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Abstract   In this paper, we propose a new on-chip 
interconnect scheme called Y-architecture, which can utilize the 
on-chip routing resources more efficiently than traditional 
Manhattan interconnect architecture by allowing wires routed 
in three directions (0°, 60°, and 120°). To evaluate the efficiency 
of different interconnect architectures, we assume mesh 
structures with uniform communication demand and develop a 
multi-commodity flow (MCF) approach to model the on-chip 
communication traffic. We also extend the combinatorial MCF 
algorithm in [5] to compute the optimal routing resource 
allocations for different interconnect architectures. The 
experiments show that: (1) Compared with Manhattan 
architecture, the Y-architecture demonstrates a throughput 
improvement of 30.7% for square chip. The throughput of the 
Y-architecture is only 2.5% smaller than that of X-architecture. 
(2) A chip with the shape of a convex polygon produces better 
throughput than a rectangular chip: For Y-architecture, a 
hexagonal chip provides 41% more throughput than a squared 
chip using the Manhattan architecture. For Manhattan 
architecture, a diamond chip achieves a throughput 
improvement of 19.5% over the squared chip using the same 
interconnect architecture. (3) Compared with Manhattan 
architecture, the Y-architecture reduces the wire length of a 
randomly distributed two pin net by 13.4% and the average 
wire length of Y-architecture is only 4.3% more than that of the 
X-architecture. 
 

I Introduction 
With rapid technology scaling, the interconnect becomes 

one most precious resource on a chip. Traditional Manhattan 
interconnect architecture organizes wires on two orthogonal 
routing directions, 0° and 90° directions, for the simplicity of 
routing embedding and design rule checking. However, its 
artificial restriction on routing directions adds significant 
wire length over the Euclidean optimum and thus decreases 
the communication capability of the on-chip interconnects.  

In the past decade, many researchers have explored the 
possibility of using nonrectilinear wires to improve the 
efficiency of on-chip interconnects.[4] Most of these work 
discussed about how to introduce 45-degree short jogs to 
improve the routability of the chip in the detailed routing 
stage. Majority of the wires on the chip are still routed on 
either 0-degree or 90-degree direction. 

Recently, Mutrunoi et. al. [7] proposed a new on-chip 
interconnect architecture named the X-architecture, which is 
targeting at the designs with 5 or more routing layers. In the 
X-architecture, the wires are organized in 0-degree, 
45-degree, 90-degree and 135-degree directions. The 

experimental results show that it achieves a chip 
performance improvement of 10% and power reduction of 
20% than Manhattan architecture for a high performance 
design. 

In the foreseeable future, more than 12 routing layers will 
be available in the high performance circuit designs.[1] It is 
both possible and desirable for us to explore the different 
ways to organize the on-chip routing resources. However, the 
prohibitive cost of actually designing and manufacturing a 
chip with new interconnect architectures makes it very hard 
to implement and test new interconnect architectures one by 
one. It is necessary to develop a quantitative framework to 
evaluate the efficiency of different interconnect 
architectures. 

From early 1990s, researchers [2][6] studied the wire 
length reduction by allowing more routing directions. Most 
of these works concentrated on the Steiner cost of a single 
signal net. The competition on the routing resources between 
different nets is ignored in these works. 

We adopt Multi-commodity flow (MCF) approach to 
model the on-chip communication traffic. We assume a mesh 
structure with uniform communication demand, and use the 
MCF throughput of the mesh to measure the communication 
capability of different interconnect architectures. This 
method is independent with particular test cases and can 
reflect the exact communication bottleneck on the chip. 

Recent advance in MCF algorithm [5] allows us to solve 
MCF problem much more efficiently. Our implementation 
can compute the throughput of meshes with up to 289 nodes 
within 12 hours computing. We also extend this algorithm to 
compute the optimal routing resource allocation for different 
interconnect architectures. 

