal vectors, hitting 100% is
not the necessary target in most cases. A superior approach is to
define coverage spaces as combinations of events, and then
require a certain subset of events to be hit. As a result, a partial
density such as 80% is difficult to interpret, whereas its
distribution can deem it either satisfactory or unacceptable.
We therefore defined a metric that takes into account the density,
distribution and relative importance of each coverage monitor.
The following formula was used for grading the coverage of a
given set of coverage monitors (e.g., all monitors of a single
functional unit):

100

),min(

0

0 ∗=

∑

∑

=

=
N

i
i

i

ii

i

i
N

i
i

m

W

P
Pp

E
e

W
G

Where:
o N is the number of monitors belong to the set
o Wi is the weight of the specific monitor
o Ei is the target number of coverage elements in the desired

level of distribution
o ei is the actual number of covered elements
o Pi is the target percentage of covered events
o pi is the actual percentage of covered elements
The coverage grades for any level of hierarchy up to the whole
design were calculated according to:

∑

∑

=

== N

i
i

i

N

i
i

u

W

GW
G

0

0

Where N is the number of sets in the lower level, and Wi and Gi
are respectively the weight and grade per set.
The metric we defined provided a hierarchical quality-related
indicator for the design health. Coverage was tracked on a weekly
basis and was used in addition to traditional indicators such as the
number and severity of RTL bugs detected.

5. Conclusions
After tape out, we conducted a detailed study of our coverage
experience. The objectives of the study were to evaluate the
impact of the coverage effort, to understand the reasons for the
small number and non-uniform distribution of RTL bugs, and,
consequently, to identify the necessary steps required to make
coverage more effective. We studied the execution of coverage
and its results along the verification flow, and dispatched a
detailed questionnaire answered by all involved engineers.
We identified the following reasons for the relatively low number
of RTL bugs found by the coverage effort:
o As also reflected in Table 1, coverage was applied in almost

all clusters to areas that were thoroughly verified using
random and direct-random tests. No coverage was carried
out for features of relatively lower criticality, such as
performance monitoring and DFT where verification was
executed during the later stages of the project.

o Our simulation environments were very effective in bug
detection. In spite of being new and incomplete, we detected
62% of the total RTL bugs in the cluster level. Excluding the
testing space that was not supported by the CTEs, the
percentage is significantly higher.

o In many cases, our coverage was too detailed. This hampered
our focus on the riskier features. In addition, we generated

 C1 C2 C3 C4 C5* SD Tota
l

Coverage-related 0 0 0 1 1 17 19
Out of coverage
space 47 17 26 32 18 20 160
Before basic
cleanup 2 4 5 0 19 26 56
Holes in the
coverage plans 5 5 11 1 10 5 37
Enhanced
CTE/checker
feature 13 8 1 0 10 1 36
Inserted bug 23 1 3 0 4 3 32
Coverage hole not
analyzed 0 0 0 0 3 4 7
Other 3 1 1 8 13

Total 93 36 47 34 74 76 360

283

coverage spaces that were too large to be adequately
covered.

o And finally, in many cases our test plans were not coverage
friendly. Test conditions were described in general terms
only, with inconsistent references to specific signals or time
windows This allowed subjective interpretation of test plan
content and erroneous implementation of coverage monitors.

The Steer-Decode unit was an exception. This unit was most
complex and introduced major new features in Banias in order to
improve throughput and timing. As a result, the verification of the
unit significantly lagged behind for the duration of the project.
The time pressure dictated an initial cleanup using random and
directed-random only, along with trimming the coverage space to
consist of the risky features. This enabled coverage to reveal cases
that would hardly be hit in any alternate method we applied.

