
Integer Linear Programming-Based Synthesis of
Skewed Logic Circuits�

Aiqun Cao, Naran Sirisantana, Cheng-Kok Koh and Kaushik Roy
School of Electrical and Computer Engineering, Purdue University

Email: fcaoa, sirisant, chengkok, kaushikg@ecn.purdue.edu

Abstract— We present an integer linear programming-
based approach for solving the logic reconvergence problem
in skewed logic circuits with minimal logic duplication cost.
A simplification technique is applied to reduce the complex-
ity of the ILP problem greatly so that the run time is more
affordable. Experimental results show that an average of
18% of original gates are duplicated in skewed logic circuits,
whereas 65% in Domino logic circuits are duplicated. The
average power saving over Domino logic circuits is 40.9%.

1 Introduction

Although Domino logic can achieve very high performance,
it has two inherent drawbacks: it dissipates more power
and has lower noise margin than static logic. A new noise-
immune high-performance logic family, called monotonic
static CMOS logic [7] or skewed logic [6], was proposed
to solve the problems in Domino logic. Skewed logic cir-
cuit is fully complementary static CMOS logic, with the
size of pull-down network (PDN) decreased and that of
pull-up network (PUN) increased or vice versa for fast
low-to-high or high-to-low transition, respectively.

CLK

1 2 3 4 5 6 7 8 9
A B

CLK

fast
transition
direction

0.4u0.4u

1.2u

1.2u

0.4u

1.2uCLK

0.4u 0.4u

4.8u

4.8u fast
transition
direction

Figure 1: Topology and cascading of skewed logic.

When operating in precharge-evaluate fashion, skewed
logic is comparable in speed to Domino logic. Fast tran-

�This work was supported in part by NSF (CCR-9984553), and SRC
Hewlett-Packard Research Fellowship.

sition is used for evaluation while precharging can be ac-
complished either by clocked skewed logic gates, or by
the propagation of the precharged values using slow tran-
sition along the logic chain (see Figure 1). The structures
of a clocked skewed-down NAND gate and an unclocked
skewed-up NOR gate without clock are shown in Figure 1
also.

To ensure fast evaluation, alternating skew directions
should be assigned to successive logic gates, i.e., skewed-
down gates are followed by skewed-up gates and vice versa.
Consequently, skewed logic encounters the same problem
as Domino logic: logic reconvergent paths. For the syn-
thesis of Domino logic, the fan-in cone of the reconver-
gent paths needs to be duplicated when there is an inverter
trapped in it [3]. The duplication cost can be reduced by
proper output phase assignment [4, 8]. The logic duplica-
tion technique and the output phase assignment technique
for Domino logic synthesis can both be applied to the syn-
thesis of skewed logic [7].

Ref. [5] made use of pass transistors to alleviate the
reconvergent paths problem. However, it did not consider
the glitch problem caused by introducing pass transistors,
which would affect the performance of circuits. Ref. [1]
corrected that and exploited the static nature of skewed
logic to reduce the logic duplication penalty. The key lies
in the observation that under certain conditions, assign-
ing non-alternating skew directions to skewed logic gates
does not impede the performance of the circuit. The re-
convergent paths problem can be overcome by assigning
non-alternating skew directions. In Ref. [1], each pair
of reconvergent paths was solved independently, which
made the solution space more restricted since there may
be many reconvergent paths overlapping with each other.

In this paper, we take the overlapping of reconvergent
paths into account by using an edge-based interger linear
program (ILP) formulation. The reconvergent paths prob-
lem is solved with further reduced duplication cost. More-
over, we apply a simplification technique on the ILP for-
mulation to reduce the complexity and run time of the ap-
proach. Experimental results show remarkable improve-
ments.

1



2 Non-alternating skew directions

A careful analysis of the static skewed logic circuit reveals
that we can make use of the NAND gateB in Figure 2(a)
to avoid logic duplication as follows [1]: We make both
gateB and gateD skewed-down gates. The other fan-in to
gateB, gateA, and the fan-out of gateB, gateF , are both
skewed up, as shown in Figure 2(b). The skew directions
between gatesD andB are non-alternating.

?