In this paper, we propose the use of Y-architecture, which 
has three symmetrical routing directions (0-degree, 
60-degree, and 120-degree). We compare this interconnect 
architecture with the Manhattan architecture and the 
X-architecture. Based on our experiments on throughputs 
and analytical analysis on wire length, we have following 
reason to motivate the use of the Y-architecture: 

(1) Using Y-architecture can gain a throughput 
improvement of 33.3% over the traditional Manhattan 
architecture on a squared mesh. Comparing with the 
X-architecture, which has one more routing direction, the 
Y-architecture produces almost the same (2.6% less) 
throughput on a squared mesh. 
(2) The Y-architecture achieves an average of 13.4% wire 



length reduction over Manhattan architecture for a 
two-pins connection. The more complex X-architecture 
can only improves this reduction of 4.3% further. 
(3) Making chip shape close to a circle can significantly 
improve the throughput over the rectangular chip. Using 
Y-architecture, we can make hexagonal chip, which can 
produce 41% more throughput than square chip using 
Manhattan architecture, without causing dead space on the 
wafer. 
The rest of this paper is organized as follows: Section 2 

presents the problem formulation in an MCF model. Section 
3 compares the throughput of meshes using Manhattan 
architectures, the Y-architecture, and the X-architecture. In 
subsection 3.1, we compare the throughputs of n by n 
meshes using different interconnect architectures, these 
experiments are designed to test the communication 
capability of different interconnect architectures on a square 
chip. In subsection 3.2, we set the chip shape to be close to a 
circle, e.g. hexagons for the Y-architecture, octagons for the 
X-architecture, and diamonds for the Manhattan architecture, 
and compare the throughput of meshes using different 
interconnect architectures. Following that we discuss the 
wirelength of two pin nets using different interconnect 
architectures in section 4. Finally, we conclude this paper in 
section 5. 

 
II. Problem Formulation 

2.1 MCF with constant edge capacities 
For Manhattan architecture, we decompose the 

communication resources into an array of n×n slots. Each 
slot contains a communication terminal, say, a processor. The 
slots are aligned in rows and columns. The slot array forms a 
90-degree mesh structure. Figure 1(a) illustrates an example 
of a 90-degree mesh structure with 25 slots. Each square tile 
represents a slot. The mesh structure can be mapped to a 
graph G={V, E} according the following rules: 

(1) Each slot i corresponds to the node i in the graph. 
(2) The adjacency between two slots (i,j) is represented by 
an edge e = (i,j) in the graph  
(3) The edge capacity c(e) is proportional to the length of 
the line segment separating the adjacent slots, and the 
number of routing layers. 
Figure 1(b) describes the graph corresponding to the mesh 

in Fig.1(a). 

     

 

Fig. 1  A 5 by 5 communication mesh and its graph representation 

(a) (b) 

 
We assume a uniform communication requirement i.e. 

every pair of nodes communicate with an equal demand. All 
communications happen at the same time. Note that the 
model can be extended to various communication demands, 
e.g., Poisson distribution, Rents rule, etc., depending on 
specific applications. In this paper, the uniform pairwise 
communication model is adopted because of its simplicity 
and genericalness. Moreover, the communication demand 
presents an unbiased symmetry, which makes the solution 
independent of the test cases, placement, and routing.  

We define the throughput, z, to be the maximum amount 
of communication flow between every pair of nodes. We 
find the throughput using a multi-commodity flow model. 
The flow that starts from node i is deemed as commodity i. 
Commodity i starts from node i with the amount of z·(N-1), 
where N = n2 is the number of nodes in the graph, to each of 
the rest nodes with the amount of z. We solve the 
multi-commodity flow problem to find the throughput z. 
The above MCF problem can be formulated as a linear 
program in either the node-arc form (LP1) or the edge-path 
form (LP2).  
a. Node-Arc form of MCF (LP1): 
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 In this linear program, flow variable v
ijf represents the 

flow amount of commodity v on edge (i,j). The edge capacity 
cij represents the flow capacity of edge (i,j), in a uniform 
mesh using X-architecture, we set cij to be unit for all (i,j). 
We set that the flow injecting to a node is positive and the 
flow ejecting from a node is negative 
b. Edge-Path form of MCF (LP2): 
Maximize: z 
S. t.: 0)( ≥−∑
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In this linear program, we denote by Pe the set of all paths 
p containing the edge e, and by Pij the set of all paths 

for all nodes v,i ∈  V  (1.1) 
 
for all edges (i,j)∈ E  (1.2) 



between nodes i,j, the flow variables f(p) represents the flow 
amount of path p. 

