
UTACO: A Unified Timing and Congestion Optimizing Algorithm
for Standard Cell Global Routing*

 Tong Jing, Xianlong Hong, Haiyun Bao,
 Yici Cai, Jingyu Xu, Chungkuan Cheng Jun Gu
 Dept. of CST Dept. of CSE Dept. of CS
 Tsinghua Univ. UC, San Diego HK Univ. of S&T
 Beijing 100084, P. R. China La Jolla, CA 92093-0114, USA Hong Kong, P. R. China
 Tel: +86-10-62785564 Tel: +1-858-534-6184 Tel: +86-10-82624605
 Fax: +86-10-62781489 Fax: +1-858-534-7029 Fax: +86-10-82624604
 e-mail: {jingtong, hxl-dcs}@tsinghua.edu.cn e-mail: kuan@cs.ucsd.edu e-mail: gu@cs.ust.hk

 Abstract -- Timing performance and routability are two main
issues of global routing. In this paper, we adopt a shadow price
mechanism to incorporate the two issues into one unified
objective function. The shadow price of a net is the sum of its
congestion price and timing price. Based on the new formulation,
this paper presents the UTACO algorithm for standard cell (SC)
global routing. The experimental results show that UTACO is
efficient for both timing and congestion optimization.

I. INTRODUCTION

 As fabrication technology moves into deep sub-micron
(DSM) device size and giga-hertz clock frequencies,
interconnect becomes an increasingly dominant factor in
performance, power, reliability and cost [1]. Especially,
interconnect has become a dominant factor in chip timing [2].
Thus, merely minimizing congestion throughout global
routing process is not adequate [3]. We need efficient timing
and congestion optimizing algorithms for global routing.
 To deal with this trend, many helpful researches, such as
timing models [4, 5], timing-driven Steiner tree algorithms [6,
7], and interconnect design algorithms considering buffer
insertion or/and wire sizing [8-10], have been done to reduce
interconnect delay. These researches mainly focus on single
net routing. To get better routing results for timing
optimization, we also need efficient timing-driven global
routing algorithms. Some typical timing-driven global routing
algorithms [3, 11-16] have been presented.
 Ref. [11] proposes the nets-based timing analysis strategy to
improve the timing performance. This strategy has advantages
compared with previous methods: (1) simply transform the
minimum interconnect delay into the minimum wire length
[12, 13] and (2) assign higher priorities to more critical nets by
static delay analysis and then obtain shorter routes for each net
[14, 15]. This approach is easy to implement and simple to
control. However, this strategy has blindness in delay
assignment. If there is a difference between delay assignment
and timing requirement, the congested nets can not be
rerouted.
 To overcome the shortcomings in [11], Ref. [16] presents
the critical-path-based timing analysis strategy. Throughout

 * This work was supported partly by Hi-Tech Research and Development
(863) Program of China 2002AA1Z1460, the NSF MIP-9987678, the 973
Program of China G1998030403, the NSFC 60121120706, the NSF CCR-
0096383, and Key Faculty Support Program of Tsinghua Univ. [2002] 4.

the global routing process, many nets can be rerouted to slack
the congested areas while the timing constraints on critical
paths are still satisfied. This method avoids the unreasonable
delay assignment and obtains a better routing result. Since
there are many critical paths actually, this strategy takes much
time to check all critical paths after each net is rerouted. Thus,
it reduces routing speed greatly. Meanwhile, net ripping up
and rerouting only depends on greedy trying. There is not an
overall survey to reduce the delay. The reason is that there is
not a unified formulation for both timing and congestion
optimization. That is, the formulation only consists of
equations for congestion minimizing. Therefore, the whole
optimizing result is limited.
 In later research [3], both timing and congestion can be
optimized. This method does not adopt a unified formulation
for both timing and congestion optimization. It is a timing-
constrained global routing algorithm for BBL (building block
layout) instead of SC (standard cell). The testing benchmarks
are in small scale and the algorithm has a longer run time,
which limits the algorithm applications.
 Timing performance and routability are two main issues of
global routing. However, these two issues are mutually
conflicting if we view and handle their effects independently.
For example, to ease the routing congestion of a local area, we
tend to detour wires out of the area for a more even distribution
of the routing demand. However, the detour of the wires
lengthens the interconnect distances and increases the signal
delay. Likewise, timing driven routing would enforce certain
routes to optimize the communication speed, which might
cause local routing congestion.
 To tackle this problem and get good routing results, this
paper presents a unified timing and congestion optimizing
(UTACO) algorithm for SC global routing. The UTACO
algorithm adopts a shadow price mechanism (see [17] for an
overview) to incorporate timing and congestion optimizing
into one unified objective function. The shadow price of a net
is the sum of its congestion price and timing price. The timing
analysis strategy in UTACO is different from that in the above
mentioned approaches. The performance of UTACO is better
than that of the existing algorithms for timing optimization,
which makes it possible: (1) to optimize timing and congestion
simultaneously and efficiently, (2) to reduce the delay in an
overall survey.
 The remainder of this paper is organized as follows. In
Section 2, the Sakurai-delay-based timing model for