A

D

A

D

B
F

H H

F
B

CC

(a) (b)

Figure 2: (a) Reconvergent paths with a NAND gate. (b)
Non-alternating skew directions.

Although gatesD andB are skewed in the same direc-
tion, gateB still properly precharges (to logic 1) because
of gateA, which precharges to logic 0. As skewed logic
achieves its performance by allowing only fast transitions
during the evaluation phase, such a scheme requires that
if gate D switches, it switches earlier than gateA. Oth-
erwise, a glitch will appear at the output of gateB, and
that will affect the performance of the circuit, the prob-
lem that was overlooked in Ref. [1]. A similar analysis
can be extended to NOR gates. The key limitation here
is that when non-alternating skew directions are consid-
ered, the only skew direction feasible for the fan-out gate
of a NAND (NOR) gate is skewed up (down). We refer
to the gates that allow non-alternating skew directions as
candidate gates.

3 Integer linear program (ILP) for-
mulation

3.1 Definitions

Given any pair of reconvergent paths, we refer to the node
from which the reconvergent paths depart asdivergent
node, and the node at which the paths convergeconver-
gent node. For simplicity, we say that a pair of reconver-
gent paths forms areconvergent cycle, or simply acycle,
in the rest of this paper, although there are no cyclic paths
in the directed acyclic graph defined by the logic network.

Different cycles may overlap on some edges, thus a
petal [2] is introduced. A petal consists of all the cycles
that share edges among them. Moreover, some cycles are
the union of two or more other cycles (after removing the

shared edges in these cycles). These are called composite
cycles, contrary to simple cycles.

Given an edgee, we denote the head (destination) and
tail (source) of the edge asHe andTe, respectively. Edges
with the same head are sibling edges. IfHe is a candidate
gate andTe is not the slowest among all the fan-ins ofHe,
edgee is acandidate edge.

3.2 An edge-based formulation

Here, we use the assignment of skew directions to gates in
a cycle to illustrate the proposed edge-based integer lin-
ear program (ILP) approach. Along the two paths of the
cycle, there may be more than one candidate gate where
non-alternating skew directions can be applied, while in
Ref. [1] only one candidate gate in each cycle is consid-
ered, which made the solution space even more restricted.
In our formulation, only candidate edges are the (binary)
variables in the ILP. Edgee is assigned 0 ifHe is in the
same skew direction asTe, and 1 otherwise. All non-
candidate edges implicitly have an assignment of 1.

There are three types of constraints that we have to
capture in the edge-based ILP formulation:
(i) Gate constraintsoriginate from the definition of a can-
didate gate: The non-alternating fan-ins of a candidate
gate must be faster than the alternating fan-ins. There-
fore, when a candidate edge is determined to be of value
1, all the slower sibling edges must also have value 1.
(ii) Path constraintsstem from the fact that there is only
one non-alternating skew direction for each candidate gate.

Consider the simple example in Figure 3(a). Candi-
date gateA (D) can only be skewed-up (skewed-down) for
non-alternating scheme. But they cannot be assigned non-
alternating directions simultaneously, as shown in Fig-
ure 3(a). In other words, candidate edgese1 ande2 cannot
be both assigned 0. That constraint is captured by the fol-
lowing inequality:e1+e2� 1:

e2e1

A D

conflict

e2 = 1e1 e3

conflict

(a)

(b)

Figure 3: Path constraints.

Similarly, for three successive candidate edges,e1, e2

ande3 in Figure 3(b), the two constraints fore1 ande2,
ande2 ande3 are: e1+e2 � 1;e2+e3 � 1; respectively.
If e2 is assigned value 0, the constraints among the three
candidate edges can be captured by the preceding two

2



constraints. Ife2 is of value 1, however, it acts like a non-
candidate edge, and the circuit degenerates to the case in
Figure 3(a). Therefore, we would require a new constraint
for e1 ande3: e1+e3� 1 if e2 = 1; i.e. ;e1+e3�e2� 0:

Therefore, there are three constraints in total for these
three candidate edges. It turns out that the three inequality
constraints amonge1, e2, ande3 can be adequately cap-
tured by a single inequality constraint as follows:e1+
e2+e3� 2; since at most one of the three candidate edges
can have value 0. Extending ton successive candidate
edges along one path, there areO(n2) number of inequal-
ities among them. However, they can be replaced by one
single inequality:en+en�1+ :::+e1� n�1; which im-
plies that only one candidate edge among thosen edges
can have value 0.