5.1 Conclusion #1: Impact of coverage is
beyond the number of bugs
The ultimate goal of verification is to reveal all functional bugs.
Accordingly, the impact of activities is evaluated according to the
number of RTL bugs it exposed. We believe that this should not
be the only parameter for functional coverage. Coverage analysis
provides the feedback for the accuracy and effectiveness of the
random testing. It also serves as a quality-related indicator for the
convergence of verification and thus as an important criterion for
tape-out.
In Banias, about half of the coverage-related bugs were
considered very hard to find by other means. The related function
was complex, with many low-controllability parameters. The
constraint-solver embedded in the random test generator enabled
hitting a significant portion of the coverage space, but only
coverage revealed combinations that had been never generated.
In addition, almost all engineers claim that coverage
instrumentation, and even more coverage analysis, enforced the
study of micro-architecture and RTL details, and consequently led
to the development of more creative tests. Analysis of coverage
holes revealed cases that were actually impossible, and shed light
on factors that were originally neglected. This served towards the
modification of the coverage plan.
A further outcome of the coverage effort is raising the confidence
level of the verification engineers. As long as verification consists
on random tests, it heavily relies on the accuracy and
completeness of the testbenches and the quality of test generation.
Uncertainty tends to lead to the generation of massive number of
tests. Feedback from coverage enables trimming expensive
simulation cycles without impacting the quality targets.

5.2 Conclusion #2: Focus and prioritize
coverage
Similar to other techniques, coverage is not uniformly effective
for the varied types of validation tasks. Clearly, the more complex
and potentially buggy a feature is, the more attention it deserves.
However, additional considerations should be taken into account
when identifying features for which coverage yields a smaller
ROI. Among them:

o Controllability. Some functions can be directly hit from the
boundaries of the simulation environment. For example, the
decoding and execution of instructions in all architectural
modes can be verified by generating appropriate ASM tests.
In such cases, it may be more cost-effective to hit the desired
scenarios by exhaustively driving all the appropriate sets of
inputs, rather than coding them in coverage monitors.

o Extensiveness of random testing. Frequently, analysis of
tests and bugs lead to a strong indication, and consequently
to a high confidence level, that random testing exercise the
desired features very well. Coverage measurement of such
areas is likely to reflect the quality of testing, but will has no
added value to the quality of the design.

5.3 Conclusion #3: Don’t specify what you
cannot cover
An easy way to produce coverage spaces is by the enumeration of
values for multiple vectors. In Banias, for example, we required
the coverage of back-to-back bus transactions that were
associated with numerous of fields (e.g., request), each of
multiple possible values (e.g. code-read, data-read, write, etc.).
The outcome space was huge and included several million entries
that were very difficult to hit. Analysis of coverage holes did not
point to any clear issue; it was rather the large space that made it
difficult to increase the drive coverage numbers up. We
eventually dropped that space and replaced it by multiple less
aggressive ones. Each of these small spaces was directed to a
specific small subset of the original huge domain. Therefore,
analysis of holes became a manageable and effective task.

5.4 Conclusion #4: Start coverage just before
failure rate drops
In Coverage-Oriented verification, focus shifts gradually to
coverage. So, when is the right time to start coverage?
There is no simple answer. In general, coverage should start when
bug rate drops., and we near the point where the potential of the
random testing is exploited to its fullest. We can continue with
the development of tests directed toward more and more specific
corners of the design. Such tests require an increasing effort to
develop and verify their correctness. In addition, such tests can
hardly be generalized to consist of random selections that make
their scope wider. A generally better approach is to develop
coverage monitors instead. If our testbench is of reasonable
quality, we may find that a significant portion of those corner
cases has been already hit.
In addition, at this point in the project, verification engineers have
already acquired sufficient understanding of the design to more
accurately implement coverage monitors and analyze their results.

5.5 Conclusion #5: Test plans should be
Coverage-Aware
In Banias, we crafted detailed test plans that specified the
scenarios to be generated and reviewed them thoroughly. We then
used these test plans to drive the development of tests and
coverage monitors, as well as test generation and checking

284

capabilities. In many cases, test plans that served very well for the
development of high-quality tests were vague and incomplete for
coverage.
In order to be Coverage-Aware, test plans should:
o Formally specify the coverage space
o Refer to well-defined events including the specific RTL

signals
o Define the expected coverage target as defined by density

and distribution
o Define the relative importance level of each of the coverage

monitors
The formal definition is necessary to allow a smooth
interpretation of a test plan entry into a coverage monitor. This
need is magnified further considering that engineers other than
those who wrote the test plans may do this at a later stage. For
coverage purposes, test plans need to be reviewed thoroughly as
soon as coverage monitors are developed. When possible, a
additional preliminary review should take place as soon as RTL
becomes available.