Note that the number of linear constraints in linear 
program LP1 is |V|2 + |E|. Thus the linear program LP1 can 
be solved in polynomial time using any polynomial time 
linear program solver[6]. However, when n increases, the 
number of linear constraints explodes at the rate of n4 for a n 
by n mesh. So, for large cases it is impractical to solve the 
MCF using linear programming. 

In [5], a combinatorial (1+ε)-approximation approach is 
proposed to solve the MCF problem. It adopts the 
primal-dual structure of the linear program LP2. The 
algorithm assigns a nonnegative shadow cost [9] to each 
edge according to the congestion level on that edge. Initially, 
all the shadow costs are set to be equal. Then, the algorithm 
proceeds in iterations. In each iteration, we reroute a fixed 
amount of flow along the shortest path for every commodity. 
At the end of each iteration, we adjust the capacity of every 
edge and its shadow cost according to the dual linear 
program. 

For any given error tolerance ε, this MCF algorithm can 
find a (1+ε) approximation of the throughput in 
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 time, where ε’ = 1-(1+ε)-1/3. 

 
2.2 MCF with edge capacities in linear constraints 
For X-architecture, we add 45-degree edges to the 

90-degree mesh of Manhattan architecture. Fig. 2 illustrates 
an example of 5 by 5 mesh with X-architecture. Fig. 2(a) 
shows the slots arrangement and Fig. 2(b) is the 
corresponding communication graph. 

 

Fig. 2  A 5 by 5 mesh with X-architecture 

(a) (b) 

  
In Fig. 2(b), the edges are oriented in 0˚, 90˚, 45˚ or 135˚ 

angle. All nodes are aligned in rows and columns. Thus, all 
the edges in 45˚ and 135˚ directions have the same capacity 
and all the edges in 0˚ and 90˚ directions have the same edge 
capacity. Note that the length of an edge in 45˚ or 135˚ 
direction is 2  times of that of an edge in 0˚ or 90˚ 
direction. Hence, if route some number of wires on an edge 
in 0˚ or 90˚ direction consumes one unit of routing area, then 
route same number of wires on an edge in 45˚ or 135˚ 
direction costs 2  units of routing area. In other words, for 
a pair of routing layers, if we can allocate a capacity of x to 
0˚ and 90˚ edges, we can only allocate a capacity of 2/x to 
45˚ and 135˚ edges. Let c1 be the capacity of horizontal and 

vertical edges, c2 be the capacity of 45˚ and 135˚ edges. The 
area constraints can be expressed as 12 21 =⋅+ cc . Thus, 
the total area is equal to the constant. 
For Y-architecture, we set the shape of slots to be hexagon. 

Fig. 3(a) illustrates a hexagonal mesh with 19 slots. Fig. 3(b) 
is the corresponding communication graph. In Fig. 3(b) all 
edges are symmetrically oriented in 0˚, 60˚ or 120˚ direction 
and every edge has the same length. Hence, the routing area 
constraint for Y-architecture can be expressed as c1+c2+c3=2, 
where c1, c2, and c3 are edge capacity for edges oriented in 0˚, 
60˚ and 120˚ directions, respectively. 
We can add the routing area constraint into the Linear 

program LP1 or LP2 and treat edge capacities as variables. 

The optimal solution of the linear program produces an 
optimal routing resource allocation for different routing 
directions. Following is the formal formulation of routing 
resource allocation problem. 
Input: communication graph G = (V, E), k different routing 
channels {R1, …,Rk}, where ERi

i
=U and Φ=i

i
RI ; edge 

capacity ci for every edge in the routing channel Ri,;and area 
constraints 1=∑

i
iiCα   

Output: an routing resource allocation {ci}, such that the 
communication graph G = (V,E) has maximum throughput. 