calculating the delay is introduced. Section 3 formulates the
global routing problem for symbolic analysis. The UTACO
algorithm is given in detail in Section 4. Section 5 discusses
experimental results. Section 6 is an overall conclusion.

II. TIMING MODEL

 Timing optimizing global routing needs a suitable timing
model to calculate the delay in a routing tree. The Sakurai-
delay-based timing model [5] is used in this paper.

III. PROBLEM FORMULATION

 Ref. [18-20] introduce the multi-commodity flow into
global routing. The goal of these algorithms is only to
minimize congestion. Timing optimization does not be
considered and formulated. In this section, based on shadow
price mechanism, we formulate global routing as a multi-
commodity flow problem and incorporate timing and
congestion optimizing into one unified objective function.
 In this paper, the objective function is the slack of
congestion with the clock period as the delay limit that from
registers and inputs to registers and outputs. The multi-
commodity flow is expressed by a linear programming (see
[17] for an overview) formulation as a primal problem. We
then convert the primal problem into a dual formulation using
the shadow price as the variables. In the dual formulation, the
wiring congestion is reflected by the congestion price at each
edge of the global routing graph. The congestion price of a net
is defined to be the sum of the congestion prices on the edges
passed by that net. The signal delay is reflected by the timing
price at each net. If we view each timing price as a timing flow
on each net, the timing flow forms paths flowing from inputs
and registers to registers and outputs. The amount of the
timing flow on each path corresponds to the criticality of the
timing constraint on that path.
 The shadow price of a net is the sum of its congestion price
and timing price. The objective of the dual problem is to
maximize the sum of shadow prices of all nets together with
the clock period limit on the boundary of the circuit.
 The primal and dual formulation offers theoretical upper
and lower bounds of the routing solution. Throughout the
optimization process, the difference of the two bounds reduces.
When the difference approaches zero, we have an optimal
solution. However, the amount of routing flow is limited by
discrete numbers, the difference always exists. The bounds
thus provide the user’s insight into the quality of the solutions.

A. Definitions

 With the progress in multi-layer routing technology, routing
area is a whole chip plane instead of many channels. We
assume that the whole chip is divided into a rectangular array
of Nrow*Ncol cells called global routing cells (GRCs). Global
routing graph (GRG) is the dual graph of GRCs, which is
composed of the gridlines and crossings. Fig.1 shows an
example GRG that holds 4*4 GRCs. Node vi represents the
center point of GRCi. The edge links node vi and node vj is
named as e, l is called the length of edge e, equals the distance
between node vi and node vj. A non-negative number ce, called

edge capacity, is assigned to edge e. ce indicates the number of
available tracks between every two corresponding GRCs.

GRC1

GRGv1

e

v2

Steiner
Tree

Pin Chip

Fig.1. Global routing graph (GRG).

 Thus, a net can be specified as a set of nodes in GRG. Then,
the problem of routing a net in GRG can be described as a
Steiner tree problem of specified nodes in GRG.