Above is a special case of the path constraint and the
simplification technique. In fact, given any path in a sim-
ple cycle, one can always partition the candidate edges
into at most two groups, with edges in a group conflicting
with each other, but not with edges in the other group. Let
j be the number of pair-wise conflicting candidate edges
in a group. We further partition the group intok subgroups
such that every subgroup contains only successive candi-
date edges. Based on the simplification technique pre-
sented earlier, the conflicts within every subgroup can be
captured by one inequality constraint. The number of ad-
ditional inequality constraints to capture the relations be-

tween thesek subgroups is

�
k
2

�
. For brevity, we omit

the proof here. Without the simplification, the number
of inequality constraints among thesej candidate edges

would be

�
j
2

�
.

(iii) Cycle constraintsconcern candidate edges on two dif-
ferent paths in a cycle. In general, we can generate cycle
constraints by treating them as path constraints and simi-
lar simplification technique applies.

3.3 Skew direction assignment

First, we consider the skew direction assignment within a
petal. Clearly, we can formulate the problem as an ILP in
which the variables are the candidate edges, and the con-
straints are thosegate, path, and cycle constraintsformed
by simple cycles within the petal. It can be shown by sim-
ple induction that if all those constraints are satisfied, the
skew assignment of the whole petal is correct, i.e., the re-
convergence problems are solved.

However, there is one compelling reason to abandon
the approach suggested above. The suggested approach
will produce a YES/NO answer, but the ‘NO’ answer is
of no value as it does not provide a partial result to our
synthesis problem. Rather, we would like to identify in
a petal as many as possible cycles whose reconvergence

problems can be resolved by non-alternating skew direc-
tion assignment. The other cycles would have their fan-
in cones duplicated to overcome the logic reconvergence
problem. To achieve that, we use the following heuristic
that incrementally solves a one-cycle ILP formulation at a
time.

Suppose we already have a feasible solution forn cy-
cles in the petal. We use the assignment specified in the
feasible solution to determine the constraints for the(n+
1)th cycle. If the ILP formulation for the(n+1)th cycle
produces a feasible solution, we proceed to the(n+2)th

cycle. Otherwise, we solve a large ILP that considers all
n+1 cycles simultaneously. Here, the constraints of the
large ILP are the union of the constraints of those(n+1)
cycles. If the ILP produces a feasible solution, we proceed
to the(n+2)th cycle. Otherwise, we duplicate the fan-in
cone of the(n+1)th cycle, and proceed to the(n+ 2)th

cycle. Note that when the fan-in cone of the(n+1)th cy-
cle is duplicated, all reconvergence problems in the fan-in
cone are also resolved.

In the incremental ILP formulation, we optimize the
following objective in each ILP:

min∑
i

ci�ei;

whereei is the candidate edge,ci is the number of differ-
ent simple cycles sharing the candidate edgeei . The idea
here is that we want to reduce the number of constraints
in the ILP of later cycles. The objective function maxi-
mizes the number of candidate edges assigned with value
1 (i.e., alternating skew directions), especially for candi-
date edges shared by many cycles.

4 Experimental results

We have implemented the ILP-based synthesis algorithm
presented in Sections 3 in C++ language. We use a stan-
dard ILP package “lpsolve” to solve the ILPs. The solv-
ing of ILPs dominates the run time. Using the simplifi-
cation technique presented in section 3.2 on the ISCAS
benchmark circuits, the average reductions in the num-
ber of inequality constraints and the run time are 2.8x
and 4.8x, respectively. After determining the skew direc-
tion of each gate, a dynamic-programming based heuris-
tic is used to determine the skew value of each gate and to
achieve an optimal clocking scheme [1].