The routing resource allocation problem can be written as 
the following linear program: 
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This linear 
program finds the 
minimum routing area that can satisfy the unit pairwise 
communication demand. The dual program of this linear 
program is: 

for all distinct vertices pair i,j∈ V   (3.1) 
 
for all routing channel Ri          (3.2)

Fig. 3 A hexagonal mesh of 19 nodes with Y-architecture

(a (b



i
Re

e

Pe
eij

ij
ij

i

ij

d       

d   tS

Max

α

λ

λ

≤

≤

∑

∑

∑

∈

∈
..

:
 

The dual program 
assigns a nonnegative shadow cost de to each edge e, such 
that the sum of the shortest distances between every distinct 
pair of nodes is maximized. The constraints (3.2) denotes 
that the total shadow costs of all edges in a routing channel is 
smaller than or equal to the area coefficient of that routing 
channel. 
We extend the combinatorial (1+ε)-approximation scheme in 
[5] to solve the routing resource allocation problem. We also 
adopt the primal-dual structure of the linear program. The 
shadow cost is determined by the flow congestion level on 
the edge. Let 

ec
efeg )()( =

 be the congestion level of edge e, 

where f(e) is the total flow amount going through edge e, and 
Ce is the capacity of e. The shadow cost is computed using 
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β , where g* = max{g(e)|e∈ E}, 

and β is a constant related to desired approximation error ε. 
Initially, all the shadow costs are set to be equal. Then, the 
algorithm proceeds in iterations. In each iteration, we route a 
fixed amount of flow along the shortest path for every 
commodity. At the end of each iteration, we adjust the 
capacity of every edge and its shadow cost according to the 
dual linear program. Fig. 4 shows the pseudo-code of our 
routing resource allocation algorithm. 

 
III Throughputs of Meshes with Different 

Interconnect Architectures 
We first use Matlab’s linear program package on a Sun 

Ultra10 workstation to compute MCF solutions. For the case 
with 100 nodes, the run time exceeds 24 hours. We then 
implement the MCF algorithm [5] and our routing resource 
allocation algorithm using C programming language. Our 
implementation derives the MCF solutions for cases with up 
to 289 nodes within 12 hours. 

We compare the throughputs of meshes with different 
interconnect architectures. In subsection 3.1, we set the chip 
shape to be square. Then use our extended flow approach to 
compute the throughputs of different interconnect 
architectures with optimal routing channel allocation. In 
subsection 3.2, we set the chip shape to be fully symmetrical 
to all routing directions, i.e. diamond for Manhattan 
architecture, hexagon for Y-architecture, and octagon for 
X-architecture. 

 
3.1 Throughputs with square chip shape 

In this subsection, we compare the throughput of n by n 
meshes using Manhattan architecture, Y-architecture, and 
X-architecture. Fig. 5 demonstrates three 7 by 7 meshes 
using different interconncect architectures. For an n by n 
mesh, the enclosing box of the slots is close to a rectangle. 
The throughput of an n by n mesh using a certain 
interconnect architecture demonstrates the communication 
ability of that interconnect architecture on a rectangular chip.  
 

Note that for an n by n mesh with Y-architecture, there are 
3n2-4n+1 edges, for an n by n mesh with Manhattan 
architecture, there are 2n2-2n 0-degree and 90-degree edges; 
for an n by n mesh with X-architecture, there are 2n2-2n 
edges on 0˚or 90˚ direction and 2(n-1)2 edges on 45˚or 135˚ 
direction. To fairly compare the throughput of meshes with 
different interconnect architectures, we need to allocate the 
same amount of routing resources to meshes of the same size. 
In our experiments, we set the sum of all edge capacities 
equal to 2n2-2n for all n by n meshes, and use our routing 
resource allocation algorithm to find the optimal allocation 

for all distinct vertices pair i,j∈ V  (3.1) 
 
for all edge e∈ Ri
(4.2)

Algorithm 
For all e∈ E, set de= constant 
Repeat 
 For j := 1 to k do  //k: number of distinct flow demands 
   Begin 
    Set d(j) = σ 
    While d(j) ≠ 0 do 
     Begin 

Find shortest path P for commodity flow demand j. 
Route f = min{c,d(j)} units of flow along P, where c is 
the capacity of the minimum capacity edge on this path.
d(j) = d(j) – f 
Update {de}. 