B. Notation

 The following notation is used in this paper.
 N the set of nets to be completed, assume that these nets are

numbered consecutively, i.e., 1 through r.
 n a set of terminals to be routed under the timing constraint, each

net n ∈ N.
 E edges in GRG, each edge e ∈ E.
 f

nt the flow f of net n.

 bn the demand of routing for net n, in general, is set to 1.
 ns the source of net n.
 nt a sink of net n.
 f

ijd the delay of flow f
nt based on the Sakurai-delay-based timing

model (∀ i ∈ ns, j ∈ nt).
 ai the latest arrival time of node i.
 P the timing constraint.
)(f

ne tϕ a function is used to indicate whether the flow f
nt goes through

edge e or not. We have)(f
ne tϕ = 1 if the flow f

nt goes through

edge e; otherwise,)(f
ne tϕ = 0.

 re the shadow cost, i.e., the weight value of edge e.
 λn the shadow cost of routability flow of net n.
 ωij the shadow cost of timing flow of net n (∀ i ∈ ns, j ∈ nt).
 ui the shadow cost of node i.
 f

nt
λ the maximum cost of flow f

nt with respect to routability and

timing requirements.

C. Linear Programming Formulation

 We use a factor s to scale the edge capacity ce of the edges to
s • ce. The flow problem searches for a flow solution that
minimize slack s. Thus, if the solution has s ≤ 1, we can route
the nets with a slack (1-s) • ce. Otherwise, when solution has
s>1, the routing is not feasible.

 Minimize s
 Subject to
 re: 0)(

,
≥⋅+⋅− ∑

∈
e

Nnf

f
ne

f
n cstt ϕ ∀ e ∈ E (A)

 λn: n
f

f
n bt ≥∑ ∀ n ∈ N (B)

 ωij: 01
≥+⋅⋅−− ∑ j

f

f
n

f
ij

n
i atd

b
a

 ∀ i ∈ ns, j ∈ nt, ∀ n ∈ N (C)
 ui: Pai −≥− ∀ node i (D)

 ai ≥ 0,
f

nt ≥0, s ≥ 0 ∀ node i, n ∈ N
 The constraint (A) of the linear program specifies that the
total demands of the nets using the edge e should be less than
the edge capacity ce. The constraint (B) specifies that the sum
of all of the routing tree flows must be more than or equal to
the demand for that net. The constraint (C) specifies the edge
timing constraint, and the constraint (D) specifies the pin
timing constraint.

D. Dual Linear Programming Formulation

 For the linear programming, we can derive its dual
formulation as follows.

 Maximize)(∑∑ ⋅−⋅
∈ i

i
Nn

nn Pubλ (E)

 Subject to

 s: 1≤⋅∑
∈Ee

ee rc (F)

f

nt : 01)(
,

≤⋅⋅−+⋅− ∑∑
∈∈∈

ij
f

ij
njnin

n
Ee

f
nee d

b
tr

ts

ωλϕ

 ∀ n ∈ N (G)

 ai : 0≤−+− ∑∑ i
j

ji
j

ij uωω ∀ node i (H)

 λn ≥ 0, ωij ≥ 0 ∀ n ∈ N, i ∈ ns, j ∈ nt

 ui ≥ 0, re ≥ 0 ∀ node i, e ∈ E
 The constraint (F) is derived from the primal problem with
respect to the variable s, the constraint (G) is derived with
respect to the variable f

nt , and the constraint (H) is derived
with respect to the ai.

IV. THE GLOBAL ROUTING ALGORITHM UTACO

 In global routing, we require that the flow amount is
discrete, i.e., flow f

nt is in the set of natural integers. However,
this transforms the problem into an integer program, which is
known to be NP-complete. Thus, we firstly focus on obtaining
a fractional solution. For further discussion about heuristic
integerizing, refer to Ref. [18].