For comparison, the benchmark circuits are implemented
as Domino and skewed logic circuits. For Domino, we re-
strict the library of gates to contain only inverters, 2-input
NAND and NOR gates of up to 6-input. Note that logic
duplication is used to resolve the logic reconvergence in
the Domino circuits. For skewed logic, the library con-

3



Circuit Type gates Circuit power % reduction % reduction Total power % reduction % reduction
number (mW) from [1] (mW) from [1]

C432 Skew 349 28.05 41.9 30.7 32.32 45.7 35.8
Domino 510 48.28 59.53

C499 Skew 730 60.65 46.9 30.3 78.68 47.7 33.9
Domino 1097 114.21 150.44

C880 Skew 488 67.36 38.9 21.7 82.79 39.7 25.1
Domino 695 110.24 137.30

C1355 Skew 834 87.38 30.1 28.5 108.02 32.7 31.3
Domino 1126 125.01 160.55

C1908 Skew 898 81.50 36.9 24.5 98.69 38.9 27.1
Domino 1416 129.16 161.53

C2670 Skew 1385 137.94 42.9 31.4 167.15 45.2 34.3
Domino 1990 241.72 305.18

C3540 Skew 1879 149.07 40.7 34.7 179.45 42.3 37.2
Domino 2787 251.36 311.22

C5315 Skew 3094 223.16 31.8 29.9 266.27 34.3 33.1
Domino 4114 327.21 405.09

C7552 Skew 4309 348.99 40.9 32.3 422.67 42.0 35.2
Domino 6425 590.50 728.74

Average 39.0 29.3 40.9 32.6

Table 1: Experiment results.

tains inverters, and NAND and NOR gates of up to 4-
input.

For every benchmark circuit, the two implementations
operate at the same clock frequency (as dictated by how
fast the Domino circuit is). Circuit simulation using Pow-
erMill is performed using the 0.35µm CMOS technology
at a supply voltage of 3.3V. The results are summarized in
Table 1.

From Table 1, we observe that the skewed logic imple-
mentation significantly reduces the amount of logic dupli-
cation required when compared with that required by the
Domino logic implementation (18% versus 65%). That
contributes to substantial power savings. The average power
saving of skewed logic over Domino is 40.9%.

We also report in Table 1 the results obtained in Ref. [1].
Compared with Ref. [1], which needed 32% duplication
and saved 32.6% power over Domino, we have remark-
able improvements, while the run time is comparable. Note
that although the results in Ref. [5] are better than those
reported in Ref. [1] and this paper, the skewed logic cir-
cuits in Ref. [5] are more susceptible to glitches; therefore
it is unfair to compare with its results.

References
[1] A. Cao, N. Sirisantana, C.-K. Koh, and K. Roy. Synthesis

of selectively clocked skewed logic circuits. InProc. Int.
Symp. on Quality Electronic Design, pages 229–234, March
2002.

[2] S. Dey, F. Brglez, and G. Kedem. Corolla based circuit par-
titioning and resynthesis. InProc. Design Automation Conf,
pages 607–612, June 1990.

[3] M. R. Prasad, D. Kirkpatrick, R. K. Brayton, and
A. Sangiovanni-Vincentelli. Domino logic synthesis and
technology mapping. InProc. Int. Workshop on Logic Syn-
thesis, May 1997.

[4] R. Puri, A. Bjorksten, and T. E. Rosser. Logic optimiza-
tion by output phase assignment in dynamic logic synthesis.
In Proc. Int. Conf. on Computer Aided Design, pages 2–8,
November 1996.

[5] N. Sirisantana, A. Cao, S. Davidson, C.-K. Koh, and K. Roy.
Selectively clocked skewed logic (SCSL): a robust low-
power logic style for high-performance applications. In
Proc. Int. Symp. on Low Power Electronics and Design,
pages 267–270, August 2001.

[6] A. Solomatnikov, D. Somasekhar, K. Roy, and C.-K.
Koh. Skewed CMOS: noise-immune high-performance
low-power static circuit family. InProc. IEEE Int. Conf.
on Computer Design, pages 241–246, September 2000.

[7] T. Thorp, G. Yee, and C. Sechen. Design and synthesis of
monotonic circuits. InProc. IEEE Int. Conf. on Computer
Design, pages 569–572, October 1999.

[8] M. Zhao and S. S. Sapatnekar. Dual-monotonic domino gate
mapping and optimal output phase assignment of domino
logic. In Proc. IEEE Int. Symp. on Circuits and Systems,
pages 309–312, May 2000.

4


	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index