     End while 
   End for 
 Find {C1, C2, …, Cm}, such that ∑

∈
=

)(iRe
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∑ =
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 Update {de} 
Until flow solutions converge 

Fig. 4. Routing Resource Allocation Algorithm 

(a) A 7 by 7 mesh using Y-architecture 

(b) A 7 by 7 mesh using 
Manhattan-architecture

(c) A 7 by 7 mesh using 
X-architecture 

Fig.5 7 by 7 meshes with different interconnect architectures



of edge capacities.  
For n from 2 to 17, Table 1 lists the throughputs of n by n 

meshes with different interconnect architectures. We 
normalized the throughput using a factor m0.5(m-1), where m 
is the number of nodes in the mesh. By doing so, we can 
keep the total amount of communication demand and total 
edge capacities independent with the dimension of the mesh. 
The third and the forth column show throughput and 
normalized throughput of meshes using Manhattan 
architecture. The fifth and seventh column depicts the 
normalized throughput of meshes using Y-architecture and 
X-architecture, respectively. We list the throughput 
improvement achieved by Y-architecture and X-architecture 
in the sixth and the eighth column.  

Table 1. Throughput of rectangular meshes 
For n from 10 to 17, Y-architecture provides an average 

throughput improvement of 30.7% for an n by n mesh, and 
X-architecture achieves 34.5%. For a 17 by 17 mesh, 
Y-architecture provides an throughput improvement of 
31.1% and X-architecture achieves an improvement of 
34.6%. 

For Y-architecture and Manhattan architecture, equally 
distributed edge capacities produces maximum throughput 
on n by n meshes. For X-architecture, we show the optimum 
ratio of the area of diagonal routing edges to that of 
Manhattan edges in the last column. That ratio approaches 
5.65 when n increases. 

Fig. 6 shows bottlenecks of communication flows for 

three 12 by 12 meshes using different interconnect 
architectures. The fully saturated edges are highlighted with 
bold lines. Note that the saturated edges form vertical and 
horizontal cut sets for both interconnect architectures. The 
cut lines are shown with dashed lines. 
 

      
 

Summing up the capacities of the edges passing across the 
cut lines, we can derive a throughput upper bound for n by n 
meshes with different interconnect architectures. 

For Manhattan architecture, there are n edges crossing 
each cut line. The total edge capacity is n. For Y-architecture, 
there are 2n-1 edges passing across each cut line and each 
edge has capacity 2/3, the total edge capacity crossing the 
cut line is (4n – 2)/3, when n approaches infinity, an n by n 
mesh using Y-architecture can have (4/3 –1) = 33.3% more 
flow crossing the cutline. Thus, Y-architecture can achieve at 
most 33.3% throughput improvement over Manhattan 
architecture on a squared mesh.  

For X-architecture, there are 2(n-1) diagonal edges and n 
Manhattan edges crossing each of the two cut lines. To 
achieve maximum throughput, the ratio of the capacity for 
diagonal edges and the capacity for Manhattan edges is 5.6. 
Under this ratio, the edge capacities are 0.1515 and 0.6 for 
Manhattan edges and diagonal edges respectively. The total 
flow amount can go across the cut line is 1.3515n-1. When n 
approaches infinity, the throughput improvement bound is 
35.6%.  

For all the cases have been tested (n = 2 to 17), we all 
observed this kind of central horizontal and vertical cut sets 
in n by n meshes using both X, Y and Manhattan 
architectures. Furthermore, in all these cases, there is no flow 
passing through the same cut set more than once. If this is 
true for all n by n meshes, the improvement upper bounds we 
derived are exact throughput improvement rates. 
 