A. Fractional Flow Algorithm

 (1) Given both shadow cost of edge e and shadow cost of
timing flow of net n, the primal operation reroutes the nets to
optimize congestion, find the optimal timing Steiner trees, and
obtain the flow ∑

∈

⋅
Nnf

f
ne

f
n tt

,

)(ϕ . The weight value of edge e is

regarded as the shadow cost function (i.e., re) of it, and the
shadow cost of timing flow of net n is ωij (∀ i ∈ ns, j ∈ nt).
 The dual operation is used to calculate edge cost re

according to edge congestion and to calculate net cost ωij

under the timing constraint (H). After the primal iteration, we
have the flow amount of each edge, i.e., ∑

∈

⋅
Nnf

f
ne

f
n tt

,

)(ϕ , and the

delay information of each critical path. The flow on each edge
is used to define the congestion. And, based on the information,
we can manage to get the suitable set of edges to be rerouted.
 The flow control of the fractional flow algorithm can be
summarized as follows: we firstly set an initial routing by
routing each net independently, and then iterate the primal
dual process until the two objective functions converge or the
number of iterations exceeds the limit.
 (2) From equation (G) and (H), we have:

f

nt :
ij

f
ij

njninEe

f
neen d

b
tr

ts

ωϕλ ⋅⋅+⋅≤ ∑∑
∈∈∈

1)(

 ∀ n ∈ N (I)

 ai : i
j

ij
j

ji u+≤ ∑∑ ωω ∀ node i (J)

 The objective from (E) in dual linear programming
prescribes that the net cost λn needs to reach its upper bound.
Thus, we can use “=” instead of “≤” in equation (I). On the
other hand, it should be satisfied equation (I) for all flows f

nt .
It means that we need the minimum value of the right part of
equation (I) among all its values. Thus, from (I), we have:

)1)((min
, ij

f
ij

njninEe

f
neenfn d

b
tr

ts

ωϕλ ⋅⋅+⋅= ∑∑
∈∈∈

 ∀ n ∈ N (K)

 Let)1)((ij
f

ij
njninEe

f
neet

d
b

tr
ts

f
n

ωϕλ ⋅⋅+⋅= ∑∑
∈∈∈

 ∀ n ∈ N (L)
 Then,)(min

,
f

ntnfn λλ = ∀ n ∈ N (M)

 We can regard f
nt

λ in equation (L) as the cost of flow f
nt .

Thus, net cost λn is the minimum cost of all possible flows (see
equation (M)) in net n . Flow cost f

nt
λ depends on two parts:

the value of ∑
∈

⋅
Ee

f
nee tr)(ϕ and

ij
f

ij
njnin

d
b

ts

ω⋅⋅ ∑
∈∈

1 . Of the two

parts, the former is the congestion cost, and the latter is the
delay cost.
 For dual programming, in order to maximize the congestion
cost∑

∈

⋅
Ee

f
nee tr)(ϕ , the edge cost re is set higher for the more

congested edge. Likewise, to maximize the delay cost, the
shadow cost

ijω is set higher for the longer delay f
ijd .

 On the other hand, the primal problem then routes the flow
to minimize the congestion cost and the delay cost. Thus, the
nets through edges with high shadow cost re will be rerouted to
find the path along less congested regions. In the mean time,
the flows along the high shadow cost

ijω will be rerouted to
reduce the delay. The shadow prices derived from the dual
problem provide the mechanism to balance the effects
between the routing congestion and the timing delay

optimization.
 (3) To get the maximum net cost, shadow cost ωij has to
reach its upper bound (in equation (K)). Thus, the inequality in
expression (J) can be replaced by the equality:

 ai : i
j

ij
j

ji u+= ∑∑ ωω ∀ node i (N)

 If we regard net cost ωij as the flow from node i to node j, it
means that the input flow equals the output flow of node i,
shown in Fig. 2.
 From equation (D), we know that if ai > P, then, ui > 0.
Otherwise, ai ≤ P, then, ui = 0.
 According to equation (C), if edge e is not on the critical
path of timing, ωij = 0. Otherwise, ωij > 0.
 An illustration of net cost ωij is shown in Fig. 3. Fig. 3(a)
shows the latest arrival time of each node. We can see that ai
equals 5. Suppose that the timing constraint P equals 4. We
have the critical path shown by the bold arrow lines. Fig. 3(b)
shows the relationship between net cost ωij and node cost ui. In
Fig. 3(b), let ui of the node that violates the timing constraint
be 2. The total flow ωij is 2. For the edge e that is not on the
critical path, ωij = 0.
 (4) From section 4A(2), we know that we need to get the
maximum value of net cost λn for the dual linear programming.
But, in the primal linear programming, it needs to reroute net n
with minimum shadow cost λn. Therefore, by using the
method of iterating the primal dual process, we will choose the
nets with)(max)1()(

,max
+−=∆ k

t
k

tnf
f

n
f

n
λλλ to reroute.