5.6 Conclusion #6: Use coverage to improve
test generation
Random testing should be not only legal, but also ‘interesting’.
This is achieved by embedding testing knowledge within the
simulation environment to increase the chance of hitting
interesting, frequently rare, cases. Coverage analysis can identify
inaccuracies in implementation. In particular, these can be the
inaccurate specification or selection of corner cases in large
spaces, or the improper distribution of fields within their possible
value spaces. This latter type occurs frequently when fields are
interdependent and are selected using a constraint solver.
Coverage should be used to ensure that the test generation is
tuned according to specification. This requires measuring the
distribution of basic events and accuracy of implementation. In
Banias, analysis of coverage holes revealed environment bugs in
almost all CTEs.

6. Summary
We applied the Coverage-Oriented Verification approach for the
verification of Banias. In the Coverage-Oriented approach, focus
at the beginning is given to catching the easy-to-find bug
detection using random testing. When bug detection becomes
harder and number of bugs drops, functional coverage gradually
becomes the main driving strategy behind the detection of the
hard-to-find bugs.
In the paper, we described the Coverage-Oriented approach, and
our experience in Banias. Coverage enforced the study of low-
level design details and the development of creative tests.
Analysis of coverage holes led to the detection of 19 RTL bugs,

most of them in a single unit. And finally, using a coverage-based
metric, we produced a quality-related indicator for the
convergence of verification. As with most first time efforts, we
have identified several areas for improvement that can make
coverage more effective. Among them are a better definition of
coverage schedule, more coverage-friendly test plans, manageable
scope of coverage spaces, etc.
In spite of the advanced, aggressive and complex features and the
relatively small verification team, Banias logic was exceptionally
clean with only very few logic bugs detected in silicon. This
suggests that Banias Coverage-Oriented verification approach and
execution was very successful. We therefore recommend the
Coverage-Oriented Verification approach as a practical
alternative for Coverage-Driven.

7. References
[1] R. Grinwald, E. Harel, M. Orgad, S. Ur, A. Ziv “User

Defined Coverage – A Tool Supported Methodology for
Design Verification”. DAC 98, 158-163.

[2] B. Marick “The craft of Software Testing, Subsystem
Testing Including Object-Based and Object-Oriented
Testing”. Prentice Hall. 1985.

[3] Paul Gingras, “Panel: Functional Verification – Real Users,
Real Problems, Real Opportunities”, DAC 1999, 260-261.

[4] Bob Bentley. Validating the Intel Pentium 4 Microprocessor.
DAC 2001.

[5] S. Taylor, M. Quinn, D. Brown, N. Dohn, S. Hildenbrandt, J.
Huggins, C. Ramey “Functional Verification of a Multiple-
issue, Out-of-order, Superscalar Alpha Processor”. DAC 98,
638-643.

[6] D. Geist, M. Farkas, A. Landver, Y. Lichtenstein, S. Ur, Y.
Wolfsthal “Coverage Directed Generation Using Symbolic
Techniques”, FMCAD Confenernce November 96.

[7] S. Ur, Y. Yadin “Micro-Architecture Coverage Directed
Generation of Test Programs”, DAC 99, 175-180.

[8] L. Fournier, A. Koyfman, M. Levinger “Developing an
Architecture validation Suite”. DAC 99, 189-193.

[9] “Coverage-Driven Functional Verification”, white paper by
Verisity.
http://www.verisity.com/html/coverage_driven.html.

[10] A. Vincentelli, P. McGeer, A. Saldanha, “Verification of
Electronic Systems”, Tutorial in DAC 96, 106-111

[11] B.E. Nelson, R.B. Jones, and D.A. Kirkpatrick, “Simulation
Event Pattern Checking with PROTO”, Proc. of the
International Conference on Simulation and Hardware
Description Languages, 1994

[12] Tasiran, S ; Keutzer, K, “Coverage Metrics for
Functional Validation of Hardware Designs”

285

	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index