3.2 Throughputs with symmetrical chip shape 

M-architecture Y-architectur
e 

X-architecture  
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2 4 2.50e-1 2.00 2.00 0 2.00 0 0.00 
3 9 8.33e-2 2.25 2.25 0 2.25 0 0.00 
4 16 3.12e-2 2.00 2.54 27.2 2.60 29.8 3.36 
5 25 1.67e-2 2.09 2.58 23.4 2.68 28.1 2.88 
6 36 9.26e-3 2.00 2.59 29.6 2.65 32.8 4.39 
7 49 5.95e-3 2.04 2.59 27.2 2.67 31.1 3.94 
8 64 3.90e-3 2.00 2.56 27.9 2.69 34.6 5.19 
9 81 2.78e-3 2.03 2.63 29.5 2.69 32.7 4.89 
10 100 1.98e-3 2.00 2.61 30.3 2.67 33.3 5.44 
11 121 1.51e-3 2.01 2.64 31.8 2.70 34.4 5.12 

12 144 1.16e-3 2.00 2.61 30.4 2.69 34.5 5.26 

13 169 9.15e-4 2.01 2.61 30.0 2.70 34.4 5.33 

14 196 7.29e-4 2.00 2.61 30.3 2.69 34.5 5.62 

15 225 5.95e-4 2.01 2.61 30.6 2.70 34.5 5.51 
16 256 4.88e-4 2.00 2.62 31.0 2.69 34.6 5.65 

17 289 4.08e-4 2.00 2.62 31.1 2.70 34.6 5.56 

(a) Y (b) X 

Fig. 6 Congestion pattern of 12 by 12 meshes using different interconnect 
architectures 



As we have already seen in last subsection, a rectangle 
shaped chip has communication bottlenecks on theirs two 
middle cut lines. The physical dimension of the middle part 
of the chip restricts the communication flow and thus 
prevents us from getting larger throughput. As suggested in 

[3], a convex shaped chip may produce better throughput by 
allowing more wires crossing the original middle cut lines. 
In this section, we set the chip shape to be close to a circle 
and symmetrical to all routing directions and then compare 
the throughput of different structures. 

Fig. 7 shows an example of meshes symmetrical to the 
routing directions for different interconnect architecture. 
Fig.7(a) is a level 2 hexagonal mesh, which is the 
symmetrical structure corresponding to the Y-architecture. 
Fig. 7(b) illustrates an octagonal mesh, which is 
X-architecture’s corresponding symmetrical mesh. Fig 7(c) 
shows a diamond shaped mesh, which is symmetrical to the 
Manhattan architecture. 

We compute the throughput of symmetrical structures for 
the Y-architecture, X-architecture, and Manhattan 
architecture. Table 2 lists the throughput of Hexagonal 
meshes from level 1 to level 7. Table 3 shows the throughput 
of octagonal meshes from level 2 to level 4. Table 4 
illustrates the throughputs of diamond meshes from level 1 
to level 12. We also normalized the throughput by total edge 
capacities.  
For Y-architecture, a hexagonal mesh with 169 mesh 
produces a normalized throughput of 2.82, which is 7.6% 
more than that of a square mesh using the same interconnect 
architecture. For X-architecture, our experiments have not 
reached the converged throughput yet. For largest case we 
have tested, which has 281 nodes, the normalized throughput 
is 2.84, which is 5.2% more than that of square mesh using 
the same interconnect architecture. For Manhattan 
architecture, a diamond shaped mesh with 265 nodes 
provides a normalized throughtput of 2.39. The throughput 
improvement of diamond mesh over square mesh for 
Manhattan architecture is 20%. 

Table 2. Throughput of Hexagonal Meshes 
Level #nodes throughput Normalized throughput 

1 7 2.00e-1 2.12 

2 19 1.82e-2 2.49 

3 37 1.24e-3 2.66 

4 61 5.73e-3 2.77 

5 91 2.45e-3 2.81 

6 127 4.74e-4 2.81 

7 169 1.39e-4 2.82 

 
Table 3. Throughput of Octagonal Meshes 

Level #nodes Throughput Normalized throughput 

2 29 2.31e-2 2.34 

3 61 5.45e-3 2.51 

4 101 3.01e-3 2.63 
5 169 1.36e-3 2.74 
6 281 5.75e-4 2.84 

 
Table 4. Throughput of Diamond Meshes 

level #nodes Throughput Normalized throughput 
2 5 1.25e-1 1.78 
3 13 4.20e-2 1.80 
4 25 1.74e-2 2.09 
5 41 8.71e-3 2.23 
6 61 4.92e-3 2.30 
7 85 3.00e-3 2.32 
8 113 1.89e-3 2.36 
9 145 1.39e-3 2.37 