 In order to choose the nets with λmax∆ to reroute, we can
derive the following equation (O) for λmax∆ according to
equation (K) and (L).

 i

 ωji ωij

 ui

Fig.2. The flow of node i.

P = 4

 (1) (3)

 (0)

 (1) (3)

 (5)

 1

 2

 1
 2

 2 1 1
 2

 2
 1

 (ai): the latest arrival time ai of each node i
 : critical path

 (a) ai and critical path

 ai
 dij

f

 1

 0

 0

 0 1 0 0

 2
 1

 1

 (b) ωij and ui

Let ui = 2

ωij

Fig.3. An illustration of net cost ωij.

)(max)1()(

,max
+−=∆ k

t
k

tnf
f

n
f

n
λλλ

))1)((

)1)(((max

)1()1(

)()(

,

+

∈∈∈

+

∈∈∈

⋅⋅+⋅

−⋅⋅+⋅=

∑∑

∑∑

k
ij

f
ij

njninEe

f
ne

k
e

k
ij

f
ij

njninEe

f
ne

k
enf

d
b

tr

d
b

tr

ts

ts

ωϕ

ωϕ

 ∀ n ∈ N (O)
 Based on equation (O), the rerouting is helpful for both
congestion and timing optimization. Separately, we might use

)max()1()(+− k
e

k
e rr and)max()1()(+− k

ij
k

ij ωω . A uniform routing
result, i.e., a low routing density, will make edge cost re be
decreased. Then, we will get)max()1()(+− k

e
k

e rr . On the other
hand, if the rerouted edge e is on the critical path of timing,
then, ωij > 0. And, the rerouted result for edge e will make the
path is not “critical” than before. Accordingly, net cost ωij is
decreased. Thus, we will get)max()1()(+− k

ij
k

ij ωω . However,
equation (O) shows the integration of the routability and
timing requirements into one unified expression.
 (5) As a result, we have that the new formulation obtains a
best result for both congestion minimization and timing
optimization. In the following, we will briefly discuss the
suitable method of getting the nets with λmax∆ to reroute.

B. The CC-net

 In section 4A(4), it comes to the conclusion that we will
manage to get the nets with λmax∆ to reroute. In this
subsection, we will give a method to select these nets.
 Based on the information about congested edges and critical
paths given by the primal iteration, we create a network NW.
NW= (Vcc, Ecc, λmax∆ , PI, PO), which consists of and only
consists of all congested edges and critical paths. The network
NW is called CC-net. Where Vcc is the set of pins of NW, Ecc is
the set of edges of NW, PI is the source of NW and PO is the
sink of NW. Thus, if we reroute the edges in NW, both
congestion and timing can be optimized to a certain extent.
 Fig. 4 shows the partial CC-net in MCNC C2, where there
are total 16 CC-paths from PI to PO. In MCNC C7, there are
total more than 45 thousand such CC-paths throughout routing
process. Under the critical-path-based timing optimizing
approach [16], since there is not any unified formulation and it
is in order to shorten run time, only some critical paths are
checked with timing constraints. Therefore, the optimizing
result is limited. Now, we create the CC-net. We can get

λmax∆ without checking every CC-path in NW, even without
checking each critical path. How can we get λmax∆ in CC-net?
The answer is in the followings.

PI

PO

Fig.4. Partial CC-net in MCNC C2.

 From all the CC-paths from PI to PO in the CC-net, if we
select at least one edge from each CC-path, reduce the delay
and minimize the congestion of these selected edges, then we
certainly improve the timing performance of all critical paths
and minimize congestion. Thus, we get λmax∆ . That is, we
should select the min-cut of the CC-net. Then, decrease the
delay and congestion of all edges in the min-cut. As a result,
we are able to get the nets with λmax∆ .
 Based on the theory of maximum network flow [22], we can
get the maximum flow of the CC-net. If the value of the
maximum flow does not equal ∝, we will get its min-cut.

C. Edge Shadow Cost

 In this subsection, we formulate the edge shadow cost re.
The cost re describes the routing congestion. We formulate re
as follows.
)/())((

,

δηδϕ ++⋅= ∑ e
nf

f
ne

f
ng cttC (P)

⋅Κ

≤⋅
= ∑

otherwiseC

cttC
r

g

e
nf

f
ne

f
ng

e ,

)(ϕ (Q)

where η is an adjuster (0 < η < 1), K is a large integer, and δ is
a small real number that validates the equation (P) while edge
capacity ce is 0.

D. The UTACO Algorithm

 Based on the above discussion, the essence of the UTACO
algorithm can be summarized in Fig. 5.

ALGORITHM UTACO
S1: construct initial minimum wire length Steiner Tree for each net

respectively;
S2: make statistics of total resources, determine congested edges and

critical paths;
WHILE (solution is not ε-optimal) DO
 {
 S3 S31: calculate the edge shadow cost re;

S32: get the value of net cost ωij for each edge;
S33: get the nets with λmax∆ ;

 S4 S41: reroute the nets given by step S33 to implement
congestion and timing optimizing;

 S42: update the flow demand of each edge;
 S5: check if solution is ε-optimal;
 }
S6: solution integerization;
WHILE (not feasible) DO
 {
 S7: improve integerized solution;
 }

Fig.5. The UTACO algorithm.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

 The UTACO algorithm has been implemented in the C
language on a Sun Ultra Enterprise 450. We compare routing
results between UTACO and SSTT (search space traversing
technology) algorithm on main optimization objectives. The
SSTT algorithm presented in [21] is a pure congestion
minimization algorithm for SC global routing. Ref. [21] shows
that SSTT can get better routing results on wire length and

overflow edges. SSTT also has a very short run time. The
experimental results are also compared with those of above
algorithms.

A. Benchmark Data

 We tested five MCNC benchmarks under 0.2um technology.
Table 1 summarizes the benchmark data sets.

TABLE I
BENCHMARK DATA

Circuits Nets Grids Allowable Delay (ns)
C2 745 9*11 0.496281
C5 1764 16*18 1.045857
C7 2356 16*18 1.083933

s13207 4953 24*26 1.022260
avq 21851 65*67 4.023312

B. Results
TABLE II

CIRCUIT DELAY INCREMENTS (ns)
Circuits SSTT UTACO

C2 0.0155 (+3.12%) 0.0000 (0.00%)
C5 0.0803 (+7.68%) -0.0033 (-0.32%)
C7 0.0300 (+2.77%) -0.0045 (-0.42%)

s13207 0.0711 (+6.96%) -0.0018 (-0.18%)
avq 0.0345 (+0.86%) -0.0142 (-0.35%)

TABLE III
THE TOTAL WIRE LENGTH (um)

Circuits SSTT UTACO
C2 5.2215*105 5.2194*105 (-0.04%)
C5 1.1489*106 1.1466*106 (-0.20%)
C7 1.3494*106 1.3510*106 (+0.12%)

s13207 7.8266*106 7.8179*106 (-0.11%)
avq 8.2860*106 8.2818*106 (-0.05%)

TABLE IV
OVERFLOW EDGES

Circuits SSTT UTACO
C2 1.7 2.2
C5 1.3 1.6
C7 0.0 0.6

s13207 3.8 6.8
avq 13.8 10.0

TABLE V
THE RUNNING TIME (s)

Circuits SSTT UTACO
C2 1.28 1.78
C5 3.05 4.72
C7 4.59 7.04

s13207 21.60 28.13
avq 50.79 70.36

C. Discussions

 (1) The main optimizing objective of UTACO is to reduce
circuit delay, which is the essential difference between
timing-optimizing and non-timing-optimizing global routing
algorithms. As a result, the increment (i.e., the slack value)
between actual delay and allowable delay (i.e., actual delay
minus allowable delay) is given in table 2. Table 2 also gives
the percentage of delay increments. Table 2 indicates that the
delay in routing results is fluctuant and may be greater than the
allowable value while it does not be controlled in SSTT. When