10 181 9.23e-4 2.38 
11 221 6.90e-4 2.38 
12 265 5.11e-4 2.39 
The meshes with symmetrical structures produce different 

flow congestion pattern from n by n meshes. Fig. 8 
illustrates the flow congestion patterns of a level 6 hexagonal 
mesh, a level 3 octagonal mesh and a level 8 diamond mesh. 
We mark the cut edges using red bold line. The symmetrical 
meshes displays a more evenly distributed congestion pattern 
than n by n meshes. The middle cut lines do not exist any 
more. 

           

(a) A level 2 hexagonal mesh (b) A level 2 octagonal mesh 

(c) A level 2 Diamond mesh 
Fig. 7  Meshes with symmetrical structures 

(a) flow bottleneck on a level 6 
hexagonal mesh

(b) flow bottleneck on a level 3 
octagonal mesh 

(c) flow bottleneck on a level 8 diamond mesh 

Fig. 8 Flow congestions on meshes with symmetrical structures 



 
 

VI. Wire-length of Different Interconnect 
Architectures 

Wire length has significant impact on virtually every 
important measure of chip quality. From physical point of 
view, decreasing wire length directly reduces the resistance 
and capacitance of the interconnect, thus improves the 
performance and power consumption of the circuits. From 
designer’s point of view, shorter total wire length can 
produces less routing congestion on the chip, hence improve 
the routability and signal integrity of the design. At the same 
time, from manufacturing point of view, shortening the 
wirelength can improve the manufacturability and reliability 
of the chip. 

Because of its few freedom on choosing routing directions, 
Manhattan architecture adds significant amount of wire 
length to the Euclidean optimum. Apparently, allowing more 
routing directions may shorten the total wire length. 
Previously, researchers has studied the impact of using 
different interconnect architecture on the wire length. Many 
of these efforts were put on constructing the Steiner routing 
trees under different routing direction restriction [2] [8]. Due 
to the inherent hardness of Steiner minimum tree problem, 
most of these work develop heuristics to construct Steiner 
trees for a randomly generated net, and statistically calculate 
the average wire length for different interconnect 
architectures. In this section, we derive the quantitative 
comparison of wire lengths needed to connect a two pin net 
using different interconnect architectures. 

In-order to generalize the non-rectilinear routing structure, 
Burman et al. [2] introduces the concepts of λ-geometry. In 
λ-geometry, wires with angles iπ/λ, for all i are allowed, 
where λ is a positive integer. λ = 2, 3, 4 corresponds to the 
Manhattan architecture, Y-architecture, and X-architecture, 
respectively. In the following discussion, we follow this 
notation of λ-geometry. 
Lemma1: In λ-geometry, given two points A and B, if AB 
are not on any of the λ feasible routing directions, then the 
shortest path connecting AB consists two segments AC and 
CB, where the angle between AC and CB is (1-1/λ)π 
Lemma2: Let A, B be any two points on the plane, re be the 
Euclidean distance between A and B, and rλ be the length of 
the shortest wire to connect AB in λ-geometry, then 
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Lemma3: Let A, B be two random points on the plan, re be 
the expected Euclidean distance between A and B, and rλ be 
the expected length of the shortest wire to connect AB in 

λ-geometry, then err
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Lemma1 states that in order to connect two pins with the 
shortest wire, there is at most one turn on the path, and we 
need to maximize the angle between two segments of the 
path for the given interconnect architecture. 
For different interconnect architectures, Lemma2 shows that 
in worst case how much additional wire length could we pay 
over the Euclidean distance. For Manhattan architecture, in 
worst case the wire length is 41.2% longer than the 
Euclidean distance. For Y-architecture and X-architecture, 
the additional wire length over Euclidean distance is at most 
15.47% and 8.23% respectively. We list these numbers in the 
Table 5. 