UTACO algorithm is used, the circuit delay can be controlled
efficiently within the range of the required value.
 Ref. [11] and [16] test the MCNC C2, C7, and s13207 under
2um technology. Their routing results show that the maximum
delay is better improved than that of TimberWolf 5.6.
However, they do not compare their results with the allowable
delay value. Thus, designers do not know whether the delay
can satisfy delay requirements or not by using those
algorithms.
 (2) One of the optimizing objectives of UTACO is to
shorten wire length. The wire length results are given in table 3.
The last column in table 3 gives the percentage of wire length
increments between UTACO and SSTT. We find that there is
only a little difference of wire length between UTACO and
SSTT, which indicates that UTACO performs well on timing
optimizing and does not make wire length get worse. There are
no experimental results in [11, 16] concerning this test.
 (3) The UTACO algorithm also includes the objective of
removing overflow edges. In table 4, we find that the number
of overflow edges in UTACO nearly equals to that in SSTT,
which indicates that UTACO performs well on both timing
and congestion (shown by overflow edges) optimizing. There
are no experimental results in [3, 11, 16] concerning this test.
 (4) The running time is given in table 5. It shows that
UTACO takes a very short running time, which is from 2s to
71s. Thus, the UTACO algorithm can be used for the large
scale circuit global routing. The reason is that we adopt the
unified timing and congestion optimizing strategies to
improve the circuit timing performance and routability. The
existing algorithms [3, 11, 16] take much longer run time
(approximate 200s ~ 3000s) or are tested on very small scale
benchmarks (45 ~ 390 nets).

VI. CONCLUSION AND FUTURE WORK

 This paper studies the timing performance and routability in
global routing. A unified timing and congestion optimizing
(UTACO) algorithm for SC global routing is proposed. The
experimental results show that the UTACO algorithm is able
to: (1) optimize both timing and congestion simultaneously
and efficiently, (2) reduce the delay in an overall survey, (3)
obtain good routing results on other optimizing objectives,
such as wire length, overflow edges, (4) take a very short
running time.
 Coupling and crosstalk are new challenges to VLSI/ULSI
and system-on-a-chip (SOC) routing. We have not focused on
coupling and crosstalk throughout the global routing process
in this paper. Thus, as future work we plan to study coupling
and crosstalk in detail. Then, we will integrate the functions
considering coupling and crosstalk effects into our UTACO
global router.

ACKNOWLEDGEMENTS

This paper describes research work done cooperatively at
Tsinghua University, Beijing, P. R. China and University of
California, San Diego (UCSD), USA. The authors wish to
thank Hongyu Chen, Bo Yao, Zhengyong Zhu, Zhanhai Qin
and Bao Liu in UCSD for valuable discussions.

REFERENCES

[1] R. Kastner, E. Bozorgzadeh, M. Sarrafzadeh, “An Exact Algorithm for
Coupling-Free Routing”, In: Proceedings of ACM ISPD, Sonoma, CA,
pp.10-15, 2001.

[2] T. Jing, X. L. Hong, Y. C. Cai, H. Y. Bao, J. Y. Xu, “The Key
Technologies and Related Research Work of Performance-Driven
Global Routing”, J. of Software, 12(5), pp.677-688, 2001.

[3] J. Hu, S. S. Sapatnekar, “A Timing-constrained Algorithm for
Simultaneous Global Routing of Multiple Nets”, In: Proceedings of
IEEE/ACM ICCAD, San Jose, CA, pp.99-103, 2000.

[4] W. C. Elmore, “The Transient Response of Lumped Linear Networks
with Particular Regard to Wideband Amplifiers”, Journal of Applied
Physics, 19(1), pp.55-59, 1948.

[5] T. Sacurai, “Approximation of Wiring Delay in MOSFET LSI”, IEEE
Journal of Solid-State Circuits, 18(4), pp.418-426, 1983.

[6] X. L. Hong, T. X. Xue, E. S. Kuh, C. K. Cheng, J. Huang,
“Performance-Driven Steiner Tree Algorithm for Global Routing”, In:
Proceedings of ACM/IEEE DAC, Dallas, Texas, pp.177-181, 1993.

[7] J. Y. Xu, X. L. Hong, T. Jing, Y. C. Cai, J. Gu, “An Efficient
Hierarchical Timing-Driven Steiner Tree Algorithm for Global
Routing”, In: Proceedings of IEEE/ACM ASP-DAC, Bangalore, India,
pp.473-478, 2002.

[8] J. Cong, L. He, K. Y. Khoo, C. K. Koh, Z. G. Pan, “Interconnect Design
for Deep Submicron ICs”, In: Proceedings of IEEE/ACM ICCAD, San
Jose, CA, pp.478-485, 1997.

[9] C. C. N. Chu, D. F. Wong, “An Efficient and Optimal Algorithm for
Simultaneous Buffer and Wire Sizing”, IEEE Trans. on CAD, 18(9),
pp.1297-1304, 1999.

[10] J. Lillis, C. K. Cheng, “Timing Optimization for Multisource Nets:
Characterization and Optimal Repeater Insertion”, IEEE Trans. on CAD,
18(3), pp.322-331, 1999.

[11] J. Huang, X. L. Hong, C. K. Cheng, E. S. Kuh, “An Efficient Timing-
Driven Global Routing Algorithm”, In: Proceedings of ACM/IEEE
DAC, Dallas, Texas, pp.596-600, 1993.

[12] Y. Fujihara, Y. Sekiyama, Y. Ishibashi, M. Yanaka, “DYNAJUST: An
Efficient Automation Routing Technique Optimizing Delay
Conditions”, In: Proceedings of ACM/IEEE DAC, Las Vegas, Nevada,
pp.791-794, 1989.

[13] M. A. B. Jackson, E. S. Kuh, M. Marek-Sadowska, “Timing Driven
Routing for Building Block Layout”, In: Proceedings of IEEE ISCAS,
pp.518-519, 1987.

[14] A. E. Dunlop, V. D. Agrawal, D. N. Deutsch, M. F. Jukl, P. Kozak et al,
“Chip Layout Optimization Using Critical Path Weighting”, In:
Proceedings of ACM/IEEE DAC, Albuquerque, New Mexico, pp.133-
136, 1984.

[15] M. Rose, M. Wiesel, D. Kirkpatrick, N. Nettleton, “Dense, Performance
Directed, Auto Place and Route”, In: Proceedings of IEEE CICC,
Rochester, NY, pp.11.1.1-11.1.4, 1988.

[16] X. L. Hong, T. X. Xue, J. Huang, C. K. Cheng, E. S. kuh, “TIGER: An
Efficient Timing-Driven Global Router for Gate Array and Standard
Cell Layout Design”, IEEE Trans. on CAD, 16(11), pp.1323-1330,
1997.

[17] D. G. Luenberger, Linear and Nonlinear Programming, Second Edition,
Addison Wesley, 1984.

[18] R. C. Carden IV, J. M. Li, C. K. Cheng, “A Global Router with a
Theoretical Bound on the Optimal Solution”, IEEE Trans. on CAD,
15(2), pp.208-216, 1996.

[19] C. Albrecht, “Provably Good Global Routing by a New Approximation
Algorthm for Multicommodity Flow”, In: Proceedings of ACM ISPD,
San Diego, CA, pp.19-25, 2000.

[20] E. Shragowitz, S. Keel, “A global router based on a multi-commodity
flow model”, Integration, the VLSI J., 5, pp.3-16, 1987.

[21] T. Jing, X. L. Hong, H. Y. Bao, Y. C. Cai, J. Y. Xu et al, “An Efficient
Congestion Optimization Algorithm for Global Routing Based on
Search Space Traversing Technology”, In: Proceedings of IEEE
International Conference on ASIC, Shanghai, China, pp.114-117, 2001.

[22] R. E. Tarjan, “Algorithms for Maximum Network Flow”, Mathematical
Programming Study, 26, pp.1-11, 1986.

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