Lemma3 discuss the average wire length of a two pin net 
using different interconnect architecture. For Manhattan 
architecture, the average wire length is 27.32% longer than 
its Euclidean distance. For Y-architecture, the average wire 
length is 10.27% longer than its Euclidean distance and 
achieves a average wire length reduction of 13.4%. The 
X-architecture further reduces the average wire length to be 
within 5.48% of the Euclidean optimum and it produces 
4.3% wire length reduction over Y-architecture with the cost 
of one more routing direction. 

 Table 5. Worst case wire length overhead of different 
interconnect architectures 

M  (%) Y (%) X (%) 
41.2 15.47 8.23 

 
Table 6. Average case wire length overhead of different 

interconnect architectures 
M (%) Y (%) X (%) 

27.32 10.27 5.48 

V. Conclusions and Future Directions 
In this paper, we propose a new on-chip interconnect 

architecture named Y-architecture. Comparing with the 
traditional Manhattan architecture, Y-architecture apparently 
improves the throughput (31.1% more for a 17 by 17 mesh) 
and significantly reduces the wire length. (an average 
reduction of 13.4% for a two pin net). Comparing with 
recently proposed X-architecture, Y-architecture produces 
very close throughput (only 2.6% less for a 17 by 17 mesh) 
and slightly longer wire length (Averagely 4.3% longer for a 
random two pins connection).  

According to our experiments, making the chip shape 
close to a circle can improve the throughput of rectangular 
chip. A hexagonal chip using Y-architecture produces a 
throughput improvement of 41% over the rectangular chip 
using Manhattan architecture. 

Some interesting research directions about Y-architecture 



include: (1) Developing new models to take vias into 
consideration when evaluating different interconnect 
architectures, and (2) Designing a sample chip to justify our 
theoretical prediction. 
 

VI. Acknowledgment 
This work was supported in part under grants from NSF 

project number MIP-9987678, the California MICRO 
program, SRC support, and Cal-(IT)2 graduate fellowship.  
 

VII References 
[1]International Technology Roadmpa for Semiconductors, 2001 
Edition-Interconnect  
[2]S.Burman, H. Chen, and N. Sherwani, “Improved global routing 
using λ-geometry,” in Proc. of 29th Annual Allerton Conference on 
Communication, Computing, and Controls, Oct. 1991 
[3]H. Chen, B. Yao, F. Zhou, and C. K. Cheng, “Physical Planning 
of On-Chip Interconnect Architectures,” In Proc. of ICCD, 
pp.30-35, Sep. 2002 
[4]C. Chiang and M. Sarrafzadeh, “Wirability of Knock-knee 
Layouts with 45-degree wires,” IEEE Trans. on Circuits & Systems, 
vol. 38, No.6, June 1991, pp. 613-624 
[5]N. Garg, and J. Konemann, “Faster and Simpler Algorithms for 
Multicommodity Flow and other Fractional Packing Problems,” In 
Proc. Of the 39th Annual Symposium on Foundations of Computer 
Science, pp.300-309, 1998 
[6]N. Karmarkar, “A new polynomial-time algorithm for linear 
programming,” Combinatorica, 4(4):373--395, 1984 
[7]I. Mutsunori, T. Mitsuhashi, A. Le, S. Kazi, Y. Lin, A. Fujimura, 
and S. Teig, “A Diagonal Interconnect Architecture and Its 
Application to RISC Core Design,” Proc. ISSCC, pp. 684- 689. San 
Jose, CA, Feb. 2002. 
[8]M. Sarrafzadeh, C.K. Wong, “Hierarchical Steiner tree 
construction in uniform orientations,”. IEEE Trans. on 
Computer-Aided Design of Integrated Circuits and Systems, vol.11, 
(no.9), Sept. 1992. p.1095-103 
[9]F. Shahrokhi and D. Matula, “The maximum concurrent flow 
problem,” J. ACM, 37(2): pp.318-334, 1990 
[10] S. L. Teig, “The X Architecture: not your father’s diagonal 
wiring,” in Proc. of SLIP, pp.33-37, Apr. 2002 


	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index




